Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):o928. doi: 10.1107/S1600536811009779

3-Methyl-5-oxo-4-(2-phenyl­hydrazinyl­idene)-4,5-dihydro-1H-pyrazole-1-carbothio­amide

Hoong-Kun Fun a,*,, Safra Izuani Jama Asik a, Ibrahim Abdul Razak a, Shobhitha Shetty b, Balakrishna Kalluraya b
PMCID: PMC3099837  PMID: 21754198

Abstract

In the title compound, C11H11N5OS, the pyrazole ring is approximately planar, with a maximum deviation of 0.010 (2) Å. The dihedral angles between the benzene ring and the pyrazole and carbothio­amide groups are 5.42 (9) and 10.61 (18)°, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are connected by inter­molecular N—H⋯O and C—H⋯S hydrogen bonds, forming R 2 2(12) ring motifs. In addition, there is a π–π stacking inter­action [centroid–centroid distance = 3.5188 (11) Å] between the pyrazole and benzene rings. These inter­actions link the mol­ecules into infinite chains along [001].

Related literature

For general background to and applications of pyrazole derivatives, see: Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For graph-set theory, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o928-scheme1.jpg

Experimental

Crystal data

  • C11H11N5OS

  • M r = 261.31

  • Monoclinic, Inline graphic

  • a = 7.7388 (1) Å

  • b = 16.1103 (3) Å

  • c = 11.3575 (2) Å

  • β = 121.058 (1)°

  • V = 1213.00 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.53 × 0.39 × 0.13 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.874, T max = 0.967

  • 16258 measured reflections

  • 4393 independent reflections

  • 3037 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.135

  • S = 1.05

  • 4393 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009779/sj5118sup1.cif

e-67-0o928-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009779/sj5118Isup2.hkl

e-67-0o928-Isup2.hkl (215.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.86 2.16 2.8147 (16) 132
N5—H5C⋯O1i 0.86 2.03 2.8806 (15) 172
C1—H1A⋯S1ii 0.93 2.80 3.6838 (16) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF, SIJA and IAR thank Universiti Sains Malaysia for the Research University Grants (Nos. 1001/PFIZIK/811160 and 1001/PFIZIK/811151).

supplementary crystallographic information

Comment

Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their synthesis (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing a pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl-substituted pyrazoles have a sharply pronounced sedative action on the central nervous system. Furthermore, certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal, fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003).

Fig.1 shows the molecular structure of (I). The pyrazole (C7–C9/N3/N4) ring is approximately planar with a maximum deviation of 0.010 (2) Å for atom C8. The dihedral angle between benzene and pyrazole rings is 5.42 (9)°. The carbothioamide group (S1/C11/N5) is twisted at a dihedral angle 10.61 (18)° from the pyrazole ring. The bond lengths (Allen et al., 1987) in (I) show normal values. An intramolecular N1—H1B···O1 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing of (I) (Fig. 2), molecules are connected by N5—H5C···O1 and C1—H1A···S1 intermolecular hydrogen bonds to form R22(12) ring motifs. These interactions also link the molecules into infinite one-dimensional chains along [0 0 1]. In addition, there is a π–π stacking interaction between pyrazole (C7–C9/N3/N4; centroid Cg1) and benzene (C1–C6; centroid Cg2) rings with a Cg1···Cg2 separation of 3.5188 (11) Å.

Experimental

To a solution of ethyl-3-oxo-2-(2-phenylhydrazinylidene) butanoate (0.01mol) dissolved in glacial acetic acid (20ml), a solution of thiosemicarbazide (0.02mol) in glacial acetic acid (25ml) was added and the mixture was refluxed for 4 h. It is cooled and allowed to stand overnight. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All the H atoms were placed in calculated positions with N—H = 0.86Å, C—H = 0.93Å, and for C—H3 = 0.96Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the a axis, showing infinite one-dimensional chains along [0 0 1]. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H11N5OS F(000) = 544
Mr = 261.31 Dx = 1.431 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5770 reflections
a = 7.7388 (1) Å θ = 2.5–31.9°
b = 16.1103 (3) Å µ = 0.26 mm1
c = 11.3575 (2) Å T = 296 K
β = 121.058 (1)° Plate, orange
V = 1213.00 (3) Å3 0.53 × 0.39 × 0.13 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4393 independent reflections
Radiation source: sealed tube 3037 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.874, Tmax = 0.967 k = −24→23
16258 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2537P] where P = (Fo2 + 2Fc2)/3
4393 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.35472 (10) 0.29034 (2) 0.30227 (5) 0.07026 (19)
O1 0.36818 (17) 0.14963 (6) 0.49606 (10) 0.0434 (2)
N1 0.26541 (17) 0.00165 (7) 0.57723 (11) 0.0346 (2)
H1B 0.3036 0.0523 0.5989 0.041*
N2 0.23279 (17) −0.02868 (7) 0.46071 (11) 0.0340 (2)
N3 0.25183 (18) 0.05536 (7) 0.18342 (11) 0.0340 (2)
N4 0.30783 (17) 0.12552 (6) 0.27173 (11) 0.0324 (2)
N5 0.3303 (2) 0.19488 (8) 0.10601 (13) 0.0478 (3)
H5B 0.3161 0.1470 0.0685 0.057*
H5C 0.3439 0.2384 0.0678 0.057*
C1 0.2876 (2) −0.01706 (10) 0.79423 (14) 0.0413 (3)
H1A 0.3376 0.0367 0.8182 0.050*
C2 0.2625 (3) −0.06542 (11) 0.88499 (15) 0.0494 (4)
H2A 0.2961 −0.0441 0.9703 0.059*
C3 0.1883 (3) −0.14496 (11) 0.84978 (17) 0.0509 (4)
H3A 0.1732 −0.1775 0.9115 0.061*
C4 0.1363 (3) −0.17618 (10) 0.72246 (19) 0.0523 (4)
H4A 0.0839 −0.2296 0.6983 0.063*
C5 0.1611 (2) −0.12903 (9) 0.62989 (16) 0.0433 (3)
H5A 0.1272 −0.1505 0.5446 0.052*
C6 0.23757 (19) −0.04923 (8) 0.66727 (13) 0.0337 (3)
C7 0.25637 (19) 0.01943 (7) 0.37735 (12) 0.0308 (2)
C8 0.31689 (19) 0.10634 (8) 0.39492 (12) 0.0313 (3)
C9 0.2218 (2) −0.00556 (8) 0.24546 (13) 0.0328 (3)
C10 0.1592 (3) −0.08981 (9) 0.18412 (16) 0.0481 (4)
H10A 0.0995 −0.0862 0.0863 0.072*
H10B 0.0625 −0.1121 0.2046 0.072*
H10C 0.2751 −0.1255 0.2219 0.072*
C11 0.3313 (2) 0.20147 (8) 0.22208 (14) 0.0356 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.1363 (5) 0.0316 (2) 0.0759 (3) −0.0167 (2) 0.0783 (4) −0.01097 (18)
O1 0.0638 (7) 0.0371 (5) 0.0345 (5) −0.0008 (4) 0.0291 (5) −0.0053 (4)
N1 0.0439 (6) 0.0335 (5) 0.0316 (5) 0.0008 (4) 0.0233 (5) 0.0044 (4)
N2 0.0390 (6) 0.0347 (5) 0.0320 (5) 0.0033 (4) 0.0210 (5) 0.0043 (4)
N3 0.0454 (6) 0.0316 (5) 0.0304 (5) −0.0027 (4) 0.0233 (5) −0.0037 (4)
N4 0.0459 (6) 0.0276 (5) 0.0302 (5) −0.0019 (4) 0.0242 (5) −0.0015 (4)
N5 0.0785 (10) 0.0355 (6) 0.0431 (6) −0.0039 (6) 0.0411 (7) 0.0037 (5)
C1 0.0478 (8) 0.0442 (7) 0.0362 (6) −0.0027 (6) 0.0247 (6) 0.0024 (6)
C2 0.0543 (9) 0.0645 (10) 0.0351 (7) 0.0010 (7) 0.0271 (7) 0.0084 (7)
C3 0.0547 (9) 0.0569 (9) 0.0507 (8) 0.0075 (7) 0.0339 (7) 0.0219 (7)
C4 0.0645 (10) 0.0377 (7) 0.0662 (10) 0.0024 (7) 0.0420 (9) 0.0121 (7)
C5 0.0561 (9) 0.0370 (7) 0.0448 (8) 0.0019 (6) 0.0318 (7) 0.0042 (6)
C6 0.0345 (6) 0.0375 (6) 0.0330 (6) 0.0050 (5) 0.0202 (5) 0.0091 (5)
C7 0.0368 (6) 0.0298 (5) 0.0298 (5) 0.0014 (5) 0.0201 (5) 0.0018 (4)
C8 0.0381 (6) 0.0309 (5) 0.0297 (5) 0.0024 (5) 0.0208 (5) 0.0004 (4)
C9 0.0397 (7) 0.0310 (6) 0.0314 (6) −0.0003 (5) 0.0210 (5) −0.0015 (4)
C10 0.0700 (10) 0.0342 (7) 0.0471 (8) −0.0090 (6) 0.0351 (8) −0.0083 (6)
C11 0.0441 (7) 0.0307 (6) 0.0377 (6) −0.0003 (5) 0.0252 (6) 0.0024 (5)

Geometric parameters (Å, °)

S1—C11 1.6560 (13) C1—H1A 0.9300
O1—C8 1.2218 (15) C2—C3 1.377 (3)
N1—N2 1.3073 (15) C2—H2A 0.9300
N1—C6 1.4111 (16) C3—C4 1.380 (3)
N1—H1B 0.8600 C3—H3A 0.9300
N2—C7 1.3072 (16) C4—C5 1.389 (2)
N3—C9 1.2972 (17) C4—H4A 0.9300
N3—N4 1.4222 (14) C5—C6 1.387 (2)
N4—C11 1.3979 (16) C5—H5A 0.9300
N4—C8 1.3988 (16) C7—C9 1.4366 (17)
N5—C11 1.3185 (18) C7—C8 1.4572 (17)
N5—H5B 0.8602 C9—C10 1.4880 (19)
N5—H5C 0.8600 C10—H10A 0.9600
C1—C2 1.383 (2) C10—H10B 0.9600
C1—C6 1.3863 (19) C10—H10C 0.9600
N2—N1—C6 119.64 (11) C6—C5—H5A 120.7
N2—N1—H1B 120.2 C4—C5—H5A 120.7
C6—N1—H1B 120.2 C1—C6—C5 120.73 (13)
C7—N2—N1 119.04 (11) C1—C6—N1 118.13 (12)
C9—N3—N4 107.04 (10) C5—C6—N1 121.13 (12)
C11—N4—C8 130.31 (11) N2—C7—C9 124.65 (12)
C11—N4—N3 117.83 (10) N2—C7—C8 128.73 (12)
C8—N4—N3 111.70 (10) C9—C7—C8 106.61 (10)
C11—N5—H5B 120.0 O1—C8—N4 129.69 (12)
C11—N5—H5C 120.0 O1—C8—C7 127.07 (12)
H5B—N5—H5C 120.0 N4—C8—C7 103.20 (10)
C2—C1—C6 119.56 (14) N3—C9—C7 111.42 (11)
C2—C1—H1A 120.2 N3—C9—C10 122.83 (12)
C6—C1—H1A 120.2 C7—C9—C10 125.75 (12)
C3—C2—C1 120.38 (15) C9—C10—H10A 109.5
C3—C2—H2A 119.8 C9—C10—H10B 109.5
C1—C2—H2A 119.8 H10A—C10—H10B 109.5
C2—C3—C4 119.73 (14) C9—C10—H10C 109.5
C2—C3—H3A 120.1 H10A—C10—H10C 109.5
C4—C3—H3A 120.1 H10B—C10—H10C 109.5
C3—C4—C5 120.96 (16) N5—C11—N4 113.45 (11)
C3—C4—H4A 119.5 N5—C11—S1 124.20 (10)
C5—C4—H4A 119.5 N4—C11—S1 122.34 (10)
C6—C5—C4 118.63 (15)
C6—N1—N2—C7 179.04 (11) C11—N4—C8—C7 173.49 (13)
C9—N3—N4—C11 −174.52 (12) N3—N4—C8—C7 −1.73 (14)
C9—N3—N4—C8 1.36 (15) N2—C7—C8—O1 4.4 (2)
C6—C1—C2—C3 −0.1 (2) C9—C7—C8—O1 −176.61 (13)
C1—C2—C3—C4 −0.8 (3) N2—C7—C8—N4 −177.54 (13)
C2—C3—C4—C5 1.2 (3) C9—C7—C8—N4 1.46 (13)
C3—C4—C5—C6 −0.7 (2) N4—N3—C9—C7 −0.33 (15)
C2—C1—C6—C5 0.6 (2) N4—N3—C9—C10 179.58 (13)
C2—C1—C6—N1 −179.84 (13) N2—C7—C9—N3 178.31 (12)
C4—C5—C6—C1 −0.2 (2) C8—C7—C9—N3 −0.73 (15)
C4—C5—C6—N1 −179.78 (13) N2—C7—C9—C10 −1.6 (2)
N2—N1—C6—C1 175.36 (12) C8—C7—C9—C10 179.36 (14)
N2—N1—C6—C5 −5.05 (19) C8—N4—C11—N5 174.38 (13)
N1—N2—C7—C9 −178.74 (12) N3—N4—C11—N5 −10.64 (18)
N1—N2—C7—C8 0.1 (2) C8—N4—C11—S1 −6.4 (2)
C11—N4—C8—O1 −8.5 (2) N3—N4—C11—S1 168.56 (10)
N3—N4—C8—O1 176.27 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O1 0.86 2.16 2.8147 (16) 132
N5—H5C···O1i 0.86 2.03 2.8806 (15) 172
C1—H1A···S1ii 0.93 2.80 3.6838 (16) 159

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5118).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.
  5. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009779/sj5118sup1.cif

e-67-0o928-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009779/sj5118Isup2.hkl

e-67-0o928-Isup2.hkl (215.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES