Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o832. doi: 10.1107/S1600536811008130

2-Amino-5-oxo-4-phenyl-5,6,7,8-tetra­hydro-4H-chromene-3-carbonitrile

Xiaoli Wang a,*
PMCID: PMC3099830  PMID: 21754116

Abstract

In the title mol­ecule, C16H14N2O2, the fused cyclo­hexene and pyran rings adopt an envelope and a flattened boat conformation, respectively. In the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into corrugated sheets parallel to the bc plane.

Related literature

For the biological activities of substituted pyran derivatives, see: Lokaj et al. (1990); Marco et al. (1993). For the crystal structure of a related compound, see: Tu et al. (2001).graphic file with name e-67-0o832-scheme1.jpg

Experimental

Crystal data

  • C16H14N2O2

  • M r = 266.29

  • Monoclinic, Inline graphic

  • a = 20.210 (2) Å

  • b = 8.8161 (5) Å

  • c = 16.3862 (13) Å

  • β = 99.537 (1)°

  • V = 2879.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.32 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.974, T max = 0.988

  • 7077 measured reflections

  • 2535 independent reflections

  • 1083 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.114

  • S = 0.81

  • 2535 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008130/cv5040sup1.cif

e-67-0o832-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008130/cv5040Isup2.hkl

e-67-0o832-Isup2.hkl (124.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.16 3.007 (3) 170
N1—H1B⋯O2ii 0.86 2.00 2.848 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author acknowledges financial support from the Shenyang University of Technology.

supplementary crystallographic information

Comment

Much interest has recently been paid to the design of polyfunctionalized substituted pyran derivatives, owing to their wide range of biological activities (Lokaj et al., 1990; Marco et al., 1993). We obtained the title compound, (I), and report here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles of the main molecule are normal and correspond to those observed in 2-amino-7,7-dimethyl- 5-oxo-4-phenyl-5,6,7,8-tetra- hydro-4H-chromene-3-carbonitrile (Tu et al., 2001). The fused cyclohexene and pyran rings adopt an envelope and a flattened bath conformations, respecteviley. The dihedral angle between the O1/C1/C2/C5/C6 and C2/C4/C5 planes is 16.67 (14) °. The O1/ C1/C2/C5/C6 plane forms an angle of 89.01 (8)° with the phenyl plane. In the crystal, the nitrile group is typical [N≡C = 1.146 (3) Å] and the carbonyl group also is reasonable [C═O =1.228 (3) Å]. The C5/C6/C7/C8/C9/C10 plane also adopt an chair configuration in the compound, and the the dihedral angle between the C5/C6/C7/C9/C10 plane and the C7/C8/C9 plane is 46.14 (3)°.

In the crystal structure, there exist typical intermolecular N—H···O and N—H···N hydrogen bonds (Table 1). The amino N1 atom of one molecule links through H1B to the nitrile N2 atom of another molecule, creating a dimer. The amino N1 atom of one molecule also links through H1A to the keto O2 atom of another molecule to form the two-dimensional framework.

Experimental

Malononitrile (10 mmol), 1,3-cyclohexanedione (10 mmol),and benzaldehyde(10 mmol)was dissolved in 20 ml e thanol ml in a round-bottom flask. The mixture was warmed, with agitation, to 353 K over a period of 3 h. The resulting solution was cooled. Crystal of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H 0.93–0.98 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) (C,N).

Figures

Fig. 1.

Fig. 1.

View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

C16H14N2O2 F(000) = 1120
Mr = 266.29 Dx = 1.229 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 20.210 (2) Å Cell parameters from 851 reflections
b = 8.8161 (5) Å θ = 2.5–19.1°
c = 16.3862 (13) Å µ = 0.08 mm1
β = 99.537 (1)° T = 298 K
V = 2879.2 (4) Å3 Block, red
Z = 8 0.32 × 0.21 × 0.15 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2535 independent reflections
Radiation source: fine-focus sealed tube 1083 reflections with I > 2σ(I)
graphite Rint = 0.063
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −24→17
Tmin = 0.974, Tmax = 0.988 k = −10→10
7077 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0454P)2] where P = (Fo2 + 2Fc2)/3
S = 0.81 (Δ/σ)max = 0.001
2535 reflections Δρmax = 0.12 e Å3
182 parameters Δρmin = −0.11 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0017 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.10075 (8) 0.98207 (19) 1.01594 (9) 0.0666 (5)
C1 0.07153 (12) 0.8416 (3) 1.00139 (16) 0.0571 (7)
C5 0.09662 (11) 1.0170 (3) 0.87111 (15) 0.0550 (7)
C2 0.05849 (11) 0.7806 (3) 0.92527 (13) 0.0501 (6)
N1 0.05983 (10) 0.7810 (2) 1.07271 (11) 0.0759 (7)
H1A 0.0419 0.6926 1.0729 0.091*
H1B 0.0703 0.8305 1.1182 0.091*
C4 0.08060 (11) 0.8555 (3) 0.85109 (13) 0.0549 (7)
H4 0.0427 0.8528 0.8053 0.066*
O2 0.08103 (10) 1.0779 (2) 0.73126 (12) 0.0897 (7)
C10 0.09649 (13) 1.1227 (3) 0.80287 (19) 0.0686 (8)
C11 0.13891 (14) 0.7707 (3) 0.82384 (15) 0.0569 (7)
C3 0.02554 (13) 0.6406 (4) 0.91435 (14) 0.0586 (7)
C6 0.10774 (12) 1.0700 (3) 0.94811 (17) 0.0604 (7)
N2 −0.00226 (12) 0.5272 (3) 0.90338 (13) 0.0839 (8)
C7 0.12867 (14) 1.2263 (3) 0.97399 (16) 0.0790 (8)
H7A 0.1622 1.2225 1.0237 0.095*
H7B 0.0903 1.2825 0.9865 0.095*
C9 0.11266 (18) 1.2848 (4) 0.82299 (19) 0.1061 (11)
H9A 0.0712 1.3400 0.8232 0.127*
H9B 0.1346 1.3279 0.7799 0.127*
C16 0.13116 (16) 0.6985 (3) 0.74839 (18) 0.0867 (9)
H16 0.0904 0.7056 0.7127 0.104*
C8 0.15751 (17) 1.3064 (3) 0.9057 (2) 0.1100 (12)
H8A 0.1621 1.4139 0.9181 0.132*
H8B 0.2018 1.2663 0.9029 0.132*
C12 0.19982 (16) 0.7600 (3) 0.87459 (18) 0.0894 (10)
H12 0.2064 0.8083 0.9258 0.107*
C15 0.1828 (2) 0.6155 (4) 0.7246 (3) 0.1201 (14)
H15 0.1766 0.5667 0.6736 0.144*
C14 0.2420 (2) 0.6057 (5) 0.7757 (3) 0.1254 (17)
H14 0.2767 0.5492 0.7600 0.150*
C13 0.25165 (18) 0.6783 (5) 0.8505 (3) 0.1215 (14)
H13 0.2930 0.6727 0.8850 0.146*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0811 (13) 0.0612 (12) 0.0571 (11) −0.0126 (10) 0.0103 (9) 0.0013 (10)
C1 0.0571 (17) 0.0574 (18) 0.0580 (17) −0.0072 (14) 0.0135 (14) 0.0012 (15)
C5 0.0524 (16) 0.0553 (18) 0.0593 (17) 0.0015 (13) 0.0151 (13) 0.0061 (15)
C2 0.0532 (16) 0.0537 (17) 0.0443 (15) −0.0037 (13) 0.0104 (12) −0.0004 (13)
N1 0.1060 (19) 0.0758 (16) 0.0488 (13) −0.0279 (13) 0.0216 (13) −0.0051 (12)
C4 0.0530 (16) 0.0653 (18) 0.0462 (15) −0.0032 (14) 0.0073 (12) 0.0070 (13)
O2 0.1089 (16) 0.0947 (16) 0.0703 (13) 0.0135 (12) 0.0287 (13) 0.0276 (12)
C10 0.071 (2) 0.063 (2) 0.078 (2) 0.0115 (15) 0.0308 (18) 0.0157 (18)
C11 0.0616 (18) 0.0584 (17) 0.0533 (16) −0.0055 (14) 0.0177 (15) 0.0073 (14)
C3 0.0683 (18) 0.066 (2) 0.0439 (16) −0.0033 (16) 0.0159 (14) 0.0034 (14)
C6 0.0599 (18) 0.0542 (18) 0.0675 (18) −0.0019 (14) 0.0115 (14) 0.0077 (16)
N2 0.110 (2) 0.0755 (18) 0.0680 (16) −0.0249 (16) 0.0210 (14) −0.0018 (14)
C7 0.084 (2) 0.062 (2) 0.093 (2) −0.0100 (16) 0.0226 (17) −0.0057 (17)
C9 0.150 (3) 0.072 (2) 0.110 (3) 0.007 (2) 0.061 (2) 0.019 (2)
C16 0.100 (3) 0.088 (2) 0.076 (2) −0.0078 (18) 0.0265 (18) −0.0177 (18)
C8 0.137 (3) 0.064 (2) 0.141 (3) −0.031 (2) 0.058 (3) −0.008 (2)
C12 0.066 (2) 0.116 (3) 0.088 (2) 0.015 (2) 0.018 (2) 0.0002 (19)
C15 0.162 (4) 0.091 (3) 0.130 (4) 0.003 (3) 0.089 (3) −0.020 (2)
C14 0.119 (4) 0.101 (3) 0.181 (5) 0.021 (3) 0.098 (4) 0.025 (3)
C13 0.071 (2) 0.144 (4) 0.155 (4) 0.023 (2) 0.036 (3) 0.018 (3)

Geometric parameters (Å, °)

O1—C1 1.376 (3) C6—C7 1.482 (3)
O1—C6 1.381 (3) C7—C8 1.520 (3)
C1—N1 1.341 (3) C7—H7A 0.9700
C1—C2 1.344 (3) C7—H7B 0.9700
C5—C6 1.329 (3) C9—C8 1.512 (4)
C5—C10 1.455 (3) C9—H9A 0.9700
C5—C4 1.484 (3) C9—H9B 0.9700
C2—C3 1.400 (3) C16—C15 1.382 (4)
C2—C4 1.514 (3) C16—H16 0.9300
N1—H1A 0.8600 C8—H8A 0.9700
N1—H1B 0.8600 C8—H8B 0.9700
C4—C11 1.524 (3) C12—C13 1.382 (4)
C4—H4 0.9800 C12—H12 0.9300
O2—C10 1.228 (3) C15—C14 1.344 (5)
C10—C9 1.491 (4) C15—H15 0.9300
C11—C12 1.370 (3) C14—C13 1.368 (5)
C11—C16 1.376 (3) C14—H14 0.9300
C3—N2 1.146 (3) C13—H13 0.9300
C1—O1—C6 117.64 (19) C8—C7—H7A 109.6
N1—C1—C2 127.8 (2) C6—C7—H7B 109.6
N1—C1—O1 109.9 (2) C8—C7—H7B 109.6
C2—C1—O1 122.3 (2) H7A—C7—H7B 108.1
C6—C5—C10 118.9 (3) C10—C9—C8 113.3 (3)
C6—C5—C4 122.9 (2) C10—C9—H9A 108.9
C10—C5—C4 118.1 (2) C8—C9—H9A 108.9
C1—C2—C3 119.2 (2) C10—C9—H9B 108.9
C1—C2—C4 122.1 (2) C8—C9—H9B 108.9
C3—C2—C4 118.6 (2) H9A—C9—H9B 107.7
C1—N1—H1A 120.0 C11—C16—C15 121.3 (3)
C1—N1—H1B 120.0 C11—C16—H16 119.4
H1A—N1—H1B 120.0 C15—C16—H16 119.4
C5—C4—C2 108.9 (2) C9—C8—C7 110.8 (3)
C5—C4—C11 112.61 (19) C9—C8—H8A 109.5
C2—C4—C11 111.50 (19) C7—C8—H8A 109.5
C5—C4—H4 107.9 C9—C8—H8B 109.5
C2—C4—H4 107.9 C7—C8—H8B 109.5
C11—C4—H4 107.9 H8A—C8—H8B 108.1
O2—C10—C5 119.7 (3) C11—C12—C13 120.6 (3)
O2—C10—C9 122.1 (3) C11—C12—H12 119.7
C5—C10—C9 118.1 (3) C13—C12—H12 119.7
C12—C11—C16 118.1 (3) C14—C15—C16 119.7 (4)
C12—C11—C4 121.1 (2) C14—C15—H15 120.2
C16—C11—C4 120.8 (3) C16—C15—H15 120.2
N2—C3—C2 178.2 (3) C15—C14—C13 120.4 (4)
C5—C6—O1 122.9 (2) C15—C14—H14 119.8
C5—C6—C7 126.4 (2) C13—C14—H14 119.8
O1—C6—C7 110.7 (2) C14—C13—C12 119.9 (4)
C6—C7—C8 110.3 (2) C14—C13—H13 120.0
C6—C7—H7A 109.6 C12—C13—H13 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N2i 0.86 2.16 3.007 (3) 170
N1—H1B···O2ii 0.86 2.00 2.848 (2) 169

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5040).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lokaj, J., Kettmann, V., Pavelčík, F., Ilavský, D. & Marchalín, Š. (1990). Acta Cryst. C46, 788–791.
  3. Marco, J. L., Martin, G., Martin, N., Martinez-Grau, A., Seoane, C., Albert, A. & Cano, F. H. (1993). Tetrahedron, 49, 7133–7144.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358–o359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008130/cv5040sup1.cif

e-67-0o832-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008130/cv5040Isup2.hkl

e-67-0o832-Isup2.hkl (124.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES