Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):m432. doi: 10.1107/S1600536811007999

Tetra­aqua­bis­[2-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)acetato]­zinc

Jamshid Ashurov a, Gavhar Karimova b,*, Nasir Mukhamedov c, Nusrat A Parpiev b, Bakhtijar Ibragimov a
PMCID: PMC3099829  PMID: 21753957

Abstract

The ZnII ion in the title compound, [Zn(C9H6NO4)2(H2O)4], is located on an inversion center and is octa­hedrally coordinated by two 2-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)acetate anions in axial sites and four water mol­ecules in equatorial positions. In the crystal, O—H⋯O hydrogen bonds between the coordinated water mol­ecules and carbon­yl–carboxyl­ate O atoms lead to pleated sheets parallel to (001).

Related literature

For the synthesis of 3-alkanoic acid derivatives of 2(3H)-benzoxazolone, see: Lespagnol et al. (1967). For the biological activity of 2(3H)-benzoxazolone derivatives, see: Önkol et al. (2004). For the structure of a 2(3H)-benzoxazolone metal complex, see: Wagler & Hill (2008).graphic file with name e-67-0m432-scheme1.jpg

Experimental

Crystal data

  • [Zn(C9H6NO4)2(H2O)4]

  • M r = 521.73

  • Monoclinic, Inline graphic

  • a = 6.144 (3) Å

  • b = 5.342 (1) Å

  • c = 30.595 (2) Å

  • β = 94.80 (5)°

  • V = 1000.6 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.38 mm−1

  • T = 293 K

  • 0.50 × 0.35 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.726, T max = 1.000

  • 5344 measured reflections

  • 1745 independent reflections

  • 1168 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.150

  • S = 1.06

  • 1745 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007999/mw2002sup1.cif

e-67-0m432-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007999/mw2002Isup2.hkl

e-67-0m432-Isup2.hkl (86KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2B⋯O4i 0.83 2.00 2.772 (5) 156
O1W—H1B⋯O3ii 0.84 1.92 2.699 (5) 153
O1W—H1A⋯O2iii 0.82 2.07 2.799 (5) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (grant No. FA-F3-T-141).

supplementary crystallographic information

Comment

2-Benzoxazolinone derivatives have attracted interest because of their biological activities (Önkol et al., 2004).

The Zn (II) ion lies on an inversion center in an octahedral coordination environment with four O atoms from four coordinated water molecules in the equatorial positions and two O atoms from two ligands in the axial sites.(Fig.1). The coordinated water molecules form strong intermolecular hydrogen bonds with carbonyl and carboxyl O atoms of the ligand (Table 1). Centrosymmetric pairs of O2W–H2B···O4 hydrogen bonds propagating along [010] form pleated strands (Fig.2). Similar strands propagating along [100] (Fig.3) and [110] are formed by O1W–H1B···O3 and O1W–H1A···O2 hydrogen bonds, respectively. Together, these interactions generate sheets parallel to (001).

Experimental

A solution of 2-benzoxazolinon-3-yl-acetate acid (19,3 mg, 0.1 mmol) in ethanol (2 ml) was added to a solution of ZnCl2.6H2O (6.8 mg 0.05 mmol) in water (1 ml) and stirred for 10 min at 40 °C. Slow evaporation of the resulting solution gave colourles crystals suitable for X-ray analysis.

Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their positions adjusted to provide reasonable geometries for the coordinated water molecules. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) projected down the a axis showing the formation of hydrogen bonded pleated strands along [010].

Fig. 3.

Fig. 3.

Part of the crystal structure of (I) projected down the b axis showing the formation of hydrogen bonded pleated strands along [100].

Crystal data

[Zn(C9H6NO4)2(H2O)4] F(000) = 536
Mr = 521.73 Dx = 1.732 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2yn Cell parameters from 4608 reflections
a = 6.144 (3) Å θ = 7.6–66.2°
b = 5.342 (1) Å µ = 2.38 mm1
c = 30.595 (2) Å T = 293 K
β = 94.80 (5)° Prism, colourless
V = 1000.6 (6) Å3 0.50 × 0.35 × 0.20 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 1745 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1168 reflections with I > 2σ(I)
graphite Rint = 0.065
Detector resolution: 10.2576 pixels mm-1 θmax = 66.7°, θmin = 5.8°
ω scans h = −7→6
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −3→6
Tmin = 0.726, Tmax = 1.000 l = −35→36
5344 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.5645P] where P = (Fo2 + 2Fc2)/3
1745 reflections (Δ/σ)max < 0.001
151 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their positions adjusted to provide reasonable geometries for the coordinated water molecules. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 1.0000 0.0000 0.0000 0.0416 (3)
O1 0.2330 (6) 0.1894 (7) 0.17363 (12) 0.0481 (9)
O2 0.1804 (6) 0.4884 (7) 0.12215 (13) 0.0578 (10)
O3 0.5737 (6) −0.0487 (6) 0.05893 (11) 0.0432 (9)
O4 0.7938 (6) 0.2347 (6) 0.03233 (11) 0.0446 (9)
N1 0.4944 (7) 0.2399 (8) 0.12870 (14) 0.0427 (10)
C1 0.2944 (9) 0.3231 (10) 0.13871 (17) 0.0448 (13)
C2 0.5608 (8) 0.0474 (9) 0.15703 (16) 0.0386 (12)
C3 0.7425 (9) −0.1051 (10) 0.16032 (18) 0.0469 (14)
H3A 0.8541 −0.0866 0.1418 0.056*
C4 0.7500 (10) −0.2885 (11) 0.19291 (19) 0.0563 (15)
H4A 0.8694 −0.3959 0.1962 0.068*
C5 0.5830 (10) −0.3139 (11) 0.22046 (19) 0.0599 (16)
H5A 0.5939 −0.4364 0.2421 0.072*
C6 0.4014 (10) −0.1616 (11) 0.21642 (18) 0.0547 (15)
H6A 0.2885 −0.1791 0.2346 0.066*
C7 0.3957 (8) 0.0144 (10) 0.18462 (16) 0.0438 (12)
C8 0.6179 (9) 0.3428 (10) 0.09484 (17) 0.0479 (14)
H8A 0.7561 0.4046 0.1083 0.057*
H8B 0.5385 0.4845 0.0816 0.057*
C9 0.6627 (8) 0.1603 (10) 0.05923 (16) 0.0397 (12)
O1W 1.1399 (6) −0.1149 (7) 0.06222 (12) 0.0539 (10)
H1A 1.1269 −0.2588 0.0711 0.065*
H1B 1.2722 −0.0835 0.0699 0.065*
O2W 1.2325 (5) 0.2871 (6) 0.00289 (11) 0.0469 (9)
H2A 1.3514 0.2751 −0.0076 0.056*
H2B 1.2014 0.4359 −0.0014 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0426 (6) 0.0316 (5) 0.0524 (6) 0.0037 (5) 0.0147 (4) 0.0050 (5)
O1 0.046 (2) 0.045 (2) 0.056 (2) 0.0049 (18) 0.0188 (17) 0.0053 (18)
O2 0.059 (2) 0.050 (2) 0.067 (3) 0.016 (2) 0.0170 (19) 0.014 (2)
O3 0.045 (2) 0.036 (2) 0.050 (2) −0.0054 (16) 0.0131 (16) 0.0012 (16)
O4 0.052 (2) 0.032 (2) 0.053 (2) 0.0059 (16) 0.0225 (17) 0.0060 (17)
N1 0.049 (3) 0.038 (3) 0.043 (2) 0.000 (2) 0.0105 (19) 0.001 (2)
C1 0.043 (3) 0.044 (3) 0.048 (3) 0.002 (3) 0.009 (2) −0.003 (3)
C2 0.045 (3) 0.032 (3) 0.039 (3) −0.002 (2) 0.006 (2) −0.002 (2)
C3 0.042 (3) 0.044 (3) 0.055 (4) 0.001 (2) 0.003 (2) −0.004 (3)
C4 0.058 (4) 0.047 (4) 0.062 (4) 0.006 (3) −0.010 (3) −0.006 (3)
C5 0.080 (5) 0.044 (4) 0.054 (4) 0.001 (3) −0.006 (3) 0.006 (3)
C6 0.065 (4) 0.050 (4) 0.050 (4) −0.009 (3) 0.009 (3) 0.010 (3)
C7 0.051 (3) 0.040 (3) 0.041 (3) 0.004 (3) 0.009 (2) −0.004 (3)
C8 0.050 (3) 0.041 (3) 0.054 (3) −0.006 (3) 0.016 (3) 0.006 (3)
C9 0.040 (3) 0.043 (3) 0.037 (3) 0.009 (2) 0.006 (2) 0.007 (2)
O1W 0.041 (2) 0.055 (2) 0.066 (3) 0.0016 (18) 0.0051 (18) 0.016 (2)
O2W 0.048 (2) 0.0305 (19) 0.064 (2) 0.0012 (16) 0.0170 (17) 0.0037 (17)

Geometric parameters (Å, °)

Zn1—O4i 2.089 (3) C3—C4 1.396 (8)
Zn1—O4 2.089 (3) C3—H3A 0.9300
Zn1—O2W 2.093 (3) C4—C5 1.388 (8)
Zn1—O2Wi 2.093 (3) C4—H4A 0.9300
Zn1—O1W 2.113 (4) C5—C6 1.378 (8)
Zn1—O1Wi 2.113 (4) C5—H5A 0.9300
O1—C1 1.364 (6) C6—C7 1.351 (8)
O1—C7 1.389 (6) C6—H6A 0.9300
O2—C1 1.212 (6) C8—C9 1.504 (7)
O3—C9 1.243 (6) C8—H8A 0.9700
O4—C9 1.263 (6) C8—H8B 0.9700
N1—C1 1.365 (6) O1W—H1A 0.8218
N1—C2 1.384 (6) O1W—H1B 0.8439
N1—C8 1.443 (6) O2W—H2A 0.8249
C2—C3 1.379 (7) O2W—H2B 0.8256
C2—C7 1.384 (7)
O4i—Zn1—O4 180.00 (15) C4—C3—H3A 121.8
O4i—Zn1—O2W 91.20 (13) C5—C4—C3 121.4 (6)
O4—Zn1—O2W 88.81 (13) C5—C4—H4A 119.3
O4i—Zn1—O2Wi 88.80 (13) C3—C4—H4A 119.3
O4—Zn1—O2Wi 91.20 (13) C6—C5—C4 121.5 (6)
O2W—Zn1—O2Wi 180.0 C6—C5—H5A 119.3
O4i—Zn1—O1W 92.02 (14) C4—C5—H5A 119.3
O4—Zn1—O1W 87.98 (14) C7—C6—C5 116.6 (6)
O2W—Zn1—O1W 87.14 (14) C7—C6—H6A 121.7
O2Wi—Zn1—O1W 92.86 (14) C5—C6—H6A 121.7
O4i—Zn1—O1Wi 87.98 (14) C6—C7—C2 123.5 (5)
O4—Zn1—O1Wi 92.02 (14) C6—C7—O1 128.1 (5)
O2W—Zn1—O1Wi 92.86 (14) C2—C7—O1 108.4 (4)
O2Wi—Zn1—O1Wi 87.14 (14) N1—C8—C9 114.4 (4)
O1W—Zn1—O1Wi 180.0 N1—C8—H8A 108.7
C1—O1—C7 107.6 (4) C9—C8—H8A 108.7
C9—O4—Zn1 124.4 (3) N1—C8—H8B 108.7
C1—N1—C2 109.0 (4) C9—C8—H8B 108.7
C1—N1—C8 125.0 (4) H8A—C8—H8B 107.6
C2—N1—C8 126.0 (4) O3—C9—O4 125.6 (5)
O2—C1—O1 121.4 (5) O3—C9—C8 118.7 (4)
O2—C1—N1 130.0 (5) O4—C9—C8 115.7 (5)
O1—C1—N1 108.5 (4) Zn1—O1W—H1A 121.8
C3—C2—N1 132.8 (5) Zn1—O1W—H1B 120.1
C3—C2—C7 120.7 (5) H1A—O1W—H1B 102.2
N1—C2—C7 106.5 (4) Zn1—O2W—H2A 123.4
C2—C3—C4 116.4 (5) Zn1—O2W—H2B 123.4
C2—C3—H3A 121.8 H2A—O2W—H2B 102.3

Symmetry codes: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2W—H2B···O4ii 0.83 2.00 2.772 (5) 156
O1W—H1B···O3iii 0.84 1.92 2.699 (5) 153
O1W—H1A···O2iv 0.82 2.07 2.799 (5) 148

Symmetry codes: (ii) −x+2, −y+1, −z; (iii) x+1, y, z; (iv) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2002).

References

  1. Bruker (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lespagnol, A., Lespagnol, Ch., Lesieur, D., Marcincal-Lebebvre, A. & Dupont, C. (1967). Chim. Ther. 2, 343–346.
  3. Önkol, T., Sahin, M. F., Yildirim, E., Erol, K. & Ito, S. (2004). Arch. Pharm. Res. 27, 1086–1092. [DOI] [PubMed]
  4. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wagler, J. & Hill, A. F. (2008). Organometallics, 27, 6579–6586.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007999/mw2002sup1.cif

e-67-0m432-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007999/mw2002Isup2.hkl

e-67-0m432-Isup2.hkl (86KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES