Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 5;67(Pt 4):o788. doi: 10.1107/S1600536811007756

N,N′-Bis[(4-methyl­phen­yl)sulfon­yl]adipamide

Vinola Z Rodrigues a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3099843  PMID: 21754079

Abstract

In the centrosymmetric title compound, C20H24N2O6S2, the N—H and C=O bonds are trans to each other. In the crystal, inter­molecular N—H⋯O(S) hydrogen bonds link the mol­ecules into zigzag chains running along the b axis. The O atom involved in the hydrogen bond has a longer S—O bond than the other O atom bonded to S [1.441 (2) versus 1.428 (2) Å].

Related literature

For our study of the effect of substituents on the structures of sulfonamides, see: Gowda et al. (2005, 2007); Rodrigues et al. (2011).graphic file with name e-67-0o788-scheme1.jpg

Experimental

Crystal data

  • C20H24N2O6S2

  • M r = 452.53

  • Triclinic, Inline graphic

  • a = 6.0011 (9) Å

  • b = 8.765 (1) Å

  • c = 10.144 (2) Å

  • α = 90.04 (1)°

  • β = 92.35 (1)°

  • γ = 98.01 (1)°

  • V = 527.91 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.48 × 0.12 × 0.09 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.872, T max = 0.974

  • 3355 measured reflections

  • 2122 independent reflections

  • 1651 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.141

  • S = 1.08

  • 2122 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007756/bt5485sup1.cif

e-67-0o788-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007756/bt5485Isup2.hkl

e-67-0o788-Isup2.hkl (104.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.11 (2) 2.938 (4) 170 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

The sulfonamide moiety is a constituent of many biologically significant compounds. As a part of studying the effect of substituents on the structures of this class of compounds (Gowda et al., 2005, 2007; Rodrigues et al., 2011), in the present work, the structure of N,N-bis(4-methylphenylsulfonyl)-adipamide (I) has been determined (Fig.1). The asymmetric unit comprises half of a molecule, the remaining portion being generated via an inversion centre, similar to that observed in N,N-bis(2-methylphenylsulfonyl)-adipamide (II) (Rodrigues et al., 2011). The conformation of the N—H and C=O bonds in the C—SO2—NH—C(O)—C—C segment is anti to each other and the amide O atom is also anti to the H atoms attached to the adjacent C atom. The molecule is bent at the S atom with the C—SO2—NH—C(O) torsion angle of -58.5 (3)°, compared to the value of -63.7 (4)° in (II). Further, the S1—N1—C7—C8 and C7—N1—S1—O2 segments are nearly linear. The torsion angles C2—C1—S1—N1 and C6—C1—S1—N1 are, respectively, -60.6 (3)° and 120.3 (3)°. The corresponding values in (II) are -71.3 (4)° and 106.9 (4)°, respectively.

The dihedral angle between the planes of the benzene ring and the SO2—NH—C(O)—C—C segment in (I) is 72.0 (1)°, compared to the value of 89.9 (1)° in (II).

N—H···O2(S) H-bond formation results in an S=O2 bond longer than the S=O1 bond. A series of N—H···O(S) intermolecular hydrogen bonds (Table 1) link the molecules into infinite chains running in the b-axis direction (Fig. 2).

Experimental

N,N-Bis(4-methylphenylsulfonyl)-adipamide was prepared by refluxing a mixture of adipic acid (0.01 mol) with p-toluenesulfonamide (0.02 mol) and POCl3 for 1 hr on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. All other H atoms were positioned with idealized geometry using a riding model with aromatic C—H distance = 0.93 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C20H24N2O6S2 Z = 1
Mr = 452.53 F(000) = 238
Triclinic, P1 Dx = 1.423 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.0011 (9) Å Cell parameters from 1299 reflections
b = 8.765 (1) Å θ = 3.1–28.0°
c = 10.144 (2) Å µ = 0.29 mm1
α = 90.04 (1)° T = 293 K
β = 92.35 (1)° Needle, colourless
γ = 98.01 (1)° 0.48 × 0.12 × 0.09 mm
V = 527.91 (14) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2122 independent reflections
Radiation source: fine-focus sealed tube 1651 reflections with I > 2σ(I)
graphite Rint = 0.021
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −6→7
Tmin = 0.872, Tmax = 0.974 k = −10→7
3355 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.6262P] where P = (Fo2 + 2Fc2)/3
2122 reflections (Δ/σ)max < 0.001
140 parameters Δρmax = 0.78 e Å3
1 restraint Δρmin = −0.28 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3932 (5) 0.6198 (3) 0.3150 (3) 0.0359 (6)
C2 0.6161 (5) 0.6864 (4) 0.3058 (4) 0.0474 (8)
H2 0.6946 0.6720 0.2306 0.057*
C3 0.7186 (6) 0.7738 (4) 0.4098 (4) 0.0550 (9)
H3 0.8665 0.8208 0.4031 0.066*
C4 0.6072 (6) 0.7940 (4) 0.5246 (3) 0.0521 (9)
C5 0.3872 (6) 0.7224 (4) 0.5321 (3) 0.0550 (9)
H5 0.3107 0.7327 0.6088 0.066*
C6 0.2789 (5) 0.6363 (4) 0.4287 (3) 0.0457 (8)
H6 0.1308 0.5898 0.4353 0.055*
C7 0.1735 (4) 0.7710 (3) 0.0561 (3) 0.0366 (7)
C8 0.2257 (5) 0.8691 (3) −0.0642 (3) 0.0392 (7)
H8A 0.0870 0.8975 −0.1030 0.047*
H8B 0.2921 0.8100 −0.1292 0.047*
C9 0.3879 (5) 1.0149 (4) −0.0284 (4) 0.0483 (8)
H9A 0.4117 1.0770 −0.1070 0.058*
H9B 0.3184 1.0743 0.0350 0.058*
C10 0.7223 (9) 0.8915 (5) 0.6365 (4) 0.0829 (14)
H10A 0.7018 0.9971 0.6227 0.099*
H10B 0.8802 0.8831 0.6400 0.099*
H10C 0.6582 0.8565 0.7181 0.099*
N1 0.2657 (5) 0.6347 (3) 0.0575 (3) 0.0411 (6)
H1N 0.353 (5) 0.614 (4) 0.000 (3) 0.049*
O1 0.0322 (4) 0.4586 (3) 0.2128 (2) 0.0569 (7)
O2 0.3994 (5) 0.4024 (3) 0.1391 (2) 0.0585 (7)
O3 0.0681 (4) 0.8081 (3) 0.1472 (2) 0.0532 (6)
S1 0.25952 (14) 0.51241 (8) 0.18165 (8) 0.0417 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0382 (15) 0.0335 (14) 0.0367 (15) 0.0053 (12) 0.0077 (12) 0.0048 (12)
C2 0.0387 (17) 0.0537 (19) 0.0501 (19) 0.0044 (14) 0.0134 (14) 0.0067 (15)
C3 0.0404 (18) 0.054 (2) 0.066 (2) −0.0062 (15) −0.0037 (16) 0.0106 (18)
C4 0.069 (2) 0.0432 (17) 0.0413 (19) 0.0005 (16) −0.0104 (16) 0.0102 (14)
C5 0.066 (2) 0.063 (2) 0.0354 (18) 0.0029 (18) 0.0114 (16) 0.0021 (16)
C6 0.0414 (17) 0.0514 (18) 0.0431 (18) −0.0008 (14) 0.0121 (14) 0.0065 (14)
C7 0.0255 (14) 0.0381 (15) 0.0443 (17) −0.0019 (12) −0.0001 (12) 0.0011 (13)
C8 0.0376 (16) 0.0394 (15) 0.0398 (17) 0.0035 (12) −0.0015 (13) 0.0027 (13)
C9 0.0439 (18) 0.0456 (18) 0.054 (2) 0.0022 (14) 0.0027 (15) 0.0095 (15)
C10 0.113 (4) 0.066 (3) 0.059 (3) −0.015 (3) −0.024 (2) 0.006 (2)
N1 0.0521 (16) 0.0372 (13) 0.0349 (14) 0.0079 (12) 0.0069 (11) 0.0008 (11)
O1 0.0529 (14) 0.0520 (14) 0.0595 (15) −0.0161 (11) 0.0062 (11) 0.0040 (11)
O2 0.0910 (19) 0.0375 (12) 0.0521 (15) 0.0215 (12) 0.0213 (13) 0.0053 (10)
O3 0.0475 (13) 0.0578 (14) 0.0580 (15) 0.0152 (11) 0.0218 (11) 0.0072 (12)
S1 0.0516 (5) 0.0318 (4) 0.0411 (4) 0.0018 (3) 0.0091 (3) 0.0013 (3)

Geometric parameters (Å, °)

C1—C6 1.383 (4) C7—C8 1.511 (4)
C1—C2 1.389 (4) C8—C9 1.529 (4)
C1—S1 1.749 (3) C8—H8A 0.9700
C2—C3 1.376 (5) C8—H8B 0.9700
C2—H2 0.9300 C9—C9i 1.498 (6)
C3—C4 1.390 (5) C9—H9A 0.9700
C3—H3 0.9300 C9—H9B 0.9700
C4—C5 1.386 (5) C10—H10A 0.9600
C4—C10 1.505 (5) C10—H10B 0.9600
C5—C6 1.378 (5) C10—H10C 0.9600
C5—H5 0.9300 N1—S1 1.653 (3)
C6—H6 0.9300 N1—H1N 0.837 (18)
C7—O3 1.210 (4) O1—S1 1.428 (2)
C7—N1 1.385 (4) O2—S1 1.441 (2)
C6—C1—C2 120.6 (3) C7—C8—H8B 109.4
C6—C1—S1 120.3 (2) C9—C8—H8B 109.4
C2—C1—S1 119.1 (2) H8A—C8—H8B 108.0
C3—C2—C1 118.8 (3) C9i—C9—C8 114.2 (3)
C3—C2—H2 120.6 C9i—C9—H9A 108.7
C1—C2—H2 120.6 C8—C9—H9A 108.7
C2—C3—C4 121.8 (3) C9i—C9—H9B 108.7
C2—C3—H3 119.1 C8—C9—H9B 108.7
C4—C3—H3 119.1 H9A—C9—H9B 107.6
C5—C4—C3 117.9 (3) C4—C10—H10A 109.5
C5—C4—C10 121.3 (4) C4—C10—H10B 109.5
C3—C4—C10 120.8 (4) H10A—C10—H10B 109.5
C6—C5—C4 121.6 (3) C4—C10—H10C 109.5
C6—C5—H5 119.2 H10A—C10—H10C 109.5
C4—C5—H5 119.2 H10B—C10—H10C 109.5
C5—C6—C1 119.2 (3) C7—N1—S1 125.4 (2)
C5—C6—H6 120.4 C7—N1—H1N 122 (2)
C1—C6—H6 120.4 S1—N1—H1N 112 (2)
O3—C7—N1 121.5 (3) O1—S1—O2 118.77 (16)
O3—C7—C8 124.2 (3) O1—S1—N1 110.32 (15)
N1—C7—C8 114.2 (3) O2—S1—N1 103.00 (14)
C7—C8—C9 111.2 (3) O1—S1—C1 109.01 (15)
C7—C8—H8A 109.4 O2—S1—C1 109.75 (15)
C9—C8—H8A 109.4 N1—S1—C1 105.04 (13)
C6—C1—C2—C3 −2.4 (5) C7—C8—C9—C9i 61.1 (5)
S1—C1—C2—C3 178.4 (3) O3—C7—N1—S1 −3.7 (4)
C1—C2—C3—C4 1.7 (5) C8—C7—N1—S1 173.6 (2)
C2—C3—C4—C5 0.2 (5) C7—N1—S1—O1 58.8 (3)
C2—C3—C4—C10 −179.4 (3) C7—N1—S1—O2 −173.4 (3)
C3—C4—C5—C6 −1.3 (5) C7—N1—S1—C1 −58.5 (3)
C10—C4—C5—C6 178.3 (3) C6—C1—S1—O1 2.0 (3)
C4—C5—C6—C1 0.5 (5) C2—C1—S1—O1 −178.8 (2)
C2—C1—C6—C5 1.4 (5) C6—C1—S1—O2 −129.6 (3)
S1—C1—C6—C5 −179.5 (3) C2—C1—S1—O2 49.5 (3)
O3—C7—C8—C9 67.3 (4) C6—C1—S1—N1 120.3 (3)
N1—C7—C8—C9 −109.9 (3) C2—C1—S1—N1 −60.6 (3)

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2ii 0.84 (2) 2.11 (2) 2.938 (4) 170 (3)

Symmetry codes: (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5485).

References

  1. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.
  2. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  3. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  4. Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o789. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007756/bt5485sup1.cif

e-67-0o788-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007756/bt5485Isup2.hkl

e-67-0o788-Isup2.hkl (104.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES