Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):m460–m461. doi: 10.1107/S1600536811009299

Chlorido{5,10,15,20-tetra­kis­[2-(2,2-dimethyl­propanamido)­phen­yl]porphyrinato-κ4 N,N′,N′′,N′′′}iron(III) chloro­benzene hemisolvate monohydrate

Mondher Dhifet a, Mohamed Salah Belkhiria a, Jean-Claude Daran b, Habib Nasri a,*
PMCID: PMC3099838  PMID: 21753977

Abstract

In the title complex, [Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2O, the equatorial iron–pyrrole N atom distance (Fe—Np) is 2.065 (2) Å and the axial Fe—Cl distance is 2.207 (2) Å. The iron cation is displaced by 0.420 (4) Å from the 24-atom mean plane of the porphyrin core. The asymmetric unit contains a quarter of an [FeIII(C64H64N8O4)Cl] complex mol­ecule, with a fourfold rotation axis passing through the central metal cation and the Cl ligand, along with disordered mol­ecules of chloro­benzene and water of solvation; the solvent mol­ecules were excluded from the refinement.

Related literature

For a review of porphyrin complexes, see: Scheidt (2000). For synthetic procedures, see: Gismelseed et al. (1990). For structural features of porphyrins, see: Schappacher et al. (1983). For a description of the Cambridge Structural Database, see: Allen (2002). graphic file with name e-67-0m460-scheme1.jpg

Experimental

Crystal data

  • [Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2O

  • M r = 1206.84

  • Tetragonal, Inline graphic

  • a = 18.069 (3) Å

  • c = 18.919 (4) Å

  • V = 6177 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 180 K

  • 0.22 × 0.18 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.842, T max = 0.937

  • 43373 measured reflections

  • 3021 independent reflections

  • 2089 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.180

  • S = 1.07

  • 3021 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.34 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009299/pv2389sup1.cif

e-67-0m460-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009299/pv2389Isup2.hkl

e-67-0m460-Isup2.hkl (148.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

supplementary crystallographic information

Comment

In the Cambridge Structural Database (CSD, Version 5.32; Allen, 2002) there are more than sixty structures of iron(III) chloride with many types of porphyrins. This large number of structures reflects the importance of this type of complex which is used as starting material in the synthesis of iron(III) and iron(II) porphyrin species.

A formula unit of the title complex contains a amolecule of [FeIII(C64H64N8O4)Cl] (Fig. 1), a half molecule of chlorobenzene and a molecule of water of solvation; the solvent molecules were disordered and were therefore, excluded from the refinement. The most important feature of the structure is the fact that the chloride ion is coordinated to the Fe(III) from the open side face of the picket fence porphyrin for which anionic axial ligands are known to be bound to the metal ion from the protected side of this porphyrin (Schappacher et al., 1983). The square-pyramidal coordination of the central atom, with an equatorial iron-pyrrole nitrogen atom distance (Fe–Np) of 2.065 (2) Å and 2.207 (2) Å for the axial Fe–Cl distance, is typical for penta-coodined iron(III) high-spin (S = 5/2) chloride porphyrin species (Scheidt, 2000). The iron atom is displaced by 0.420 (4) Å from the 24 atom mean plane.

Experimental

The reaction of the [FeIII(TpivPP)(SO3CF3)(H2O)] complex (Gismelseed et al., 1990) (100 mg, 0.081 mmol) with an excess of potassium chlorite, KClO3 (198 mg, 1.62 mmol) and 18-crown-6 (214 mg, 0.81 mmol) in chlorobenzene (5 ml) yields a reddish-brown solution. Crystals of the title complex were obtained as impurities by diffusion of hexanes through the chlorobenzene solution.

Refinement

Hydrogen atoms were placed in calculated positions with N–H = 0.86 Å and C—H = 0.93 and 0.96 Å for aryl and methyl type H-atoms, respectively, and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(methyl-C) and Uiso(H) = 1.2Ueq(aryl-C/N).

The program PLATON (Spek, 2009) indicated solvent accessible void space of 757 Å3, corresponding to 161 electrons in a unit cell, equivalent to 2 molecules of chlorobenzene and 4 water molecules. Since the solvent molecules were grossly disordered and could not be modeled, their contribution was excluded using the subroutine SQUEEZE.

Figures

Fig. 1.

Fig. 1.

A view of the structure of ion complex [FeIII(C64H64N8O4)Cl] showing the atom numbering schem. Displacement ellipsoids are drawn at 50%. The H atoms have been omitted for clarity. Symmetry codes: (i) -y + 1/2, x, z; (ii) y, -x + 1/2, z; (iii) -x + 1/2, -y + 1/2, z.

Fig. 2.

Fig. 2.

A unit cell packing of the title complex viewed down the c-axis, solvents have been excluded.

Crystal data

[Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2O Dx = 1.298 Mg m3
Mr = 1206.84 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/ncc Cell parameters from 43373 reflections
Hall symbol: -P 4a 2ac θ = 2.7–26.0°
a = 18.069 (3) Å µ = 0.34 mm1
c = 18.919 (4) Å T = 180 K
V = 6177 (2) Å3 Prism, dark purple
Z = 4 0.22 × 0.18 × 0.16 mm
F(000) = 2536

Data collection

Bruker APEXII CCD area-detector diffractometer 3021 independent reflections
Radiation source: fine-focus sealed tube 2089 reflections with I > 2σ(I)
graphite Rint = 0.064
φ and ω scans θmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −22→22
Tmin = 0.842, Tmax = 0.937 k = −20→22
43373 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.115P)2 + 0.6251P] where P = (Fo2 + 2Fc2)/3
3021 reflections (Δ/σ)max < 0.001
178 parameters Δρmax = 0.81 e Å3
0 restraints Δρmin = −1.34 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe 0.2500 0.2500 0.12373 (4) 0.0222 (3)
Cl 0.2500 0.2500 0.24040 (7) 0.0335 (4)
O1 0.56932 (17) 0.3807 (2) −0.12040 (12) 0.0677 (10)
N1 0.35198 (11) 0.20458 (11) 0.10034 (11) 0.0163 (5)
N2 0.49310 (14) 0.35229 (16) −0.03138 (13) 0.0371 (7)
HN2 0.4488 0.3373 −0.0231 0.045*
C1 0.36920 (14) 0.13070 (14) 0.09954 (14) 0.0187 (6)
C2 0.44818 (15) 0.12135 (16) 0.09858 (15) 0.0250 (6)
H2 0.4735 0.0766 0.0981 0.030*
C3 0.47859 (15) 0.18914 (15) 0.09854 (15) 0.0249 (6)
H3 0.5289 0.2001 0.0980 0.030*
C4 0.41823 (14) 0.24197 (14) 0.09945 (14) 0.0190 (6)
C5 0.42756 (14) 0.31872 (14) 0.09900 (13) 0.0183 (6)
C6 0.50541 (14) 0.34772 (14) 0.09465 (14) 0.0200 (6)
C7 0.54726 (15) 0.35788 (16) 0.15514 (15) 0.0262 (7)
H7 0.5264 0.3482 0.1991 0.031*
C8 0.61929 (17) 0.38216 (18) 0.15117 (16) 0.0333 (7)
H8 0.6466 0.3890 0.1923 0.040*
C9 0.65061 (18) 0.3961 (2) 0.08699 (18) 0.0433 (9)
H9 0.6995 0.4120 0.0845 0.052*
C10 0.61015 (18) 0.3869 (2) 0.02555 (17) 0.0412 (9)
H10 0.6316 0.3969 −0.0181 0.049*
C11 0.53757 (16) 0.36263 (17) 0.02937 (15) 0.0286 (7)
C12 0.50947 (19) 0.36235 (17) −0.10004 (16) 0.0327 (7)
C13 0.44577 (19) 0.34785 (17) −0.15323 (16) 0.0342 (8)
C14 0.4681 (2) 0.2800 (2) −0.19598 (18) 0.0431 (8)
H14A 0.5152 0.2886 −0.2179 0.065*
H14B 0.4316 0.2707 −0.2317 0.065*
H14C 0.4715 0.2379 −0.1652 0.065*
C15 0.3714 (2) 0.3359 (3) −0.11812 (18) 0.0494 (10)
H15A 0.3582 0.3791 −0.0915 0.074*
H15B 0.3742 0.2940 −0.0870 0.074*
H15C 0.3345 0.3268 −0.1536 0.074*
C16 0.4413 (3) 0.4155 (2) −0.2017 (2) 0.0747 (15)
H16A 0.4271 0.4581 −0.1745 0.112*
H16B 0.4052 0.4068 −0.2380 0.112*
H16C 0.4887 0.4242 −0.2229 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe 0.0228 (3) 0.0228 (3) 0.0211 (4) 0.000 0.000 0.000
Cl 0.0409 (6) 0.0409 (6) 0.0188 (7) 0.000 0.000 0.000
O1 0.0669 (19) 0.111 (3) 0.0255 (13) −0.0554 (19) 0.0096 (12) −0.0067 (13)
N1 0.0157 (11) 0.0160 (11) 0.0171 (10) 0.0016 (9) 0.0025 (9) −0.0008 (9)
N2 0.0264 (14) 0.0630 (19) 0.0220 (13) −0.0182 (13) −0.0021 (11) 0.0079 (12)
C1 0.0199 (14) 0.0203 (14) 0.0158 (12) 0.0021 (10) 0.0008 (10) −0.0001 (10)
C2 0.0189 (14) 0.0226 (15) 0.0336 (15) 0.0052 (11) 0.0024 (12) 0.0002 (12)
C3 0.0167 (14) 0.0257 (15) 0.0323 (15) 0.0024 (11) 0.0038 (12) −0.0042 (12)
C4 0.0172 (13) 0.0239 (15) 0.0158 (12) 0.0012 (10) 0.0018 (10) −0.0014 (10)
C5 0.0184 (13) 0.0210 (14) 0.0155 (12) −0.0026 (10) 0.0028 (10) 0.0009 (11)
C6 0.0166 (14) 0.0202 (14) 0.0232 (14) −0.0010 (10) 0.0007 (11) 0.0002 (11)
C7 0.0244 (16) 0.0324 (17) 0.0219 (14) −0.0009 (12) 0.0017 (12) −0.0027 (12)
C8 0.0258 (16) 0.047 (2) 0.0271 (15) −0.0057 (14) −0.0049 (13) −0.0102 (14)
C9 0.0231 (17) 0.063 (2) 0.0435 (19) −0.0194 (16) 0.0014 (14) −0.0035 (18)
C10 0.0304 (18) 0.067 (2) 0.0265 (16) −0.0233 (16) 0.0047 (13) 0.0042 (15)
C11 0.0267 (16) 0.0364 (17) 0.0226 (15) −0.0084 (12) −0.0010 (12) 0.0025 (12)
C12 0.047 (2) 0.0288 (16) 0.0224 (15) −0.0122 (14) 0.0016 (14) 0.0017 (13)
C13 0.052 (2) 0.0302 (17) 0.0209 (15) −0.0009 (14) −0.0103 (14) 0.0017 (12)
C14 0.047 (2) 0.048 (2) 0.0350 (18) 0.0001 (16) −0.0096 (16) −0.0104 (16)
C15 0.039 (2) 0.071 (3) 0.0376 (19) 0.0059 (18) −0.0167 (16) −0.0144 (18)
C16 0.132 (4) 0.046 (2) 0.046 (2) 0.013 (3) −0.022 (3) 0.015 (2)

Geometric parameters (Å, °)

Fe—N1i 2.065 (2) C7—C8 1.376 (4)
Fe—N1ii 2.065 (2) C7—H7 0.9300
Fe—N1 2.065 (2) C8—C9 1.363 (5)
Fe—N1iii 2.065 (2) C8—H8 0.9300
Fe—Cl 2.2073 (16) C9—C10 1.383 (4)
O1—C12 1.195 (4) C9—H9 0.9300
N1—C1 1.371 (3) C10—C11 1.385 (4)
N1—C4 1.375 (3) C10—H10 0.9300
N2—C12 1.345 (4) C12—C13 1.551 (4)
N2—C11 1.415 (4) C13—C15 1.515 (5)
N2—HN2 0.8600 C13—C14 1.523 (5)
C1—C5ii 1.393 (4) C13—C16 1.530 (5)
C1—C2 1.437 (4) C14—H14A 0.9600
C2—C3 1.343 (4) C14—H14B 0.9600
C2—H2 0.9300 C14—H14C 0.9600
C3—C4 1.449 (4) C15—H15A 0.9600
C3—H3 0.9300 C15—H15B 0.9600
C4—C5 1.397 (4) C15—H15C 0.9600
C5—C1i 1.393 (4) C16—H16A 0.9600
C5—C6 1.503 (4) C16—H16B 0.9600
C6—C7 1.384 (4) C16—H16C 0.9600
C6—C11 1.391 (4)
N1i—Fe—N1ii 155.25 (12) C9—C8—H8 120.0
N1i—Fe—N1 87.37 (3) C7—C8—H8 120.0
N1ii—Fe—N1 87.37 (3) C8—C9—C10 120.4 (3)
N1i—Fe—N1iii 87.37 (3) C8—C9—H9 119.8
N1ii—Fe—N1iii 87.37 (3) C10—C9—H9 119.8
N1—Fe—N1iii 155.25 (12) C9—C10—C11 119.7 (3)
N1i—Fe—Cl 102.38 (6) C9—C10—H10 120.2
N1ii—Fe—Cl 102.38 (6) C11—C10—H10 120.2
N1—Fe—Cl 102.38 (6) C10—C11—C6 120.2 (3)
N1iii—Fe—Cl 102.38 (6) C10—C11—N2 122.5 (3)
C1—N1—C4 106.3 (2) C6—C11—N2 117.3 (2)
C1—N1—Fe 126.29 (17) O1—C12—N2 123.2 (3)
C4—N1—Fe 125.75 (17) O1—C12—C13 120.6 (3)
C12—N2—C11 130.0 (3) N2—C12—C13 116.2 (3)
C12—N2—HN2 115.0 C15—C13—C14 110.6 (3)
C11—N2—HN2 115.0 C15—C13—C16 109.3 (3)
N1—C1—C5ii 126.0 (2) C14—C13—C16 109.8 (3)
N1—C1—C2 109.9 (2) C15—C13—C12 113.5 (3)
C5ii—C1—C2 124.1 (2) C14—C13—C12 106.5 (3)
C3—C2—C1 107.4 (2) C16—C13—C12 107.0 (3)
C3—C2—H2 126.3 C13—C14—H14A 109.5
C1—C2—H2 126.3 C13—C14—H14B 109.5
C2—C3—C4 107.0 (2) H14A—C14—H14B 109.5
C2—C3—H3 126.5 C13—C14—H14C 109.5
C4—C3—H3 126.5 H14A—C14—H14C 109.5
N1—C4—C5 126.4 (2) H14B—C14—H14C 109.5
N1—C4—C3 109.4 (2) C13—C15—H15A 109.5
C5—C4—C3 124.2 (2) C13—C15—H15B 109.5
C1i—C5—C4 124.0 (2) H15A—C15—H15B 109.5
C1i—C5—C6 118.6 (2) C13—C15—H15C 109.5
C4—C5—C6 117.3 (2) H15A—C15—H15C 109.5
C7—C6—C11 118.7 (2) H15B—C15—H15C 109.5
C7—C6—C5 120.8 (2) C13—C16—H16A 109.5
C11—C6—C5 120.5 (2) C13—C16—H16B 109.5
C8—C7—C6 120.9 (3) H16A—C16—H16B 109.5
C8—C7—H7 119.5 C13—C16—H16C 109.5
C6—C7—H7 119.5 H16A—C16—H16C 109.5
C9—C8—C7 120.0 (3) H16B—C16—H16C 109.5

Symmetry codes: (i) −y+1/2, x, z; (ii) y, −x+1/2, z; (iii) −x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2389).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2007). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A., Winkler, H., Nasri, H., Doppelt, D. M., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741–2749.
  6. Schappacher, M., Ricard, L., Weiss, R., Montiel-Montoya, R., Gonser, U., Bill, E. & Trautwein, A. (1983). Inorg. Chim. Acta, 78, L9–L12.
  7. Scheidt, W. R. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, R. M. Smith & R. Guilard, pp. 49–112. San Diego: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009299/pv2389sup1.cif

e-67-0m460-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009299/pv2389Isup2.hkl

e-67-0m460-Isup2.hkl (148.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES