Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 26;67(Pt 4):m497–m498. doi: 10.1107/S1600536811009974

catena-Poly[copper(II)-{μ3-4,4′-dichloro-2,2′-[butane-1,4-diylbis(nitrilo­methanyl­yl­idene)]diphenolato-κ4 N,O:N′,O′:O′}]

Hadi Kargar a,*, Reza Kia b
PMCID: PMC3099832  PMID: 21754006

Abstract

The asymmetric unit of the title coordination polymer, [Cu(C18H16Cl2N2O2)]n, consists of a Schiff base complex in which the CuII atom adopts a square-pyramidal coordination geometry, being coordinated by two N and two O atoms of symmetry-related ligands and by a third O atom from a complex related by an inversion center. In the structure, a crystallographic twofold rotation axis bis­ects the central C—C bonds of the n-butyl spacers of the designated Schiff base ligands, making symmetry-related dimeric units, which are twisted around CuII atoms in a bis-bidentate coordination mode. In the crystal, these dimeric units are connected through the third bridging Cu—O bonds [2.3951 (13) Å], forming one-dimensional coordination polymers, which propagate along [001]. Furthermore, inter­molecular π–π inter­actions [centroid–centroid distance = 3.811 (1) Å] stabilize the crystal packing.

Related literature

For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006); Eddaoudi et al. (2001); Dietzel et al. (2005). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000).graphic file with name e-67-0m497-scheme1.jpg

Experimental

Crystal data

  • [Cu(C18H16Cl2N2O2)]

  • M r = 426.77

  • Monoclinic, Inline graphic

  • a = 23.7249 (5) Å

  • b = 10.5067 (2) Å

  • c = 15.2460 (3) Å

  • β = 116.988 (1)°

  • V = 3386.52 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 100 K

  • 0.42 × 0.23 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.547, T max = 0.768

  • 30759 measured reflections

  • 7465 independent reflections

  • 5511 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 1.03

  • 7465 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009974/su2262sup1.cif

e-67-0m497-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009974/su2262Isup2.hkl

e-67-0m497-Isup2.hkl (365.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O1 0.97 2.28 2.973 (2) 127

Acknowledgments

HK thanks PNU for support of this work. RK thanks the Science and Research Branch, Islamic Azad University.

supplementary crystallographic information

Comment

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006; Eddaoudi et al., 2001; Dietzel et al., 2005). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The molecular structure of the title complex (Fig. 1) consists of symmetry-related dimers in which the Schiff base ligands are twisted around CuII centers in a bis-bidentate coordination mode, having a crystallographic twofold rotation axis which passes through the central C—C bonds of the n-butyl spacers [C9—C9Ai and C18—C18Ai; symmetry code: (i) -x, y, -z + 1/2 ].

In the crystal the dimer units are connected through Cu—O bonds, forming one-diensional coordination polymer running along the c axis (Fig. 2), in which the CuII atom adopts a square-based pyramidal coordination geometry. The CuII atoms are supported by the two nitrogen and oxygen atoms of the symmetry-related ligands and a third oxygen atom of neighboring complexes. The lengths of the intermolecular Cu1—O2i bonds [2.3951 (13) Å; symetry code (i) -x, -y+1, -z] is significantly shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. There are different non-bonded internuclear Cu···Cu distances. The longer one is separated by the butyl spacers [4.672 Å], and the shorter one is in the centrosymmetric Cu2O2 rectangular unit [3.299 Å]. Furthermore, intermolecular π-π interactions stabilize the crystal packings with centroid to centroid distances of 3.811 (1)Å [Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C10–C15)]. There are also C—H···O interactions present (Table 1).

Experimental

The title complex was synthesized by the template method of mixing an ethanolic solution (50 ml) of 5-chlorosalicylaldeyde (4 mmol), 1,4-butanediamine (2 mmol), and CuCl2.4H2O (2.1 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting green solid was crystallized from ethanol, giving single crystals suitable for X-ray diffraction. Spectoscopic and analytical data are given in the archived CIF.

Refinement

All H atoms were positioned geometrically and constrained to refine with the parents atoms using the riding-model approximation, with C—H = 0.93 - 0.97Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, showing 40% probability displacement ellipsoids and the atomic numbering [H-atoms have been omitted for clarity; symmetry code: (A) -x, -y+1, -z].

Fig. 2.

Fig. 2.

The crystal packing, viewed down the b-axis, of the title complex, showing the one-dimensional coordination chain propagating along the c-axis [H-atoms have been omitted for clarity].

Crystal data

[Cu(C18H16Cl2N2O2)] F(000) = 1736
Mr = 426.77 Dx = 1.674 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 7283 reflections
a = 23.7249 (5) Å θ = 2.4–34.8°
b = 10.5067 (2) Å µ = 1.62 mm1
c = 15.2460 (3) Å T = 100 K
β = 116.988 (1)° Block, green
V = 3386.52 (12) Å3 0.42 × 0.23 × 0.17 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7465 independent reflections
Radiation source: fine-focus sealed tube 5511 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 35.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −38→38
Tmin = 0.547, Tmax = 0.768 k = −15→16
30759 measured reflections l = −24→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0534P)2 + 2.3966P] where P = (Fo2 + 2Fc2)/3
7465 reflections (Δ/σ)max = 0.001
226 parameters Δρmax = 1.07 e Å3
0 restraints Δρmin = −0.69 e Å3

Special details

Experimental. Spectoscopic and analytical data:FTIR (KBr, cm-1): νmax 1622 (versus), 1533 (s), 1465 (s), 1386 (s), 1317 (s), 1195 (m), 1176 (m), 821 (s), 705 (s). Anal. Calc. for C18H16Cl2CuN2O2: 50.66; H, 3.78; N, 6.56 %. Found: C, 50.70; H, 3.66; N, 6.57 %.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.022690 (9) 0.53850 (2) 0.116076 (15) 0.01452 (6)
Cl1 0.362651 (19) 0.48963 (5) 0.38428 (4) 0.02231 (9)
Cl2 −0.31688 (2) 0.50558 (5) −0.08067 (4) 0.02457 (10)
O1 0.09481 (6) 0.63334 (13) 0.20125 (10) 0.0197 (2)
O2 −0.04854 (6) 0.44838 (12) 0.01836 (9) 0.0169 (2)
N1 0.06650 (7) 0.37212 (14) 0.17172 (10) 0.0158 (3)
N2 −0.03106 (6) 0.69745 (15) 0.09189 (10) 0.0151 (3)
C1 0.15334 (8) 0.59527 (17) 0.24600 (12) 0.0160 (3)
C2 0.20162 (8) 0.68856 (17) 0.28841 (13) 0.0177 (3)
H2A 0.1904 0.7735 0.2877 0.021*
C3 0.26477 (8) 0.65589 (18) 0.33059 (13) 0.0178 (3)
H3A 0.2956 0.7187 0.3563 0.021*
C4 0.28228 (8) 0.52825 (17) 0.33464 (13) 0.0170 (3)
C5 0.23719 (8) 0.43461 (18) 0.30031 (13) 0.0173 (3)
H5A 0.2495 0.3497 0.3064 0.021*
C6 0.17232 (8) 0.46601 (17) 0.25576 (12) 0.0157 (3)
C7 0.12726 (8) 0.36225 (17) 0.22349 (12) 0.0169 (3)
H7A 0.1435 0.2806 0.2417 0.020*
C8 0.02982 (8) 0.25245 (18) 0.14935 (13) 0.0175 (3)
H8A 0.0587 0.1812 0.1749 0.021*
H8B 0.0064 0.2424 0.0785 0.021*
C9 −0.01643 (8) 0.25036 (18) 0.19396 (12) 0.0176 (3)
H9A −0.0438 0.3242 0.1709 0.021*
H9B −0.0428 0.1751 0.1709 0.021*
C10 −0.10753 (8) 0.46309 (17) 0.00258 (12) 0.0150 (3)
C11 −0.14972 (8) 0.35895 (18) −0.03223 (13) 0.0189 (3)
H11A −0.1347 0.2802 −0.0402 0.023*
C12 −0.21273 (8) 0.37172 (19) −0.05460 (13) 0.0197 (3)
H12A −0.2396 0.3018 −0.0766 0.024*
C13 −0.23591 (8) 0.48954 (19) −0.04415 (13) 0.0180 (3)
C14 −0.19608 (8) 0.59274 (18) −0.00739 (12) 0.0170 (3)
H14A −0.2119 0.6704 0.0009 0.020*
C15 −0.13129 (7) 0.58023 (17) 0.01757 (12) 0.0151 (3)
C16 −0.09196 (8) 0.69309 (17) 0.05320 (12) 0.0155 (3)
H16A −0.1128 0.7699 0.0475 0.019*
C17 −0.00209 (8) 0.82531 (17) 0.12060 (12) 0.0167 (3)
H17A −0.0338 0.8894 0.0852 0.020*
H17B 0.0315 0.8335 0.1015 0.020*
C18 0.02494 (8) 0.85016 (17) 0.23129 (12) 0.0161 (3)
H18A 0.0563 0.7854 0.2665 0.019*
H18B 0.0463 0.9319 0.2462 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01204 (9) 0.01378 (10) 0.01660 (10) 0.00038 (7) 0.00551 (7) −0.00146 (7)
Cl1 0.01324 (16) 0.0221 (2) 0.0287 (2) 0.00137 (15) 0.00701 (15) 0.00028 (16)
Cl2 0.01322 (17) 0.0314 (3) 0.0279 (2) −0.00119 (16) 0.00826 (16) −0.00369 (18)
O1 0.0139 (5) 0.0149 (6) 0.0256 (6) 0.0014 (4) 0.0048 (5) −0.0040 (5)
O2 0.0132 (5) 0.0174 (6) 0.0205 (5) −0.0002 (4) 0.0079 (4) −0.0032 (4)
N1 0.0160 (6) 0.0149 (7) 0.0179 (6) 0.0002 (5) 0.0089 (5) −0.0007 (5)
N2 0.0155 (6) 0.0150 (7) 0.0148 (6) −0.0003 (5) 0.0068 (5) −0.0005 (5)
C1 0.0149 (7) 0.0162 (8) 0.0169 (7) 0.0012 (6) 0.0074 (6) −0.0015 (6)
C2 0.0167 (7) 0.0139 (8) 0.0205 (7) 0.0006 (6) 0.0066 (6) −0.0014 (6)
C3 0.0165 (7) 0.0171 (8) 0.0184 (7) −0.0019 (6) 0.0066 (6) −0.0016 (6)
C4 0.0133 (6) 0.0179 (8) 0.0180 (7) 0.0010 (6) 0.0055 (6) −0.0005 (6)
C5 0.0158 (7) 0.0158 (8) 0.0197 (7) 0.0014 (6) 0.0075 (6) 0.0011 (6)
C6 0.0161 (7) 0.0148 (8) 0.0168 (7) −0.0003 (6) 0.0079 (6) −0.0002 (6)
C7 0.0165 (7) 0.0159 (8) 0.0187 (7) 0.0018 (6) 0.0084 (6) −0.0001 (6)
C8 0.0173 (7) 0.0164 (8) 0.0213 (7) −0.0021 (6) 0.0108 (6) −0.0024 (6)
C9 0.0170 (7) 0.0177 (8) 0.0191 (7) −0.0019 (6) 0.0090 (6) −0.0008 (6)
C10 0.0144 (6) 0.0158 (8) 0.0150 (6) 0.0008 (5) 0.0067 (5) −0.0004 (6)
C11 0.0165 (7) 0.0176 (8) 0.0218 (8) −0.0010 (6) 0.0080 (6) −0.0034 (6)
C12 0.0176 (7) 0.0208 (9) 0.0205 (7) −0.0044 (6) 0.0085 (6) −0.0032 (6)
C13 0.0133 (7) 0.0234 (9) 0.0171 (7) −0.0011 (6) 0.0066 (6) −0.0007 (6)
C14 0.0142 (7) 0.0190 (8) 0.0172 (7) 0.0028 (6) 0.0065 (6) 0.0000 (6)
C15 0.0137 (6) 0.0161 (8) 0.0146 (6) −0.0004 (5) 0.0057 (5) −0.0007 (6)
C16 0.0147 (7) 0.0150 (8) 0.0154 (7) 0.0019 (5) 0.0057 (5) −0.0005 (5)
C17 0.0177 (7) 0.0142 (8) 0.0174 (7) −0.0012 (6) 0.0075 (6) 0.0008 (6)
C18 0.0143 (7) 0.0151 (8) 0.0178 (7) −0.0013 (6) 0.0063 (5) −0.0012 (6)

Geometric parameters (Å, °)

Cu1—O1 1.8948 (13) C7—H7A 0.9300
Cu1—O2 1.9201 (12) C8—C9 1.531 (2)
Cu1—N1 2.0139 (15) C8—H8A 0.9700
Cu1—N2 2.0308 (15) C8—H8B 0.9700
Cu1—O2i 2.3951 (13) C9—C9ii 1.523 (3)
Cl1—C4 1.7503 (17) C9—H9A 0.9700
Cl2—C13 1.7488 (17) C9—H9B 0.9700
O1—C1 1.301 (2) C10—C11 1.414 (2)
O2—C10 1.3172 (19) C10—C15 1.415 (2)
O2—Cu1i 2.3951 (13) C11—C12 1.381 (2)
N1—C7 1.296 (2) C11—H11A 0.9300
N1—C8 1.478 (2) C12—C13 1.393 (3)
N2—C16 1.290 (2) C12—H12A 0.9300
N2—C17 1.482 (2) C13—C14 1.379 (3)
C1—C6 1.417 (3) C14—C15 1.412 (2)
C1—C2 1.421 (2) C14—H14A 0.9300
C2—C3 1.379 (2) C15—C16 1.453 (2)
C2—H2A 0.9300 C16—H16A 0.9300
C3—C4 1.397 (3) C17—C18 1.531 (2)
C3—H3A 0.9300 C17—H17A 0.9700
C4—C5 1.370 (2) C17—H17B 0.9700
C5—C6 1.411 (2) C18—C18ii 1.529 (3)
C5—H5A 0.9300 C18—H18A 0.9700
C6—C7 1.448 (2) C18—H18B 0.9700
O1—Cu1—O2 173.80 (6) C9—C8—H8A 109.2
O1—Cu1—N1 92.00 (6) N1—C8—H8B 109.2
O2—Cu1—N1 90.18 (6) C9—C8—H8B 109.2
O1—Cu1—N2 89.39 (6) H8A—C8—H8B 107.9
O2—Cu1—N2 90.32 (6) C9ii—C9—C8 113.17 (17)
N1—Cu1—N2 162.14 (6) C9ii—C9—H9A 108.9
O1—Cu1—O2i 93.09 (5) C8—C9—H9A 108.9
O2—Cu1—O2i 80.87 (5) C9ii—C9—H9B 108.9
N1—Cu1—O2i 97.28 (5) C8—C9—H9B 108.9
N2—Cu1—O2i 100.42 (5) H9A—C9—H9B 107.8
C1—O1—Cu1 127.92 (12) O2—C10—C11 119.37 (15)
C10—O2—Cu1 124.88 (11) O2—C10—C15 122.73 (15)
C10—O2—Cu1i 120.03 (10) C11—C10—C15 117.89 (15)
Cu1—O2—Cu1i 99.13 (5) C12—C11—C10 121.35 (17)
C7—N1—C8 116.63 (15) C12—C11—H11A 119.3
C7—N1—Cu1 123.02 (13) C10—C11—H11A 119.3
C8—N1—Cu1 120.25 (11) C11—C12—C13 119.84 (17)
C16—N2—C17 116.13 (15) C11—C12—H12A 120.1
C16—N2—Cu1 122.32 (12) C13—C12—H12A 120.1
C17—N2—Cu1 121.53 (10) C14—C13—C12 120.80 (15)
O1—C1—C6 124.21 (16) C14—C13—Cl2 120.31 (14)
O1—C1—C2 118.33 (16) C12—C13—Cl2 118.88 (14)
C6—C1—C2 117.46 (15) C13—C14—C15 119.85 (16)
C3—C2—C1 121.43 (17) C13—C14—H14A 120.1
C3—C2—H2A 119.3 C15—C14—H14A 120.1
C1—C2—H2A 119.3 C14—C15—C10 120.14 (16)
C2—C3—C4 119.86 (16) C14—C15—C16 117.42 (16)
C2—C3—H3A 120.1 C10—C15—C16 122.34 (14)
C4—C3—H3A 120.1 N2—C16—C15 126.57 (16)
C5—C4—C3 120.49 (16) N2—C16—H16A 116.7
C5—C4—Cl1 120.47 (14) C15—C16—H16A 116.7
C3—C4—Cl1 119.04 (13) N2—C17—C18 112.71 (14)
C4—C5—C6 120.53 (17) N2—C17—H17A 109.0
C4—C5—H5A 119.7 C18—C17—H17A 109.0
C6—C5—H5A 119.7 N2—C17—H17B 109.0
C5—C6—C1 120.00 (16) C18—C17—H17B 109.0
C5—C6—C7 117.61 (16) H17A—C17—H17B 107.8
C1—C6—C7 122.37 (15) C18ii—C18—C17 113.78 (17)
N1—C7—C6 126.34 (17) C18ii—C18—H18A 108.8
N1—C7—H7A 116.8 C17—C18—H18A 108.8
C6—C7—H7A 116.8 C18ii—C18—H18B 108.8
N1—C8—C9 112.04 (14) C17—C18—H18B 108.8
N1—C8—H8A 109.2 H18A—C18—H18B 107.7
N1—Cu1—O1—C1 21.62 (15) O1—C1—C6—C5 176.08 (16)
N2—Cu1—O1—C1 −176.19 (15) C2—C1—C6—C5 −4.2 (2)
O2i—Cu1—O1—C1 −75.79 (15) O1—C1—C6—C7 −5.4 (3)
N1—Cu1—O2—C10 125.77 (14) C2—C1—C6—C7 174.30 (16)
N2—Cu1—O2—C10 −36.38 (14) C8—N1—C7—C6 −178.71 (15)
O2i—Cu1—O2—C10 −136.88 (16) Cu1—N1—C7—C6 4.9 (2)
N1—Cu1—O2—Cu1i −97.35 (5) C5—C6—C7—N1 −171.74 (16)
N2—Cu1—O2—Cu1i 100.50 (5) C1—C6—C7—N1 9.7 (3)
O2i—Cu1—O2—Cu1i 0.0 C7—N1—C8—C9 117.57 (17)
O1—Cu1—N1—C7 −16.53 (14) Cu1—N1—C8—C9 −65.94 (17)
O2—Cu1—N1—C7 157.66 (14) N1—C8—C9—C9ii −65.42 (14)
N2—Cu1—N1—C7 −110.7 (2) Cu1—O2—C10—C11 −149.56 (13)
O2i—Cu1—N1—C7 76.84 (14) Cu1i—O2—C10—C11 81.66 (18)
O1—Cu1—N1—C8 167.21 (12) Cu1—O2—C10—C15 31.4 (2)
O2—Cu1—N1—C8 −18.60 (12) Cu1i—O2—C10—C15 −97.34 (16)
N2—Cu1—N1—C8 73.0 (2) O2—C10—C11—C12 −176.62 (16)
O2i—Cu1—N1—C8 −99.42 (12) C15—C10—C11—C12 2.4 (3)
O1—Cu1—N2—C16 −164.27 (14) C10—C11—C12—C13 0.8 (3)
O2—Cu1—N2—C16 21.92 (14) C11—C12—C13—C14 −3.0 (3)
N1—Cu1—N2—C16 −69.7 (2) C11—C12—C13—Cl2 175.83 (14)
O2i—Cu1—N2—C16 102.69 (13) C12—C13—C14—C15 1.7 (3)
O1—Cu1—N2—C17 13.94 (12) Cl2—C13—C14—C15 −177.05 (13)
O2—Cu1—N2—C17 −159.87 (12) C13—C14—C15—C10 1.6 (2)
N1—Cu1—N2—C17 108.6 (2) C13—C14—C15—C16 178.22 (16)
O2i—Cu1—N2—C17 −79.09 (12) O2—C10—C15—C14 175.38 (15)
Cu1—O1—C1—C6 −14.3 (2) C11—C10—C15—C14 −3.6 (2)
Cu1—O1—C1—C2 166.02 (12) O2—C10—C15—C16 −1.0 (3)
O1—C1—C2—C3 −175.20 (16) C11—C10—C15—C16 179.95 (16)
C6—C1—C2—C3 5.1 (2) C17—N2—C16—C15 178.78 (15)
C1—C2—C3—C4 −1.8 (3) Cu1—N2—C16—C15 −2.9 (2)
C2—C3—C4—C5 −2.4 (3) C14—C15—C16—N2 169.93 (16)
C2—C3—C4—Cl1 177.60 (14) C10—C15—C16—N2 −13.6 (3)
C3—C4—C5—C6 3.3 (3) C16—N2—C17—C18 101.27 (17)
Cl1—C4—C5—C6 −176.79 (13) Cu1—N2—C17—C18 −77.05 (16)
C4—C5—C6—C1 0.2 (3) N2—C17—C18—C18ii −63.30 (14)
C4—C5—C6—C7 −178.41 (16)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18A···O1 0.97 2.28 2.973 (2) 127

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2262).

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483–1492. [DOI] [PubMed]
  5. Eddaoudi, M., Moler, D., Li, H., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. [DOI] [PubMed]
  6. Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. [DOI] [PubMed]
  7. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  8. Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024.
  9. Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368. [DOI] [PubMed]
  10. Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667. [DOI] [PubMed]
  11. Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009974/su2262sup1.cif

e-67-0m497-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009974/su2262Isup2.hkl

e-67-0m497-Isup2.hkl (365.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES