Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):m464. doi: 10.1107/S1600536811009676

(Acetato-κO)bis­(1,10-phenanthroline-κ2 N,N′)copper(II) acetate hepta­hydrate

Buqin Jing a,b, Lianzhi Li b,*, Jianfang Dong c, Tao Xu b
PMCID: PMC3099845  PMID: 21753980

Abstract

In the title complex, [Cu(CH3CO2)(C12H8N2)2](CH3CO2)·7H2O, the central CuII ion is five coordinate, being bound to four N atoms from two 1,10-phenanthroline ligands and one O atom from an acetate anion in a strongly distorted square-pyramidal configuration. Hydrogen-bonded water mol­ecules and an uncoordinated acetate anion form a two-dimensional polymeric structure parallel to (010). The cations are linked to this layer via O—H⋯O hydrogen bonds between one of the water mol­ecules and the coordinated acetate anion.

Related literature

For the structures of similar five-coordinate copper(II) complexes with 1,10-phenanthroline and carboxyl­ate anions, see: Tu et al. (2008); Xu et al. (2008).graphic file with name e-67-0m464-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3O2)(C12H8N2)2](C2H3O2)·7H2O

  • M r = 668.15

  • Triclinic, Inline graphic

  • a = 8.764 (4) Å

  • b = 12.307 (5) Å

  • c = 15.739 (7) Å

  • α = 103.257 (7)°

  • β = 102.243 (7)°

  • γ = 97.606 (7)°

  • V = 1585.2 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 298 K

  • 0.42 × 0.38 × 0.32 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.728, T max = 0.795

  • 8364 measured reflections

  • 5570 independent reflections

  • 3220 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.130

  • S = 0.95

  • 5570 reflections

  • 399 parameters

  • 52 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009676/gk2351sup1.cif

e-67-0m464-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009676/gk2351Isup2.hkl

e-67-0m464-Isup2.hkl (272.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N3 1.988 (3)
Cu1—N1 1.989 (3)
Cu1—O1 2.001 (3)
Cu1—N4 2.051 (3)
Cu1—N2 2.191 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H29⋯O3 0.85 1.90 2.738 (5) 170
O6—H31⋯O5 0.85 1.92 2.768 (5) 176
O7—H33⋯O4 0.85 1.96 2.797 (5) 167
O7—H34⋯O8 0.85 1.91 2.760 (5) 173
O8—H36⋯O2 0.85 1.86 2.710 (4) 173
O9—H37⋯O8 0.85 1.98 2.826 (5) 174
O10—H40⋯O11 0.85 2.23 3.070 (5) 168
O11—H42⋯O9 0.85 1.89 2.714 (5) 164
O5—H30⋯O10i 0.85 2.03 2.819 (5) 155
O6—H32⋯O4i 0.85 1.94 2.778 (5) 169
O9—H38⋯O6i 0.85 1.94 2.737 (6) 156
O10—H39⋯O4ii 0.85 1.87 2.702 (5) 164
O11—H41⋯O7ii 0.85 1.88 2.724 (5) 170
O8—H35⋯O11iii 0.85 1.97 2.796 (5) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

supplementary crystallographic information

Comment

Construction of supramolecular architectures with intersting physical properties has grown rapidly owing to their potential use as new functional materials. Many intriguing supramolecular assemblies have been prepared by metal coordination or hydrogen bonding interactions. Here, we report a copper(II) complex formed in the reaction of Cu(CH3COO)2.H2O with 1,10-phenanthroline.

Similar to the reported copper(II) complex (Xu et al., 2008), the asymmetric unit of the complex consists of one [Cu(phen)2(CH3COO)]+ complex cation, one acetate anion and seven water molecules. As shown in Fig 1, the central CuII ion is five coordinate, being bound to four N atoms from two bidentate chelating 1,10-phenanthroline ligands and one O atom from the acetate anion, forming a strongly distorted square-pyramidal geometry. The O1, N1, N4, and N3 atoms are in the equatorial plane, and N2 is in the axial position. The CuII ion lies 0.2243 (18) Å above the equatorial plane towards N2. The Cu1—N2 bond is significantly longer [2.191 (4) Å] (Table 1), as seen previously [2.1866 (19) Å] (Tu et al., 2008).

In the crystal, hydrogen-bonded water molecules and acetate anion form two-dimensional polymeric structure parallel to (0 1 0) (Fig. 2). The coordination cations are linked to this layer via O-H···O hydrogen bonds (Table 2) between one of the water molecules and coordinated acetate ligand (Fig. 3).

Experimental

2 ml of aqueous solution of potassium hydroxide (2 mmol, 112.2 mg) were added to a stirred aqueous solution (5 ml) of cupric acetate monohydrate (1 mmol, 199.7 mg) followe by a methanol solution (5 ml) of 1,10-phenanthroline (2 mmol, 396.4 mg). The reaction mixture was and stirred for 4 h. The resultant solution was held at room temperature for ten days, whereupon the blue block-shaped crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms of the water molecules were found in difference Fourier maps and the O—H distances standardized to 0.85 Å. All other H atoms were placed in geometrically calculated positions (C—H = 0.93-0.96 Å). H atom were allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(Cphenyl, O) or 1.5Ueq(Cmethyl).

The SIMU instruction of SHELXL:97 (Sheldrick, 2008) was used to restrain the Uij components of neighboring atoms in the coordinating acetate ligand to be approximately equal with an esd value of 0.1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound drawn with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Fragment of the two-dimensional polymeric structure formed by hydrogen-bonded water molecules and acetate anion. Hydrogen bonds are shown with dashed lines.

Fig. 3.

Fig. 3.

The crystal packing viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

[Cu(C2H3O2)(C12H8N2)2](C2H3O2)·7H2O Z = 2
Mr = 668.15 F(000) = 698
Triclinic, P1 Dx = 1.400 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.764 (4) Å Cell parameters from 1605 reflections
b = 12.307 (5) Å θ = 2.5–25.0°
c = 15.739 (7) Å µ = 0.75 mm1
α = 103.257 (7)° T = 298 K
β = 102.243 (7)° Block, blue
γ = 97.606 (7)° 0.42 × 0.38 × 0.32 mm
V = 1585.2 (12) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 5570 independent reflections
Radiation source: fine-focus sealed tube 3220 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.728, Tmax = 0.795 k = −13→14
8364 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0503P)2] where P = (Fo2 + 2Fc2)/3
5570 reflections (Δ/σ)max = 0.001
399 parameters Δρmax = 0.42 e Å3
52 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.76867 (7) 0.90326 (4) 0.21867 (3) 0.0411 (2)
N1 0.8381 (5) 0.7950 (3) 0.2885 (2) 0.0428 (9)
N2 0.9810 (4) 1.0118 (3) 0.3166 (2) 0.0410 (9)
N3 0.7103 (4) 1.0131 (3) 0.1481 (2) 0.0363 (9)
N4 0.8395 (4) 0.8328 (3) 0.1056 (2) 0.0416 (9)
O1 0.6008 (4) 0.9292 (3) 0.28563 (19) 0.0505 (8)
O2 0.4739 (4) 0.7876 (3) 0.1694 (2) 0.0558 (9)
O3 0.2159 (5) 0.5069 (3) 0.4746 (2) 0.0872 (13)
O4 0.2102 (5) 0.4656 (3) 0.3301 (2) 0.0790 (11)
O5 0.3093 (5) 0.6651 (3) 0.6385 (2) 0.0866 (12)
H30 0.2214 0.6561 0.6532 0.104*
H29 0.2690 0.6167 0.5879 0.104*
O6 0.5986 (5) 0.6653 (3) 0.7512 (2) 0.1047 (14)
H31 0.5088 0.6617 0.7160 0.126*
H32 0.6565 0.6312 0.7213 0.126*
O7 0.0874 (4) 0.5649 (3) 0.1938 (2) 0.0842 (12)
H33 0.1281 0.5270 0.2286 0.101*
H34 0.1498 0.5661 0.1593 0.101*
O8 0.2819 (4) 0.5844 (3) 0.0791 (2) 0.0719 (10)
H36 0.3355 0.6498 0.1092 0.086*
H35 0.2777 0.5816 0.0242 0.086*
O9 0.4959 (5) 0.4446 (3) 0.1306 (3) 0.1239 (17)
H37 0.4355 0.4879 0.1128 0.149*
H38 0.4911 0.4227 0.1775 0.149*
O10 0.9190 (4) 0.3319 (3) 0.2593 (2) 0.0804 (11)
H39 1.0088 0.3710 0.2910 0.096*
H40 0.8964 0.3689 0.2203 0.096*
O11 0.7928 (4) 0.4387 (3) 0.1067 (2) 0.0795 (11)
H41 0.8793 0.4852 0.1345 0.095*
H42 0.7033 0.4535 0.1133 0.095*
C1 0.4791 (6) 0.8554 (4) 0.2423 (3) 0.0450 (11)
C2 0.3383 (6) 0.8525 (4) 0.2816 (3) 0.0719 (14)
H2A 0.3063 0.9250 0.2895 0.108*
H2B 0.3659 0.8358 0.3390 0.108*
H2C 0.2523 0.7947 0.2417 0.108*
C3 0.7640 (6) 0.6890 (4) 0.2752 (3) 0.0536 (13)
H3 0.6761 0.6588 0.2263 0.064*
C4 0.8123 (7) 0.6213 (4) 0.3313 (4) 0.0638 (15)
H4A 0.7574 0.5473 0.3198 0.077*
C5 0.9388 (8) 0.6633 (4) 0.4023 (4) 0.0655 (16)
H5 0.9710 0.6185 0.4404 0.079*
C6 1.0229 (6) 0.7751 (4) 0.4193 (3) 0.0484 (13)
C7 0.9670 (5) 0.8385 (3) 0.3599 (3) 0.0383 (11)
C8 1.0420 (5) 0.9535 (4) 0.3748 (3) 0.0398 (11)
C9 1.1722 (6) 1.0032 (4) 0.4485 (3) 0.0531 (13)
C10 1.2401 (7) 1.1171 (5) 0.4607 (4) 0.0696 (16)
H10 1.3270 1.1532 0.5089 0.084*
C11 1.1784 (7) 1.1743 (4) 0.4018 (4) 0.0665 (15)
H11 1.2229 1.2498 0.4092 0.080*
C12 1.0484 (6) 1.1193 (4) 0.3305 (3) 0.0528 (13)
H12 1.0068 1.1596 0.2907 0.063*
C13 1.1577 (7) 0.8286 (5) 0.4935 (3) 0.0684 (17)
H13 1.1970 0.7869 0.5328 0.082*
C14 1.2290 (7) 0.9368 (5) 0.5082 (3) 0.0670 (16)
H14 1.3159 0.9690 0.5573 0.080*
C15 0.6447 (5) 1.1026 (3) 0.1717 (3) 0.0456 (12)
H15 0.6223 1.1193 0.2279 0.055*
C16 0.6083 (6) 1.1721 (4) 0.1156 (3) 0.0523 (13)
H16 0.5615 1.2340 0.1343 0.063*
C17 0.6403 (6) 1.1505 (4) 0.0338 (3) 0.0513 (13)
H17 0.6156 1.1970 −0.0042 0.062*
C18 0.7112 (5) 1.0573 (4) 0.0067 (3) 0.0425 (11)
C19 0.7425 (5) 0.9900 (3) 0.0663 (3) 0.0355 (10)
C20 0.8106 (5) 0.8918 (3) 0.0430 (3) 0.0375 (10)
C21 0.8427 (5) 0.8604 (4) −0.0417 (3) 0.0457 (12)
C22 0.9065 (6) 0.7623 (4) −0.0606 (3) 0.0626 (14)
H22 0.9282 0.7372 −0.1164 0.075*
C23 0.9369 (6) 0.7034 (4) 0.0018 (4) 0.0639 (15)
H23 0.9800 0.6382 −0.0107 0.077*
C24 0.9030 (6) 0.7413 (4) 0.0850 (3) 0.0532 (13)
H24 0.9258 0.7007 0.1277 0.064*
C25 0.7484 (6) 1.0250 (4) −0.0786 (3) 0.0571 (14)
H25 0.7302 1.0693 −0.1189 0.068*
C26 0.8099 (6) 0.9306 (5) −0.1011 (3) 0.0595 (14)
H26 0.8316 0.9108 −0.1574 0.071*
C27 0.2707 (7) 0.5202 (4) 0.4120 (4) 0.0613 (14)
C28 0.4211 (7) 0.6073 (5) 0.4293 (4) 0.091 (2)
H28A 0.4525 0.6486 0.4919 0.136*
H28B 0.4015 0.6591 0.3928 0.136*
H28C 0.5044 0.5692 0.4143 0.136*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0453 (4) 0.0407 (3) 0.0410 (3) 0.0129 (3) 0.0110 (3) 0.0155 (2)
N1 0.045 (3) 0.038 (2) 0.048 (2) 0.0089 (18) 0.013 (2) 0.0147 (18)
N2 0.046 (3) 0.041 (2) 0.039 (2) 0.0131 (18) 0.0132 (19) 0.0120 (18)
N3 0.037 (2) 0.036 (2) 0.037 (2) 0.0099 (17) 0.0103 (18) 0.0087 (16)
N4 0.045 (3) 0.038 (2) 0.043 (2) 0.0141 (18) 0.0104 (19) 0.0107 (18)
O1 0.050 (2) 0.0593 (19) 0.0417 (18) 0.0101 (16) 0.0143 (16) 0.0107 (15)
O2 0.056 (2) 0.060 (2) 0.0471 (19) 0.0071 (16) 0.0128 (17) 0.0082 (16)
O3 0.089 (3) 0.111 (3) 0.068 (3) 0.011 (2) 0.027 (2) 0.034 (2)
O4 0.065 (3) 0.104 (3) 0.065 (3) 0.014 (2) 0.014 (2) 0.018 (2)
O5 0.091 (3) 0.095 (3) 0.076 (3) 0.024 (2) 0.019 (2) 0.028 (2)
O6 0.095 (4) 0.137 (4) 0.075 (3) 0.049 (3) 0.015 (3) 0.005 (3)
O7 0.075 (3) 0.104 (3) 0.081 (3) 0.006 (2) 0.022 (2) 0.042 (2)
O8 0.084 (3) 0.063 (2) 0.060 (2) 0.001 (2) 0.013 (2) 0.0097 (18)
O9 0.092 (4) 0.141 (4) 0.186 (5) 0.059 (3) 0.056 (4) 0.097 (4)
O10 0.072 (3) 0.074 (2) 0.091 (3) 0.004 (2) 0.005 (2) 0.032 (2)
O11 0.057 (3) 0.091 (3) 0.078 (3) 0.001 (2) 0.012 (2) 0.011 (2)
C1 0.044 (3) 0.060 (3) 0.041 (3) 0.016 (2) 0.016 (2) 0.024 (2)
C2 0.062 (3) 0.092 (3) 0.065 (3) 0.013 (3) 0.028 (3) 0.019 (3)
C3 0.057 (4) 0.047 (3) 0.063 (3) 0.018 (3) 0.018 (3) 0.021 (3)
C4 0.081 (5) 0.047 (3) 0.082 (4) 0.027 (3) 0.034 (4) 0.035 (3)
C5 0.096 (5) 0.068 (4) 0.064 (4) 0.048 (4) 0.040 (4) 0.044 (3)
C6 0.056 (4) 0.064 (3) 0.041 (3) 0.032 (3) 0.022 (3) 0.025 (3)
C7 0.042 (3) 0.046 (3) 0.033 (2) 0.017 (2) 0.014 (2) 0.014 (2)
C8 0.031 (3) 0.057 (3) 0.033 (3) 0.012 (2) 0.013 (2) 0.010 (2)
C9 0.046 (4) 0.072 (4) 0.040 (3) 0.018 (3) 0.015 (3) 0.006 (3)
C10 0.052 (4) 0.079 (4) 0.057 (4) −0.005 (3) 0.009 (3) −0.006 (3)
C11 0.064 (4) 0.055 (3) 0.068 (4) −0.010 (3) 0.017 (3) 0.003 (3)
C12 0.056 (4) 0.048 (3) 0.054 (3) 0.002 (3) 0.019 (3) 0.012 (3)
C13 0.078 (5) 0.103 (5) 0.044 (3) 0.054 (4) 0.021 (3) 0.033 (3)
C14 0.064 (4) 0.096 (4) 0.037 (3) 0.035 (4) 0.005 (3) 0.006 (3)
C15 0.050 (3) 0.037 (3) 0.046 (3) 0.007 (2) 0.010 (2) 0.006 (2)
C16 0.053 (4) 0.038 (3) 0.065 (3) 0.014 (2) 0.004 (3) 0.017 (3)
C17 0.047 (3) 0.046 (3) 0.060 (3) 0.004 (2) 0.001 (3) 0.026 (3)
C18 0.035 (3) 0.048 (3) 0.042 (3) −0.001 (2) 0.004 (2) 0.018 (2)
C19 0.028 (3) 0.040 (3) 0.036 (3) 0.004 (2) 0.005 (2) 0.011 (2)
C20 0.025 (3) 0.044 (3) 0.037 (3) 0.000 (2) 0.004 (2) 0.006 (2)
C21 0.038 (3) 0.053 (3) 0.040 (3) 0.003 (2) 0.010 (2) 0.005 (2)
C22 0.053 (4) 0.075 (4) 0.055 (3) 0.016 (3) 0.018 (3) 0.002 (3)
C23 0.056 (4) 0.061 (3) 0.072 (4) 0.024 (3) 0.022 (3) −0.001 (3)
C24 0.050 (3) 0.048 (3) 0.064 (3) 0.018 (2) 0.013 (3) 0.014 (3)
C25 0.052 (4) 0.076 (4) 0.048 (3) 0.006 (3) 0.009 (3) 0.032 (3)
C26 0.048 (4) 0.091 (4) 0.042 (3) 0.011 (3) 0.015 (3) 0.022 (3)
C27 0.053 (4) 0.067 (4) 0.063 (4) 0.019 (3) 0.003 (3) 0.021 (3)
C28 0.076 (5) 0.088 (4) 0.105 (5) −0.005 (4) 0.024 (4) 0.028 (4)

Geometric parameters (Å, °)

Cu1—N3 1.988 (3) C5—H5 0.9300
Cu1—N1 1.989 (3) C6—C7 1.402 (5)
Cu1—O1 2.001 (3) C6—C13 1.432 (7)
Cu1—N4 2.051 (3) C7—C8 1.423 (6)
Cu1—N2 2.191 (4) C8—C9 1.397 (6)
N1—C3 1.328 (5) C9—C10 1.401 (6)
N1—C7 1.360 (5) C9—C14 1.435 (6)
N2—C12 1.325 (5) C10—C11 1.354 (7)
N2—C8 1.355 (5) C10—H10 0.9300
N3—C15 1.324 (5) C11—C12 1.386 (7)
N3—C19 1.352 (5) C11—H11 0.9300
N4—C24 1.326 (5) C12—H12 0.9300
N4—C20 1.354 (5) C13—C14 1.339 (7)
O1—C1 1.257 (5) C13—H13 0.9300
O2—C1 1.242 (5) C14—H14 0.9300
O3—C27 1.218 (6) C15—C16 1.383 (5)
O4—C27 1.270 (6) C15—H15 0.9300
O5—H30 0.8500 C16—C17 1.351 (6)
O5—H29 0.8500 C16—H16 0.9300
O6—H31 0.8501 C17—C18 1.400 (6)
O6—H32 0.8500 C17—H17 0.9300
O7—H33 0.8500 C18—C19 1.396 (5)
O7—H34 0.8500 C18—C25 1.429 (6)
O8—H36 0.8500 C19—C20 1.425 (5)
O8—H35 0.8501 C20—C21 1.399 (5)
O9—H37 0.8500 C21—C22 1.394 (6)
O9—H38 0.8499 C21—C26 1.424 (6)
O10—H39 0.8501 C22—C23 1.352 (6)
O10—H40 0.8499 C22—H22 0.9300
O11—H41 0.8500 C23—C24 1.393 (6)
O11—H42 0.8500 C23—H23 0.9300
C1—C2 1.493 (6) C24—H24 0.9300
C2—H2A 0.9600 C25—C26 1.350 (6)
C2—H2B 0.9600 C25—H25 0.9300
C2—H2C 0.9600 C26—H26 0.9300
C3—C4 1.387 (6) C27—C28 1.516 (7)
C3—H3 0.9300 C28—H28A 0.9600
C4—C5 1.343 (7) C28—H28B 0.9600
C4—H4A 0.9300 C28—H28C 0.9600
C5—C6 1.410 (7)
N3—Cu1—N1 177.12 (15) C11—C10—C9 119.7 (5)
N3—Cu1—O1 92.58 (13) C11—C10—H10 120.2
N1—Cu1—O1 89.98 (13) C9—C10—H10 120.2
N3—Cu1—N4 81.55 (13) C10—C11—C12 119.4 (5)
N1—Cu1—N4 96.80 (13) C10—C11—H11 120.3
O1—Cu1—N4 151.73 (14) C12—C11—H11 120.3
N3—Cu1—N2 98.35 (13) N2—C12—C11 122.8 (5)
N1—Cu1—N2 79.82 (14) N2—C12—H12 118.6
O1—Cu1—N2 101.51 (13) C11—C12—H12 118.6
N4—Cu1—N2 106.69 (14) C14—C13—C6 122.1 (5)
C3—N1—C7 118.4 (4) C14—C13—H13 119.0
C3—N1—Cu1 125.9 (3) C6—C13—H13 119.0
C7—N1—Cu1 115.5 (3) C13—C14—C9 120.4 (5)
C12—N2—C8 118.3 (4) C13—C14—H14 119.8
C12—N2—Cu1 132.5 (3) C9—C14—H14 119.8
C8—N2—Cu1 109.0 (3) N3—C15—C16 122.3 (4)
C15—N3—C19 118.2 (3) N3—C15—H15 118.9
C15—N3—Cu1 128.0 (3) C16—C15—H15 118.9
C19—N3—Cu1 113.8 (3) C17—C16—C15 120.2 (4)
C24—N4—C20 117.6 (4) C17—C16—H16 119.9
C24—N4—Cu1 131.1 (3) C15—C16—H16 119.9
C20—N4—Cu1 111.3 (3) C16—C17—C18 119.2 (4)
C1—O1—Cu1 106.7 (3) C16—C17—H17 120.4
H30—O5—H29 91.1 C18—C17—H17 120.4
H31—O6—H32 109.2 C19—C18—C17 117.4 (4)
H33—O7—H34 102.8 C19—C18—C25 118.3 (4)
H36—O8—H35 105.8 C17—C18—C25 124.3 (4)
H37—O9—H38 121.0 N3—C19—C18 122.7 (4)
H39—O10—H40 101.1 N3—C19—C20 116.4 (3)
H41—O11—H42 121.7 C18—C19—C20 121.0 (4)
O2—C1—O1 122.1 (4) N4—C20—C21 123.4 (4)
O2—C1—C2 120.6 (5) N4—C20—C19 116.9 (4)
O1—C1—C2 117.2 (4) C21—C20—C19 119.7 (4)
C1—C2—H2A 109.5 C22—C21—C20 116.6 (4)
C1—C2—H2B 109.5 C22—C21—C26 125.1 (4)
H2A—C2—H2B 109.5 C20—C21—C26 118.2 (4)
C1—C2—H2C 109.5 C23—C22—C21 120.3 (5)
H2A—C2—H2C 109.5 C23—C22—H22 119.9
H2B—C2—H2C 109.5 C21—C22—H22 119.9
N1—C3—C4 122.7 (5) C22—C23—C24 119.4 (5)
N1—C3—H3 118.7 C22—C23—H23 120.3
C4—C3—H3 118.7 C24—C23—H23 120.3
C5—C4—C3 119.6 (5) N4—C24—C23 122.6 (4)
C5—C4—H4A 120.2 N4—C24—H24 118.7
C3—C4—H4A 120.2 C23—C24—H24 118.7
C4—C5—C6 120.2 (4) C26—C25—C18 120.5 (4)
C4—C5—H5 119.9 C26—C25—H25 119.7
C6—C5—H5 119.9 C18—C25—H25 119.7
C7—C6—C5 117.0 (5) C25—C26—C21 122.3 (4)
C7—C6—C13 118.3 (5) C25—C26—H26 118.9
C5—C6—C13 124.8 (5) C21—C26—H26 118.9
N1—C7—C6 122.1 (4) O3—C27—O4 124.5 (6)
N1—C7—C8 117.7 (4) O3—C27—C28 120.0 (6)
C6—C7—C8 120.1 (4) O4—C27—C28 115.6 (5)
N2—C8—C9 122.2 (4) C27—C28—H28A 109.5
N2—C8—C7 117.8 (4) C27—C28—H28B 109.5
C9—C8—C7 120.0 (4) H28A—C28—H28B 109.5
C8—C9—C10 117.6 (5) C27—C28—H28C 109.5
C8—C9—C14 119.2 (5) H28A—C28—H28C 109.5
C10—C9—C14 123.3 (5) H28B—C28—H28C 109.5
C3—C4—C5—C6 −0.6 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H29···O3 0.85 1.90 2.738 (5) 170
O6—H31···O5 0.85 1.92 2.768 (5) 176
O7—H33···O4 0.85 1.96 2.797 (5) 167
O7—H34···O8 0.85 1.91 2.760 (5) 173
O8—H36···O2 0.85 1.86 2.710 (4) 173
O9—H37···O8 0.85 1.98 2.826 (5) 174
O10—H40···O11 0.85 2.23 3.070 (5) 168
O11—H42···O9 0.85 1.89 2.714 (5) 164
O5—H30···O10i 0.85 2.03 2.819 (5) 155
O6—H32···O4i 0.85 1.94 2.778 (5) 169
O9—H38···O6i 0.85 1.94 2.737 (6) 156
O10—H39···O4ii 0.85 1.87 2.702 (5) 164
O11—H41···O7ii 0.85 1.88 2.724 (5) 170
O8—H35···O11iii 0.85 1.97 2.796 (5) 165

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2351).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tu, B.-T., Xie, H.-Z., Ren, Y.-T. & Chen, J.-Z. (2008). Acta Cryst. E64, m1475. [DOI] [PMC free article] [PubMed]
  6. Xu, W., Lin, J.-L., Xie, H.-Z. & Zhang, M. (2008). Acta Cryst. E64, m1496. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009676/gk2351sup1.cif

e-67-0m464-sup1.cif (24.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009676/gk2351Isup2.hkl

e-67-0m464-Isup2.hkl (272.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES