Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):o762–o763. doi: 10.1107/S1600536811006209

7-(4-Meth­oxy­phen­yl)-4,9-dimethyl-N-(4-methyl­phen­yl)-5,12-diaza­tetra­phen-6-amine

K N Vennila a, K Prabha b, K J Rajendra Prasad b, D Velmurugan a,*
PMCID: PMC3099846  PMID: 21754058

Abstract

In the title compound, C32H27N3O, the fused tetra­cycilc ring system is essentially planar [r.m.s. deviation = 0.07 (7) Å]. An intra­molecular N—H⋯π(arene) inter­action and a weak intra­molecular C—H⋯N hydrogen bond may influence the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R 2 2(14) motifs. In addition, weak π–π stacking inter­actions with centroid–centroid distances in the range 3.578 (1)–3.739 (1) Å provide further stabilization.

Related literature

For the biological activity of naphthyridine derivatives, see: Gopalsamy et al. (2007); Kim et al. (2009); Nittoli et al. (2010); Bedard et al. (2000). For the structures of related naphthrydine derivatives, see: Peng et al. (2009); Seebacher et al . (2010); Vennila et al. (2010a ,b ). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-0o762-scheme1.jpg

Experimental

Crystal data

  • C32H27N3O

  • M r = 469.57

  • Monoclinic, Inline graphic

  • a = 8.3816 (6) Å

  • b = 23.1651 (13) Å

  • c = 12.8548 (7) Å

  • β = 91.171 (3)°

  • V = 2495.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.29 × 0.24 × 0.23 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.978, T max = 0.983

  • 24206 measured reflections

  • 6239 independent reflections

  • 3904 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.181

  • S = 0.95

  • 6239 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006209/lh5193sup1.cif

e-67-0o762-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006209/lh5193Isup2.hkl

e-67-0o762-Isup2.hkl (305.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cg 0.86 2.48 3.336 (3) 176
C28—H28⋯N1 0.93 2.37 2.927 (3) 118
C18—H18⋯N2i 0.93 2.55 3.435 (2) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

KNV thanks the CSIR, New Delhi, for financial assistance in the form of a Senior Research Fellowship. DV acknowledges the Department of Science and Technology (DST) for providing data-collection facilities under the TBI program and also thanks the DST for financial support under the UGC–SAP and DST–FIST programs.

supplementary crystallographic information

Comment

Dibenzo-naphthyridine analogs have been reported to be good Phosphoinositide-Dependent Kinase (PDK-1) inhibitors. Gopalsamy et al. (2007) and Kim et al. (2009) have described the synthesis and structure activity relationship analysis of a novel series of benzo[c][2,7]naphthyridines as potent PDK-1 inhibitors. Recently a few X-ray crystal structures of PDK-1 and dibenzo[2,7] naphthyridine analog complexes have been reported (Gopalsamy et al., 2007; Nittoli et al., 2010). A series of dibenzo-naphthyridines were sucessfully tested for anticancer assays (Gopalsamy et al., 2007; Nittoli et al., 2010). The naphthyridine compounds were also proven to exhibit potent activity against human cytomegalovirus (Bedard et al. , 2000). As we are focussing on heterocyclic naphthyridine derivatives with potential biological properties, the crystal structure of the title compound was determined.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are in the normal ranges (Allen et al., 1987). The fused tetracyclic ring system is essentially planar in geometry as was previously reported for a related compounds (Vennila et al., 2010, 2011; Seebacher et al. 2010; Peng et al. 2009). An intramolecular N—H···π(arene) interaction and a weak intramolecular C—H···N hydrogen bond may influence the molecular conformation. In the crystal, weak intermolecular C—H···N hydrogen bonds link the molecules into centrosymmetric dimers forming R22(14) motifs (Bernstein et al., 1995) (see Fig. 2). In addition, weak π–π stacking interactions with centroid to centroid distances in the range 3.578 (1) - 3.739 (1) Å provide additional stabilization.

Experimental

A mixture of 4',4''-dimethyl-2,4-bis-(N-phenylamino) quinoline (0.0010 mol) and p-methoxybenzoic acid (0.0011 mol) was added to polyphosphoric acid (3 g of P2O5 in 1.5 mL of H3PO4) and kept at 323-328K for 5 h. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was poured into ice water and neutralised with saturated NaHCO3 solution to remove the excess of p-methoxy benzoic acid. The precipitate was filtered, dried and purified by column chromatography over silica gel using petroleum ether : ethyl acetate (98 : 2). The product was recrystallised using ethyl acetate.

Refinement

The H-atoms were positioned geometrically and treated as riding atoms: C—H =0.93 Å H-aromatic, C—H = 0.96 Å H-methyl, and N—H = 0.86 Å, with Uiso = k×Ueq(parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing thermal ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

C32H27N3O F(000) = 992
Mr = 469.57 Dx = 1.250 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6327 reflections
a = 8.3816 (6) Å θ = 1.8–28.5°
b = 23.1651 (13) Å µ = 0.08 mm1
c = 12.8548 (7) Å T = 293 K
β = 91.171 (3)° Block, yellow
V = 2495.4 (3) Å3 0.29 × 0.24 × 0.23 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 6239 independent reflections
Radiation source: fine-focus sealed tube 3904 reflections with I > 2σ(I)
graphite Rint = 0.029
ω and φ scans θmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −11→11
Tmin = 0.978, Tmax = 0.983 k = −29→30
24206 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0992P)2 + 0.5542P] where P = (Fo2 + 2Fc2)/3
6239 reflections (Δ/σ)max = 0.001
329 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.27001 (18) 0.47982 (7) 0.01559 (12) 0.0415 (4)
N2 0.38310 (17) 0.54757 (6) 0.14162 (11) 0.0481 (3)
C9 0.44758 (19) 0.50366 (7) 0.19420 (12) 0.0437 (4)
C8 0.43129 (19) 0.44464 (7) 0.16148 (12) 0.0419 (4)
C17 0.29497 (18) 0.37335 (7) 0.03664 (12) 0.0416 (4)
C6 0.6097 (2) 0.47172 (8) 0.34423 (13) 0.0506 (4)
C10 0.29963 (19) 0.53681 (7) 0.05320 (13) 0.0452 (4)
C12 0.33652 (18) 0.43309 (6) 0.07278 (12) 0.0411 (4)
C7 0.52499 (19) 0.40261 (7) 0.22420 (12) 0.0445 (4)
C14 0.11930 (19) 0.51950 (8) −0.13214 (13) 0.0488 (4)
N1 0.60278 (17) 0.41521 (6) 0.30973 (11) 0.0509 (4)
C13 0.1761 (2) 0.47325 (7) −0.07674 (13) 0.0471 (4)
H13 0.1524 0.4362 −0.1004 0.056*
C5 0.5387 (2) 0.51709 (7) 0.28813 (13) 0.0508 (4)
N3 0.53552 (18) 0.34709 (6) 0.18772 (12) 0.0527 (4)
H3 0.4677 0.3388 0.1389 0.063*
C22 0.1889 (2) 0.34023 (7) 0.09339 (13) 0.0467 (4)
H22 0.1425 0.3560 0.1520 0.056*
O1 0.1768 (2) 0.20499 (5) −0.04304 (11) 0.0739 (4)
C20 0.2205 (2) 0.26068 (7) −0.02185 (14) 0.0523 (4)
C16 0.2387 (2) 0.58410 (7) −0.00458 (15) 0.0534 (4)
H16 0.2565 0.6215 0.0194 0.064*
C19 0.3250 (2) 0.29293 (7) −0.08088 (14) 0.0548 (5)
H19 0.3705 0.2770 −0.1397 0.066*
C18 0.3608 (2) 0.34901 (7) −0.05119 (13) 0.0493 (4)
H18 0.4302 0.3707 −0.0909 0.059*
C15 0.1548 (2) 0.57559 (8) −0.09457 (16) 0.0551 (5)
H15 0.1195 0.6074 −0.1326 0.066*
C23 0.6376 (2) 0.30140 (7) 0.21616 (14) 0.0517 (4)
C1 0.6987 (3) 0.48302 (9) 0.43698 (15) 0.0646 (5)
C21 0.1515 (2) 0.28481 (7) 0.06463 (14) 0.0529 (4)
H21 0.0798 0.2635 0.1033 0.063*
C33 0.0213 (2) 0.51229 (9) −0.23006 (15) 0.0622 (5)
H33A 0.0461 0.4759 −0.2616 0.093*
H33B 0.0449 0.5430 −0.2774 0.093*
H33C −0.0900 0.5133 −0.2139 0.093*
C4 0.5588 (3) 0.57407 (9) 0.32314 (16) 0.0680 (6)
H4 0.5125 0.6045 0.2861 0.082*
C26 0.8354 (2) 0.20560 (8) 0.25512 (18) 0.0661 (5)
C28 0.7225 (3) 0.29651 (9) 0.30897 (17) 0.0732 (6)
H28 0.7150 0.3250 0.3596 0.088*
C24 0.6517 (3) 0.25781 (8) 0.14459 (18) 0.0736 (6)
H24 0.5944 0.2600 0.0820 0.088*
C25 0.7489 (3) 0.21103 (9) 0.1638 (2) 0.0809 (7)
H25 0.7562 0.1823 0.1137 0.097*
C27 0.8194 (3) 0.24844 (10) 0.3259 (2) 0.0813 (7)
H27 0.8757 0.2456 0.3888 0.098*
C29 0.7759 (3) 0.43458 (11) 0.49655 (17) 0.0853 (7)
H29A 0.8283 0.4496 0.5579 0.128*
H29B 0.8529 0.4159 0.4537 0.128*
H29C 0.6961 0.4072 0.5162 0.128*
C2 0.7139 (3) 0.53922 (11) 0.46798 (18) 0.0831 (7)
H2 0.7713 0.5473 0.5289 0.100*
C30 0.9433 (3) 0.15394 (10) 0.2742 (2) 0.0919 (8)
H30A 1.0215 0.1521 0.2208 0.138*
H30B 0.8806 0.1193 0.2731 0.138*
H30C 0.9961 0.1578 0.3408 0.138*
C3 0.6470 (3) 0.58475 (11) 0.41220 (19) 0.0859 (7)
H3A 0.6619 0.6225 0.4351 0.103*
C32 0.2335 (5) 0.18004 (10) −0.13340 (19) 0.1118 (11)
H32A 0.2088 0.2046 −0.1917 0.168*
H32B 0.1839 0.1431 −0.1439 0.168*
H32C 0.3470 0.1752 −0.1271 0.168*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0348 (8) 0.0400 (8) 0.0498 (8) −0.0001 (6) 0.0044 (7) 0.0023 (6)
N2 0.0441 (8) 0.0410 (7) 0.0595 (8) −0.0014 (6) 0.0068 (7) −0.0046 (6)
C9 0.0387 (8) 0.0436 (8) 0.0490 (9) −0.0023 (7) 0.0078 (7) −0.0036 (7)
C8 0.0372 (8) 0.0406 (8) 0.0480 (8) −0.0009 (6) 0.0036 (7) −0.0003 (6)
C17 0.0391 (8) 0.0385 (8) 0.0467 (8) 0.0003 (6) −0.0060 (7) 0.0025 (6)
C6 0.0475 (10) 0.0572 (10) 0.0473 (9) −0.0041 (8) 0.0044 (8) −0.0061 (7)
C10 0.0363 (8) 0.0414 (8) 0.0582 (10) −0.0002 (7) 0.0083 (7) 0.0000 (7)
C12 0.0359 (8) 0.0388 (8) 0.0488 (8) 0.0003 (6) 0.0045 (7) 0.0000 (6)
C7 0.0388 (8) 0.0462 (9) 0.0484 (9) −0.0013 (7) 0.0007 (7) 0.0010 (7)
C14 0.0356 (8) 0.0539 (10) 0.0571 (10) 0.0041 (7) 0.0052 (7) 0.0107 (7)
N1 0.0479 (8) 0.0564 (9) 0.0483 (8) −0.0009 (7) −0.0005 (7) −0.0016 (6)
C13 0.0409 (9) 0.0447 (9) 0.0557 (9) 0.0004 (7) 0.0028 (7) 0.0011 (7)
C5 0.0494 (10) 0.0535 (10) 0.0497 (9) −0.0064 (8) 0.0061 (8) −0.0097 (7)
N3 0.0519 (9) 0.0453 (8) 0.0603 (9) 0.0034 (6) −0.0162 (7) −0.0024 (6)
C22 0.0419 (9) 0.0458 (9) 0.0522 (9) 0.0014 (7) −0.0011 (7) 0.0018 (7)
O1 0.1046 (12) 0.0424 (7) 0.0739 (9) −0.0111 (7) −0.0147 (8) −0.0056 (6)
C20 0.0616 (11) 0.0377 (8) 0.0567 (10) −0.0031 (7) −0.0163 (8) 0.0017 (7)
C16 0.0444 (9) 0.0409 (9) 0.0751 (12) 0.0041 (7) 0.0066 (9) 0.0035 (8)
C19 0.0659 (12) 0.0489 (10) 0.0494 (9) 0.0032 (8) −0.0044 (8) −0.0061 (7)
C18 0.0534 (10) 0.0451 (9) 0.0496 (9) −0.0033 (7) 0.0024 (8) 0.0002 (7)
C15 0.0403 (9) 0.0505 (10) 0.0746 (12) 0.0077 (8) 0.0063 (9) 0.0160 (8)
C23 0.0469 (10) 0.0455 (9) 0.0623 (10) 0.0013 (7) −0.0075 (8) 0.0051 (8)
C1 0.0648 (13) 0.0780 (14) 0.0509 (10) −0.0048 (10) −0.0003 (9) −0.0100 (9)
C21 0.0513 (10) 0.0452 (9) 0.0621 (10) −0.0072 (8) −0.0033 (8) 0.0074 (8)
C33 0.0490 (11) 0.0744 (13) 0.0630 (12) 0.0031 (9) −0.0017 (9) 0.0145 (9)
C4 0.0821 (15) 0.0560 (11) 0.0660 (12) −0.0063 (10) 0.0021 (11) −0.0150 (9)
C26 0.0553 (12) 0.0505 (11) 0.0919 (15) 0.0047 (9) −0.0111 (11) 0.0118 (10)
C28 0.0827 (15) 0.0653 (13) 0.0705 (13) 0.0191 (11) −0.0235 (11) −0.0045 (10)
C24 0.0892 (16) 0.0523 (11) 0.0778 (13) 0.0153 (10) −0.0311 (12) −0.0069 (10)
C25 0.0951 (18) 0.0512 (12) 0.0953 (16) 0.0183 (11) −0.0236 (14) −0.0100 (11)
C27 0.0821 (16) 0.0747 (14) 0.0857 (15) 0.0190 (12) −0.0317 (13) 0.0073 (12)
C29 0.0919 (18) 0.1044 (19) 0.0587 (12) 0.0039 (14) −0.0180 (12) −0.0034 (12)
C2 0.0952 (19) 0.0912 (18) 0.0624 (13) −0.0107 (14) −0.0125 (12) −0.0218 (12)
C30 0.0839 (17) 0.0659 (14) 0.125 (2) 0.0222 (12) −0.0138 (15) 0.0159 (13)
C3 0.109 (2) 0.0742 (15) 0.0737 (14) −0.0156 (14) −0.0092 (14) −0.0303 (12)
C32 0.209 (4) 0.0567 (14) 0.0696 (14) −0.0158 (17) −0.0010 (18) −0.0162 (11)

Geometric parameters (Å, °)

C11—C12 1.416 (2) C19—H19 0.9300
C11—C13 1.419 (2) C18—H18 0.9300
C11—C10 1.426 (2) C15—H15 0.9300
N2—C9 1.330 (2) C23—C24 1.373 (3)
N2—C10 1.346 (2) C23—C28 1.381 (3)
C9—C8 1.436 (2) C1—C2 1.367 (3)
C9—C5 1.449 (2) C1—C29 1.498 (3)
C8—C12 1.402 (2) C21—H21 0.9300
C8—C7 1.479 (2) C33—H33A 0.9600
C17—C18 1.386 (2) C33—H33B 0.9600
C17—C22 1.392 (2) C33—H33C 0.9600
C17—C12 1.498 (2) C4—C3 1.372 (3)
C6—N1 1.383 (2) C4—H4 0.9300
C6—C5 1.400 (3) C26—C27 1.355 (3)
C6—C1 1.418 (3) C26—C25 1.373 (3)
C10—C16 1.413 (2) C26—C30 1.517 (3)
C7—N1 1.300 (2) C28—C27 1.393 (3)
C7—N3 1.372 (2) C28—H28 0.9300
C14—C13 1.367 (2) C24—C25 1.375 (3)
C14—C15 1.416 (3) C24—H24 0.9300
C14—C33 1.498 (3) C25—H25 0.9300
C13—H13 0.9300 C27—H27 0.9300
C5—C4 1.403 (2) C29—H29A 0.9600
N3—C23 1.405 (2) C29—H29B 0.9600
N3—H3 0.8600 C29—H29C 0.9600
C22—C21 1.371 (2) C2—C3 1.387 (4)
C22—H22 0.9300 C2—H2 0.9300
O1—C20 1.367 (2) C30—H30A 0.9600
O1—C32 1.390 (3) C30—H30B 0.9600
C20—C19 1.388 (3) C30—H30C 0.9600
C20—C21 1.381 (3) C3—H3A 0.9300
C16—C15 1.356 (3) C32—H32A 0.9600
C16—H16 0.9300 C32—H32B 0.9600
C19—C18 1.385 (2) C32—H32C 0.9600
C12—C11—C13 123.91 (14) C24—C23—C28 117.96 (17)
C12—C11—C10 117.89 (15) C24—C23—N3 116.10 (16)
C13—C11—C10 118.20 (14) C28—C23—N3 125.94 (17)
C9—N2—C10 119.11 (14) C2—C1—C6 117.7 (2)
N2—C9—C8 122.97 (15) C2—C1—C29 121.8 (2)
N2—C9—C5 117.45 (15) C6—C1—C29 120.41 (19)
C8—C9—C5 119.59 (15) C22—C21—C20 119.92 (16)
C12—C8—C9 117.95 (15) C22—C21—H21 120.0
C12—C8—C7 127.10 (14) C20—C21—H21 120.0
C9—C8—C7 114.88 (14) C14—C33—H33A 109.5
C18—C17—C22 118.13 (15) C14—C33—H33B 109.5
C18—C17—C12 122.29 (14) H33A—C33—H33B 109.5
C22—C17—C12 119.57 (14) C14—C33—H33C 109.5
N1—C6—C5 122.05 (16) H33A—C33—H33C 109.5
N1—C6—C1 117.53 (17) H33B—C33—H33C 109.5
C5—C6—C1 120.34 (17) C3—C4—C5 119.7 (2)
N2—C10—C16 118.44 (15) C3—C4—H4 120.1
N2—C10—C11 122.79 (15) C5—C4—H4 120.1
C16—C10—C11 118.76 (16) C27—C26—C25 116.68 (19)
C8—C12—C11 119.12 (14) C27—C26—C30 122.4 (2)
C8—C12—C17 123.54 (14) C25—C26—C30 120.9 (2)
C11—C12—C17 117.28 (14) C23—C28—C27 119.3 (2)
N1—C7—N3 117.69 (15) C23—C28—H28 120.4
N1—C7—C8 124.38 (15) C27—C28—H28 120.4
N3—C7—C8 117.88 (15) C23—C24—C25 121.2 (2)
C13—C14—C15 118.26 (17) C23—C24—H24 119.4
C13—C14—C33 121.96 (17) C25—C24—H24 119.4
C15—C14—C33 119.78 (16) C26—C25—C24 121.8 (2)
C7—N1—C6 120.05 (15) C26—C25—H25 119.1
C14—C13—C11 122.22 (16) C24—C25—H25 119.1
C14—C13—H13 118.9 C26—C27—C28 123.1 (2)
C11—C13—H13 118.9 C26—C27—H27 118.5
C6—C5—C4 119.60 (17) C28—C27—H27 118.5
C6—C5—C9 118.62 (15) C1—C29—H29A 109.5
C4—C5—C9 121.78 (18) C1—C29—H29B 109.5
C7—N3—C23 131.31 (15) H29A—C29—H29B 109.5
C7—N3—H3 114.3 C1—C29—H29C 109.5
C23—N3—H3 114.3 H29A—C29—H29C 109.5
C21—C22—C17 121.33 (16) H29B—C29—H29C 109.5
C21—C22—H22 119.3 C1—C2—C3 122.6 (2)
C17—C22—H22 119.3 C1—C2—H2 118.7
C20—O1—C32 117.64 (18) C3—C2—H2 118.7
O1—C20—C19 124.64 (17) C26—C30—H30A 109.5
O1—C20—C21 115.29 (16) C26—C30—H30B 109.5
C19—C20—C21 120.07 (15) H30A—C30—H30B 109.5
C15—C16—C10 120.74 (16) C26—C30—H30C 109.5
C15—C16—H16 119.6 H30A—C30—H30C 109.5
C10—C16—H16 119.6 H30B—C30—H30C 109.5
C20—C19—C18 119.30 (16) C4—C3—C2 119.9 (2)
C20—C19—H19 120.3 C4—C3—H3A 120.0
C18—C19—H19 120.3 C2—C3—H3A 120.0
C17—C18—C19 121.22 (16) O1—C32—H32A 109.5
C17—C18—H18 119.4 O1—C32—H32B 109.5
C19—C18—H18 119.4 H32A—C32—H32B 109.5
C16—C15—C14 121.74 (16) O1—C32—H32C 109.5
C16—C15—H15 119.1 H32A—C32—H32C 109.5
C14—C15—H15 119.1 H32B—C32—H32C 109.5
C10—N2—C9—C8 −0.6 (2) C8—C9—C5—C4 179.71 (16)
C10—N2—C9—C5 179.02 (13) N1—C7—N3—C23 −12.1 (3)
N2—C9—C8—C12 −3.1 (2) C8—C7—N3—C23 165.47 (16)
C5—C9—C8—C12 177.28 (13) C18—C17—C22—C21 0.9 (2)
N2—C9—C8—C7 174.06 (14) C12—C17—C22—C21 −178.05 (15)
C5—C9—C8—C7 −5.5 (2) C32—O1—C20—C19 −4.0 (3)
C9—N2—C10—C16 −176.83 (14) C32—O1—C20—C21 175.4 (2)
C9—N2—C10—C11 3.3 (2) N2—C10—C16—C15 179.56 (15)
C12—C11—C10—N2 −2.1 (2) C11—C10—C16—C15 −0.5 (2)
C13—C11—C10—N2 177.95 (14) O1—C20—C19—C18 −179.70 (17)
C12—C11—C10—C16 177.95 (14) C21—C20—C19—C18 0.9 (3)
C13—C11—C10—C16 −2.0 (2) C22—C17—C18—C19 −1.3 (3)
C9—C8—C12—C11 4.1 (2) C12—C17—C18—C19 177.59 (16)
C7—C8—C12—C11 −172.70 (14) C20—C19—C18—C17 0.4 (3)
C9—C8—C12—C17 −173.20 (14) C10—C16—C15—C14 2.5 (3)
C7—C8—C12—C17 10.0 (2) C13—C14—C15—C16 −1.9 (2)
C13—C11—C12—C8 178.23 (14) C33—C14—C15—C16 177.88 (16)
C10—C11—C12—C8 −1.7 (2) C7—N3—C23—C24 −160.3 (2)
C13—C11—C12—C17 −4.3 (2) C7—N3—C23—C28 20.4 (3)
C10—C11—C12—C17 175.80 (13) N1—C6—C1—C2 176.14 (18)
C18—C17—C12—C8 −107.91 (19) C5—C6—C1—C2 −0.9 (3)
C22—C17—C12—C8 71.0 (2) N1—C6—C1—C29 −2.4 (3)
C18—C17—C12—C11 74.7 (2) C5—C6—C1—C29 −179.42 (18)
C22—C17—C12—C11 −106.41 (17) C17—C22—C21—C20 0.5 (3)
C12—C8—C7—N1 −175.40 (15) O1—C20—C21—C22 179.22 (16)
C9—C8—C7—N1 7.7 (2) C19—C20—C21—C22 −1.4 (3)
C12—C8—C7—N3 7.2 (2) C6—C5—C4—C3 −0.3 (3)
C9—C8—C7—N3 −169.75 (14) C9—C5—C4—C3 −179.60 (19)
N3—C7—N1—C6 173.38 (15) C24—C23—C28—C27 0.7 (3)
C8—C7—N1—C6 −4.1 (2) N3—C23—C28—C27 −180.0 (2)
C5—C6—N1—C7 −1.9 (2) C28—C23—C24—C25 −0.9 (3)
C1—C6—N1—C7 −178.88 (16) N3—C23—C24—C25 179.7 (2)
C15—C14—C13—C11 −0.7 (2) C27—C26—C25—C24 0.5 (4)
C33—C14—C13—C11 179.49 (14) C30—C26—C25—C24 −179.3 (2)
C12—C11—C13—C14 −177.29 (15) C23—C24—C25—C26 0.3 (4)
C10—C11—C13—C14 2.6 (2) C25—C26—C27—C28 −0.7 (4)
N1—C6—C5—C4 −175.65 (17) C30—C26—C27—C28 179.1 (2)
C1—C6—C5—C4 1.2 (3) C23—C28—C27—C26 0.1 (4)
N1—C6—C5—C9 3.7 (2) C6—C1—C2—C3 −0.4 (4)
C1—C6—C5—C9 −179.45 (15) C29—C1—C2—C3 178.1 (2)
N2—C9—C5—C6 −179.17 (14) C5—C4—C3—C2 −0.9 (4)
C8—C9—C5—C6 0.4 (2) C1—C2—C3—C4 1.3 (4)
N2—C9—C5—C4 0.1 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 ring.
D—H···A D—H H···A D···A D—H···A
N3—H3···Cg 0.86 2.48 3.336 (3) 176
C28—H28···N1 0.93 2.37 2.927 (3) 118
C18—H18···N2i 0.93 2.55 3.435 (2) 159

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5193).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bedard, J., May, S., Heureux, L. L., Stamminger, T., Copsey, A., Drach, G., Huffman, J., Chan, L., Jin, H. & Rando, F. R. (2000). Antimicrob. Agents Chemother. 44, 929–937. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gopalsamy, A., Shi, M., Boschelli, D. H., Williamson, R., Olland, A., Hu, Y., Krishnamurthy, G., Han, X., Arndt, K. & Guo, B. (2007). J. Med. Chem. 50, 5547–5549. [DOI] [PubMed]
  7. Kim, K. H., Wissner, A., Floyd, B. M., Fraser, L. H., Wang, Y. D., Dushin, R. G., Hu, Y., Olland, A., Guo, B. & Arndt, K. (2009). Bioorg. Med. Chem. Lett. 19, 5225–5228. [DOI] [PubMed]
  8. Nittoli, T., Dushin, R. G., Ingalls, C., Cheung, K., Floyd, M. B., Fraser, H., Olland, A., Hu, Y., Grosu, G., Han, X., Arndt, K., Guo, B. & Wissner, A. (2010). Eur. J. Med. Chem. 45, 1379–1386. [DOI] [PubMed]
  9. Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109–o1110. [DOI] [PMC free article] [PubMed]
  10. Seebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Vennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010a). Acta Cryst. E66, o2426–o2427. [DOI] [PMC free article] [PubMed]
  14. Vennila, K. N., Manoj, M., Prabha, K., Prasad, K. J. R. & Velmurugan, D. (2011b). Acta Cryst. E67, o102–o103. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006209/lh5193sup1.cif

e-67-0o762-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006209/lh5193Isup2.hkl

e-67-0o762-Isup2.hkl (305.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES