Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):o848. doi: 10.1107/S1600536811008178

4-[2-(Benzyl­sulfan­yl)acet­yl]-3,4-dihydro­quinoxalin-2(1H)-one

Waqar Nasir a, Munawar Ali Munawar a,*, Sohail Nadeem a, Rana Amjad a, Ahmad Adnan b
PMCID: PMC3099835  PMID: 21754130

Abstract

In the title compound, C17H16N2O2S, the pyrazinone ring is non-planar (r.m.s. deviation = 0.1595 Å), with maximum deviations for the 4-position N atom and the adjacent non-fused-ring C atom of 0.2557 (15) and −0.2118 (16) Å, respectively. The dihedral angle between the benzyl ring and pyrazinone rings is 30.45 (18)°. Inter­molecular N—H⋯O hydrogen-bonding inter­actions forms inversion dimers which lead to eight-membered R 2 2(8) ring motifs. The dimers are further connected by C—H⋯O inter­actions.

Related literature

For the biological activity of quinoxalines, see: Ali et al. (2000); Moustafa & Yameda (2001). For related structures see: Nasir et al. (2009). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-67-0o848-scheme1.jpg

Experimental

Crystal data

  • C17H16N2O2S

  • M r = 312.38

  • Orthorhombic, Inline graphic

  • a = 13.9502 (8) Å

  • b = 32.2588 (17) Å

  • c = 6.9728 (3) Å

  • V = 3137.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.47 × 0.23 × 0.07 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.906, T max = 0.985

  • 16363 measured reflections

  • 3892 independent reflections

  • 2412 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.183

  • S = 1.00

  • 3889 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008178/hg2799sup1.cif

e-67-0o848-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008178/hg2799Isup2.hkl

e-67-0o848-Isup2.hkl (186.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.93 2.60 3.452 (3) 153
C10—H10B⋯O4i 0.97 2.45 3.202 (3) 134
N2—H1N⋯O3ii 0.85 (3) 2.02 (3) 2.875 (3) 175 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission, Pakistan, for providing funding for this research.

supplementary crystallographic information

Comment

Annulated pyrazines like quinoxalinones represents an important class of nitrogen containing heterocyclic compounds possessing wide variety of biological and industrial applications. The synthetic and naturally occurring quinoxalines compounds have been reported to show antibacterial (Ali et al., 2000) and antitumor (Moustafa & Yameda, 2001). In the present project we aimed to synthesize novel quinoxalinone derivatives which may have enhanced biological and pharmaceutical application.

The title compound (I) is in continuation of previously published work on the analoguous structure, 4-[(2,5-dimethylanilino)acetyl]-3,4- dihydroquinoxalin-2(1H)-one (II) (Nasir, et al., 2009). The dihedral angle between the aromatic ring (C1/C2/C3/C4/C5/C6) and pyrazinone (C1/C6/N2/C8/C7/N1)is 14.01 (12)°. Unlike (II) no intramolecular hydrogen bonding have been observed in (I). The N—H···O type intermolecular hydrogen bonding developed from the cyclic amido functional group forms the inversion dimers and produce eight membered ring motif R22(8) (Bernstein et al., 1995). Another C—H···O type hydrogen bonding interaction connects these dimers to another molecule Fig. 2. The benzyl ring (C12/C13/C14/C15/C16/C17) is oriented at dihedral angle of 14.01 (12)° and 30.45 (18)° with respect to aromatic and pyrazinone rings.

Experimental

To a suspension of 4-(chloroacetyl)-3,4-dihydroquinoxalin-2(1H)-2-one (2.0 g, 8.9 mmoles) in absolute ethanol (60 mL) fine powdered sodium bicarbonate (1.5 g, 17.8 mmole) was added along with phenylmethanethiol (1.1 mL, 9.0 mmoles). The reaction mixture was heated under reflux for 8-10 h, the progress of the reaction was monitored by TLC (chloroform:ethyl acetate, 7:3 v/v). The reaction mixture was concentrated to half of the original volume under reduced pressure and the precipitate of the product which formed on cooling was filtered, washed with cold ethanol and recrystallized in ethanol.

Refinement

All the C—H and N—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, with C—H = 0.97 Å for methylene and with N—H = 0.85 (3)Å for amido NH and were refined using a riding model with Uiso(H) = 1.2 Ueq(C & N). The reflection 1 1 0, 1 3 0 and 0 2 0 were omitted in final refinement as these were obscured by the beam stop.

Figures

Fig. 1.

Fig. 1.

The labelled diagram of structure of (I) with thermal ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The unit cell packing diagram of (I) showing the hydrogen bondings with dashed lines.

Crystal data

C17H16N2O2S F(000) = 1312
Mr = 312.38 Dx = 1.322 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 2915 reflections
a = 13.9502 (8) Å θ = 3.2–23.1°
b = 32.2588 (17) Å µ = 0.22 mm1
c = 6.9728 (3) Å T = 296 K
V = 3137.9 (3) Å3 Plate, colorless
Z = 8 0.47 × 0.23 × 0.07 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3892 independent reflections
Radiation source: fine-focus sealed tube 2412 reflections with I > 2σ(I)
graphite Rint = 0.044
φ and ω scans θmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −18→17
Tmin = 0.906, Tmax = 0.985 k = −23→43
16363 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.108P)2 + 0.1052P] where P = (Fo2 + 2Fc2)/3
3889 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.67947 (5) 0.701430 (18) 0.13947 (11) 0.0539 (3)
O4 0.77529 (11) 0.61610 (5) 0.1173 (2) 0.0439 (4)
N1 0.63517 (13) 0.58234 (5) 0.0968 (3) 0.0364 (4)
O3 0.63199 (12) 0.50899 (5) 0.4824 (2) 0.0530 (5)
C1 0.47960 (15) 0.55216 (6) 0.1309 (3) 0.0377 (5)
C9 0.69061 (15) 0.61743 (6) 0.0743 (3) 0.0331 (5)
C8 0.60499 (16) 0.52927 (7) 0.3446 (3) 0.0399 (5)
C7 0.67595 (15) 0.54813 (7) 0.2064 (3) 0.0400 (5)
H7A 0.7311 0.5581 0.2775 0.048*
H7B 0.6980 0.5269 0.1184 0.048*
N2 0.51165 (14) 0.53532 (6) 0.3046 (3) 0.0442 (5)
C10 0.64388 (16) 0.65674 (7) 0.0037 (3) 0.0394 (5)
H10A 0.5748 0.6537 0.0112 0.047*
H10B 0.6607 0.6610 −0.1299 0.047*
C5 0.51272 (19) 0.58963 (8) −0.1586 (4) 0.0490 (6)
H5 0.5557 0.6032 −0.2391 0.059*
C12 0.50134 (19) 0.69134 (8) 0.3071 (4) 0.0514 (6)
C6 0.54236 (15) 0.57563 (6) 0.0199 (3) 0.0364 (5)
C3 0.35632 (19) 0.56161 (9) −0.1015 (4) 0.0581 (7)
H3 0.2931 0.5579 −0.1402 0.070*
C2 0.38689 (17) 0.54535 (7) 0.0697 (4) 0.0477 (6)
H2 0.3451 0.5297 0.1445 0.057*
C11 0.6058 (2) 0.69568 (9) 0.3512 (4) 0.0577 (7)
H11A 0.6269 0.6714 0.4217 0.069*
H11B 0.6150 0.7197 0.4332 0.069*
C4 0.4191 (2) 0.58341 (8) −0.2165 (4) 0.0592 (7)
H4 0.3983 0.5940 −0.3334 0.071*
C13 0.4534 (3) 0.65588 (11) 0.3446 (5) 0.0776 (9)
H13 0.4853 0.6339 0.4025 0.093*
C16 0.3583 (3) 0.7183 (2) 0.1691 (9) 0.156 (3)
H16 0.3267 0.7396 0.1054 0.188*
C14 0.3569 (3) 0.65185 (15) 0.2976 (7) 0.1123 (16)
H14 0.3240 0.6275 0.3254 0.135*
C17 0.4533 (2) 0.72278 (13) 0.2194 (7) 0.1095 (15)
H17 0.4849 0.7475 0.1932 0.131*
C15 0.3119 (3) 0.6836 (2) 0.2115 (7) 0.133 (2)
H15 0.2473 0.6812 0.1811 0.160*
H1N 0.471 (2) 0.5207 (9) 0.367 (4) 0.060 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0418 (4) 0.0307 (3) 0.0892 (6) −0.0038 (2) 0.0018 (3) −0.0011 (3)
O4 0.0330 (9) 0.0376 (8) 0.0611 (10) −0.0068 (7) −0.0027 (7) 0.0045 (7)
N1 0.0310 (10) 0.0358 (10) 0.0424 (10) −0.0056 (8) −0.0005 (8) 0.0066 (8)
O3 0.0451 (10) 0.0577 (11) 0.0561 (11) −0.0119 (8) −0.0068 (8) 0.0193 (9)
C1 0.0321 (11) 0.0339 (11) 0.0473 (13) −0.0016 (9) 0.0012 (10) 0.0006 (10)
C9 0.0322 (11) 0.0316 (10) 0.0356 (11) −0.0031 (9) 0.0043 (9) −0.0004 (9)
C8 0.0380 (12) 0.0360 (11) 0.0456 (13) −0.0075 (10) 0.0005 (10) 0.0048 (10)
C7 0.0315 (11) 0.0358 (11) 0.0527 (13) −0.0028 (9) 0.0015 (10) 0.0092 (10)
N2 0.0336 (11) 0.0494 (11) 0.0495 (12) −0.0061 (9) 0.0057 (9) 0.0140 (10)
C10 0.0355 (12) 0.0381 (12) 0.0447 (12) −0.0009 (10) 0.0063 (10) 0.0042 (10)
C5 0.0462 (15) 0.0544 (15) 0.0464 (14) −0.0109 (12) −0.0015 (11) 0.0093 (11)
C12 0.0476 (15) 0.0572 (15) 0.0495 (14) 0.0108 (12) 0.0027 (11) −0.0060 (12)
C6 0.0302 (11) 0.0332 (10) 0.0459 (12) −0.0037 (9) −0.0009 (9) −0.0002 (9)
C3 0.0391 (13) 0.0587 (16) 0.0765 (19) −0.0109 (13) −0.0155 (13) −0.0009 (14)
C2 0.0338 (12) 0.0452 (13) 0.0642 (16) −0.0086 (11) 0.0019 (11) 0.0022 (12)
C11 0.0540 (17) 0.0592 (16) 0.0599 (16) 0.0099 (13) −0.0070 (13) −0.0154 (13)
C4 0.0557 (17) 0.0663 (17) 0.0558 (16) −0.0097 (14) −0.0181 (13) 0.0063 (13)
C13 0.068 (2) 0.075 (2) 0.090 (2) −0.0013 (18) 0.0167 (18) −0.0014 (18)
C16 0.062 (3) 0.211 (6) 0.197 (6) 0.044 (3) 0.011 (3) 0.093 (5)
C14 0.076 (3) 0.135 (4) 0.126 (4) −0.044 (3) 0.031 (3) −0.041 (3)
C17 0.053 (2) 0.099 (3) 0.176 (4) 0.028 (2) 0.007 (2) 0.054 (3)
C15 0.050 (2) 0.241 (7) 0.109 (4) 0.011 (3) −0.010 (2) −0.007 (4)

Geometric parameters (Å, °)

S1—C10 1.795 (2) C5—H5 0.9300
S1—C11 1.808 (3) C12—C13 1.351 (4)
O4—C9 1.219 (3) C12—C17 1.361 (4)
N1—C9 1.380 (3) C12—C11 1.496 (4)
N1—C6 1.418 (3) C3—C2 1.372 (4)
N1—C7 1.458 (3) C3—C4 1.380 (4)
O3—C8 1.222 (3) C3—H3 0.9300
C1—C2 1.380 (3) C2—H2 0.9300
C1—C6 1.393 (3) C11—H11A 0.9700
C1—N2 1.400 (3) C11—H11B 0.9700
C9—C10 1.508 (3) C4—H4 0.9300
C8—N2 1.346 (3) C13—C14 1.392 (5)
C8—C7 1.509 (3) C13—H13 0.9300
C7—H7A 0.9700 C16—C15 1.327 (8)
C7—H7B 0.9700 C16—C17 1.379 (6)
N2—H1N 0.85 (3) C16—H16 0.9300
C10—H10A 0.9700 C14—C15 1.342 (7)
C10—H10B 0.9700 C14—H14 0.9300
C5—C4 1.382 (4) C17—H17 0.9300
C5—C6 1.387 (3) C15—H15 0.9300
C10—S1—C11 101.02 (12) C5—C6—C1 119.2 (2)
C9—N1—C6 126.45 (18) C5—C6—N1 124.2 (2)
C9—N1—C7 117.51 (17) C1—C6—N1 116.55 (19)
C6—N1—C7 116.03 (17) C2—C3—C4 120.2 (2)
C2—C1—C6 120.3 (2) C2—C3—H3 119.9
C2—C1—N2 120.3 (2) C4—C3—H3 119.9
C6—C1—N2 119.4 (2) C3—C2—C1 120.0 (2)
O4—C9—N1 119.08 (19) C3—C2—H2 120.0
O4—C9—C10 121.91 (19) C1—C2—H2 120.0
N1—C9—C10 118.98 (19) C12—C11—S1 113.29 (19)
O3—C8—N2 122.6 (2) C12—C11—H11A 108.9
O3—C8—C7 121.0 (2) S1—C11—H11A 108.9
N2—C8—C7 116.3 (2) C12—C11—H11B 108.9
N1—C7—C8 112.57 (18) S1—C11—H11B 108.9
N1—C7—H7A 109.1 H11A—C11—H11B 107.7
C8—C7—H7A 109.1 C3—C4—C5 120.3 (3)
N1—C7—H7B 109.1 C3—C4—H4 119.9
C8—C7—H7B 109.1 C5—C4—H4 119.9
H7A—C7—H7B 107.8 C12—C13—C14 120.8 (4)
C8—N2—C1 123.0 (2) C12—C13—H13 119.6
C8—N2—H1N 117.0 (19) C14—C13—H13 119.6
C1—N2—H1N 116.3 (19) C15—C16—C17 120.0 (5)
C9—C10—S1 112.54 (16) C15—C16—H16 120.0
C9—C10—H10A 109.1 C17—C16—H16 120.0
S1—C10—H10A 109.1 C15—C14—C13 119.1 (4)
C9—C10—H10B 109.1 C15—C14—H14 120.4
S1—C10—H10B 109.1 C13—C14—H14 120.4
H10A—C10—H10B 107.8 C12—C17—C16 120.7 (4)
C4—C5—C6 119.8 (2) C12—C17—H17 119.7
C4—C5—H5 120.1 C16—C17—H17 119.7
C6—C5—H5 120.1 C16—C15—C14 121.1 (4)
C13—C12—C17 118.3 (3) C16—C15—H15 119.5
C13—C12—C11 121.4 (3) C14—C15—H15 119.5
C17—C12—C11 120.2 (3)
C6—N1—C9—O4 −166.4 (2) C9—N1—C6—C5 36.4 (3)
C7—N1—C9—O4 12.1 (3) C7—N1—C6—C5 −142.1 (2)
C6—N1—C9—C10 15.7 (3) C9—N1—C6—C1 −145.9 (2)
C7—N1—C9—C10 −165.86 (19) C7—N1—C6—C1 35.6 (3)
C9—N1—C7—C8 136.4 (2) C4—C3—C2—C1 2.5 (4)
C6—N1—C7—C8 −44.9 (3) C6—C1—C2—C3 0.2 (4)
O3—C8—C7—N1 −159.2 (2) N2—C1—C2—C3 −179.4 (2)
N2—C8—C7—N1 22.2 (3) C13—C12—C11—S1 114.1 (3)
O3—C8—N2—C1 −168.6 (2) C17—C12—C11—S1 −62.9 (4)
C7—C8—N2—C1 10.0 (3) C10—S1—C11—C12 −54.1 (2)
C2—C1—N2—C8 158.4 (2) C2—C3—C4—C5 −1.1 (4)
C6—C1—N2—C8 −21.2 (3) C6—C5—C4—C3 −3.1 (4)
O4—C9—C10—S1 −43.2 (3) C17—C12—C13—C14 −1.1 (5)
N1—C9—C10—S1 134.71 (18) C11—C12—C13—C14 −178.1 (3)
C11—S1—C10—C9 −78.50 (18) C12—C13—C14—C15 1.0 (6)
C4—C5—C6—C1 5.8 (4) C13—C12—C17—C16 −0.4 (6)
C4—C5—C6—N1 −176.6 (2) C11—C12—C17—C16 176.6 (4)
C2—C1—C6—C5 −4.4 (3) C15—C16—C17—C12 2.1 (9)
N2—C1—C6—C5 175.2 (2) C17—C16—C15—C14 −2.3 (10)
C2—C1—C6—N1 177.8 (2) C13—C14—C15—C16 0.7 (8)
N2—C1—C6—N1 −2.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O4i 0.93 2.60 3.452 (3) 153
C10—H10B···O4i 0.97 2.45 3.202 (3) 134
N2—H1N···O3ii 0.85 (3) 2.02 (3) 2.875 (3) 175 (3)

Symmetry codes: (i) −x+3/2, y, z−1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2799).

References

  1. Ali, A. A., Ismail, M. M. F., El-Gaby, M. S. A., Zahran, M. A. & Ammar, Y. A. (2000). Molecules, 5, 864–873.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Moustafa, O. S. & Yameda, Y. (2001). J. Heterocycl. Chem. 38, 809–811.
  7. Nasir, W., Munawar, M. A., Ahmad, S., Nadeem, S. & Shahid, M. (2009). Acta Cryst. E65, o3006. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008178/hg2799sup1.cif

e-67-0o848-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008178/hg2799Isup2.hkl

e-67-0o848-Isup2.hkl (186.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES