Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):m393. doi: 10.1107/S1600536811006842

Aqua­glutarato(2,4,6-tri-2-pyridyl-1,3,5-triazine)nickel(II) trihydrate

Chun-Hua Jin a,*
PMCID: PMC3099847  PMID: 21753929

Abstract

In the title compound, [Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2O, the NiII atom shows a distorted octa­hedral coordination by three N atoms of the tridentate chelating ligand and three O atoms of two aqua ligands and an O atom of one carboxylate group of the glutarate anion. Mol­ecules are self-assembled via inter­molecular O—H⋯O and O—H⋯N hydrogen-bonding inter­actions and π–π stacking inter­actions [centroid–centroid distance = 3.836 (3) Å] into a supra­molecular network.

Related literature

For general background to 2,4,6-tris­(2-pyrid­yl)-1,3,5-triazine (tptz), see: Glaser et al. (2004); Zibaseresht & Hartshorn (2005); Zheng et al. (2006); Zhou et al. (2007). For potential applications of tptz-containing complexes, see: Gupta et al. (1993); Witter & Luther (2002).graphic file with name e-67-0m393-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2O

  • M r = 591.22

  • Triclinic, Inline graphic

  • a = 9.3437 (19) Å

  • b = 10.486 (2) Å

  • c = 14.320 (3) Å

  • α = 83.09 (3)°

  • β = 87.16 (3)°

  • γ = 69.02 (3)°

  • V = 1300.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 295 K

  • 0.30 × 0.23 × 0.17 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.796, T max = 0.868

  • 12866 measured reflections

  • 5901 independent reflections

  • 4575 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.087

  • S = 1.14

  • 5901 reflections

  • 382 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006842/pk2302sup1.cif

e-67-0m393-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006842/pk2302Isup2.hkl

e-67-0m393-Isup2.hkl (288.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O8 0.77 (3) 1.97 (3) 2.719 (3) 167 (3)
O5—H5C⋯O4i 0.87 (3) 1.79 (3) 2.651 (2) 176 (4)
O6—H6B⋯O3i 0.86 (2) 1.80 (3) 2.655 (2) 173 (3)
O6—H6C⋯O3ii 0.82 (3) 1.90 (3) 2.706 (3) 166 (3)
O7—H7B⋯O4i 0.82 (3) 2.12 (3) 2.940 (3) 172 (3)
O7—H7C⋯O2i 0.86 (4) 1.91 (4) 2.747 (3) 166 (3)
O8—H8B⋯O9iii 0.82 (4) 1.92 (4) 2.695 (3) 157 (4)
O8—H8C⋯O7 0.84 (4) 1.96 (4) 2.753 (3) 156 (4)
O9—H9B⋯O8 0.86 (4) 2.06 (4) 2.907 (3) 170 (4)
O9—H9C⋯N6iv 0.75 (4) 2.18 (4) 2.854 (3) 150 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Science and Technology Department of Zhejiang Province (2009C03017-4), the 863 National High-Tech Research and Development Plan (2007­AA­10Z409), the Natural Science Foundation of Zhejiang Province (project No. Y307542) and the Science and Technology Department of Ningbo City (2006C100036).

supplementary crystallographic information

Comment

As an interesting polydentate nitrogen donor ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) has attracted increasing attention in the synthesis of novel transition metal complexes (Glaser, et al., 2004; Zibaseresht & Hartshorn, 2005; Zheng, et al., 2006; Zhou, et al., 2007). It was applied in the extraction and separation of metal ions, and in the preparation of DNA cleaving agents. It has also been widely empolyed to determine the concentration of mono- and polysaccharides in seawater (Gupta, et al., 1993; Witter & Luther, et al., 2002). Our interest in tptz transition metal complexes prompts us to report a new tptz containing structure, [Ni(C18H12N6)(C5H6O4)(H2O)2].3H2O, obtained by self-assembly from NiII, tptz and glutaric acid in aqueous methanolic solution.

The title compound, consists of [Ni(C18H12N6)(C5H6O4)(H2O)2] complex molecules and three lattice waters, as shown in Fig. 1, in which the Ni atoms are in a distorted octahedral coordination environment defined by three N atoms of one tridentate tptz ligand and three O atoms of two aqua ligands and the glutarate group. Three nitrogen atoms (N1, N2 and N3) from the tptz ligand and one O atom (O6) of water molecule form the equatorial base, while the carboxylate O atom (O1) and the other water ligand O atom (O5) occupy the axial positions. Ni-N distances vary from 1.986 (2) to 2.173 (2) Å, and the Ni-O bond distances fall in the region 2.021 (2) to 2.056 (2) Å. The deviation from the ideal octahedral geometry is indicated by the difference in cisoid [76.38 (7)°-106.06 (7)°] and transoid angles [153.59 (6)°-177.01 (7)°]. In the tptz ligand, the C(sp2)-C(sp2) distances within the ring are normal [1.373 (4)-1.392 (2) Å], and the exterior bond distances, 1.482 (3)-1.491 (3) Å, are also normal. The tptz ligands deviate little from planarity, the three pyridyl rings are twisted with respect to the central triazine ring by angles of 3.4 (2)°, 4.1 (1)° and 8.6 (1)° with the N3 ring displaying the highest degree of twisting. The [Ni(C18H12N6)(C5H6O4)(H2O)2] complex molecules are assembled into a 3D network by hydrogen bonds between the coordinated water and lattice water molecules and the carboxylate group and pyridyl nitrogen atoms with the distances from 2.651 (4) Å to 2.938 (5) Å (Table 1). The crystal structure is also stabilized by intermolecular π-π stacking interactions between tptz ligands [centroid-centroid distance = 3.836 (3) Å].

Experimental

Dropwise addition of 2.0 ml NaOH (1.0 M) to a stirred solution of NiCl2.6H2O (0.238 g, 1.00 mmol) in 5.0 ml H2O produced a green precipitate, which was then centrifuged and washed with double-distilled water until no Cl- anions were detectable. The collected precipitate and 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz) (0.312 g, 1.00 mmol) were added to a stirred solution of glutaric acid (0.132 g, 1.00 mmol) in CH3OH/H2O (30.0 ml; 1:1 v/v). The resulting mixture was stirred for a further 30 min. After filtration, the dark green filtrate (pH = 5.12) was evaporated slowly at room temperature and afforded dark green crystals over two weeks (yield 45.4%, based on initial NiCl2 input).

Refinement

All H atoms bound to C were position geometrically and refined as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were found in a difference Fourier map and refined freely with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with the atom-labelling scheme. Displacement ellisoids are drawn at the 45% probability level.

Crystal data

[Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2O Z = 2
Mr = 591.22 F(000) = 616
Triclinic, P1 Dx = 1.510 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.3437 (19) Å Cell parameters from 10176 reflections
b = 10.486 (2) Å θ = 3.0–27.5°
c = 14.320 (3) Å µ = 0.81 mm1
α = 83.09 (3)° T = 295 K
β = 87.16 (3)° Block, dark green
γ = 69.02 (3)° 0.30 × 0.23 × 0.17 mm
V = 1300.5 (5) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 5901 independent reflections
Radiation source: fine-focus sealed tube 4575 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −12→11
Tmin = 0.796, Tmax = 0.868 k = −13→13
12866 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.3875P] where P = (Fo2 + 2Fc2)/3
5901 reflections (Δ/σ)max < 0.001
382 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.23523 (3) 0.10184 (3) 0.306650 (17) 0.02922 (8)
N1 0.07072 (19) 0.00148 (16) 0.31671 (11) 0.0314 (4)
N2 0.14608 (18) 0.14756 (16) 0.17850 (11) 0.0279 (3)
N3 0.36324 (19) 0.21923 (17) 0.23120 (12) 0.0338 (4)
N4 −0.05102 (19) 0.15524 (17) 0.08066 (11) 0.0317 (4)
N5 0.11453 (18) 0.28123 (17) 0.03247 (11) 0.0318 (4)
N6 −0.1961 (2) 0.2413 (2) −0.08469 (13) 0.0474 (5)
C1 0.0402 (3) −0.0764 (2) 0.39029 (15) 0.0399 (5)
H1A 0.0992 −0.0955 0.4441 0.048*
C2 −0.0753 (3) −0.1299 (2) 0.38989 (16) 0.0465 (6)
H2A −0.0936 −0.1833 0.4425 0.056*
C3 −0.1624 (3) −0.1029 (3) 0.31043 (17) 0.0495 (6)
H3A −0.2409 −0.1374 0.3087 0.059*
C4 −0.1320 (2) −0.0233 (2) 0.23247 (16) 0.0400 (5)
H4A −0.1888 −0.0043 0.1777 0.048*
C5 −0.0149 (2) 0.0266 (2) 0.23880 (13) 0.0299 (4)
C6 0.4845 (2) 0.2426 (2) 0.26107 (17) 0.0409 (5)
H6A 0.5158 0.2128 0.3231 0.049*
C7 0.5645 (3) 0.3090 (2) 0.20348 (18) 0.0481 (6)
H7A 0.6487 0.3228 0.2263 0.058*
C8 0.5187 (3) 0.3547 (3) 0.11206 (19) 0.0494 (6)
H8A 0.5718 0.3994 0.0723 0.059*
C9 0.3922 (3) 0.3334 (2) 0.07943 (16) 0.0407 (5)
H9A 0.3579 0.3643 0.0181 0.049*
C10 0.3190 (2) 0.2646 (2) 0.14127 (14) 0.0309 (4)
C11 0.0268 (2) 0.11409 (19) 0.16027 (13) 0.0282 (4)
C12 0.1862 (2) 0.23092 (19) 0.11369 (13) 0.0287 (4)
C13 −0.0020 (2) 0.2389 (2) 0.01894 (13) 0.0297 (4)
C14 −0.0849 (2) 0.2889 (2) −0.07149 (14) 0.0305 (4)
C15 −0.0487 (3) 0.3795 (2) −0.13838 (15) 0.0416 (5)
H15A 0.0281 0.4127 −0.1275 0.050*
C16 −0.1293 (3) 0.4197 (3) −0.22184 (16) 0.0487 (6)
H16A −0.1067 0.4802 −0.2680 0.058*
C17 −0.2416 (3) 0.3701 (2) −0.23610 (16) 0.0464 (6)
H17A −0.2965 0.3952 −0.2919 0.056*
C18 −0.2713 (3) 0.2819 (3) −0.16543 (18) 0.0569 (7)
H18A −0.3487 0.2486 −0.1748 0.068*
O1 0.08747 (16) 0.26850 (15) 0.36329 (10) 0.0393 (3)
O2 −0.10065 (19) 0.35714 (17) 0.25867 (13) 0.0557 (5)
O3 −0.4597 (2) 0.80336 (16) 0.48537 (14) 0.0665 (6)
O4 −0.48137 (19) 0.68559 (15) 0.37304 (11) 0.0473 (4)
C19 −0.0383 (2) 0.3554 (2) 0.33396 (15) 0.0348 (4)
C20 −0.1175 (2) 0.4682 (2) 0.39654 (17) 0.0432 (5)
H20A −0.0432 0.4733 0.4395 0.052*
H20B −0.1562 0.5556 0.3577 0.052*
C21 −0.2492 (3) 0.4441 (2) 0.45288 (17) 0.0451 (5)
H21A −0.2093 0.3605 0.4956 0.054*
H21B −0.3194 0.4314 0.4103 0.054*
C22 −0.3360 (3) 0.5631 (2) 0.50912 (15) 0.0426 (5)
H22A −0.4034 0.5345 0.5536 0.051*
H22B −0.2628 0.5831 0.5451 0.051*
C23 −0.4307 (2) 0.6938 (2) 0.45040 (15) 0.0353 (4)
O5 0.4055 (2) −0.07320 (18) 0.27026 (12) 0.0506 (4)
H5B 0.456 (4) −0.079 (3) 0.226 (2) 0.076*
H5C 0.443 (4) −0.150 (3) 0.306 (2) 0.076*
O6 0.32425 (19) 0.04577 (17) 0.43739 (11) 0.0427 (4)
H6B 0.394 (3) −0.034 (3) 0.448 (2) 0.064*
H6C 0.352 (3) 0.103 (3) 0.458 (2) 0.064*
O7 0.6705 (2) −0.4023 (2) 0.19485 (15) 0.0600 (5)
H7B 0.625 (4) −0.384 (4) 0.245 (2) 0.090*
H7C 0.747 (4) −0.478 (4) 0.205 (2) 0.090*
O8 0.5802 (2) −0.1346 (2) 0.11286 (14) 0.0567 (5)
H8B 0.636 (4) −0.095 (4) 0.088 (2) 0.085*
H8C 0.633 (4) −0.216 (4) 0.133 (2) 0.085*
O9 0.3067 (2) −0.03481 (19) −0.00273 (15) 0.0595 (5)
H9B 0.387 (4) −0.074 (4) 0.031 (2) 0.089*
H9C 0.262 (4) −0.082 (4) 0.002 (3) 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02710 (14) 0.02892 (13) 0.02707 (14) −0.00368 (10) −0.00675 (10) −0.00274 (9)
N1 0.0344 (9) 0.0315 (8) 0.0248 (8) −0.0081 (7) −0.0018 (7) −0.0008 (7)
N2 0.0265 (8) 0.0294 (8) 0.0266 (8) −0.0086 (7) −0.0031 (6) −0.0017 (6)
N3 0.0284 (8) 0.0334 (9) 0.0377 (9) −0.0076 (7) −0.0082 (7) −0.0046 (7)
N4 0.0321 (9) 0.0362 (9) 0.0275 (8) −0.0137 (8) −0.0061 (7) 0.0023 (7)
N5 0.0311 (9) 0.0347 (9) 0.0304 (8) −0.0133 (7) −0.0056 (7) 0.0011 (7)
N6 0.0540 (12) 0.0591 (12) 0.0383 (10) −0.0351 (11) −0.0199 (9) 0.0150 (9)
C1 0.0467 (13) 0.0385 (11) 0.0286 (10) −0.0094 (10) −0.0017 (9) 0.0016 (9)
C2 0.0496 (14) 0.0460 (13) 0.0390 (12) −0.0158 (11) 0.0067 (10) 0.0076 (10)
C3 0.0443 (13) 0.0556 (14) 0.0518 (14) −0.0263 (12) −0.0007 (11) 0.0090 (12)
C4 0.0375 (11) 0.0441 (12) 0.0394 (12) −0.0175 (10) −0.0052 (9) 0.0037 (10)
C5 0.0289 (10) 0.0306 (10) 0.0276 (10) −0.0077 (8) −0.0027 (8) −0.0005 (8)
C6 0.0345 (11) 0.0425 (12) 0.0457 (13) −0.0124 (10) −0.0143 (10) −0.0029 (10)
C7 0.0360 (12) 0.0514 (14) 0.0621 (16) −0.0201 (11) −0.0143 (11) −0.0064 (12)
C8 0.0426 (13) 0.0548 (14) 0.0588 (15) −0.0276 (12) 0.0003 (11) −0.0043 (12)
C9 0.0396 (12) 0.0449 (12) 0.0411 (12) −0.0193 (10) −0.0036 (10) −0.0028 (10)
C10 0.0282 (10) 0.0300 (10) 0.0338 (10) −0.0087 (8) −0.0032 (8) −0.0040 (8)
C11 0.0277 (9) 0.0276 (9) 0.0270 (9) −0.0070 (8) −0.0026 (8) −0.0022 (7)
C12 0.0280 (10) 0.0279 (9) 0.0281 (9) −0.0070 (8) −0.0022 (8) −0.0026 (8)
C13 0.0290 (10) 0.0308 (10) 0.0282 (10) −0.0094 (8) −0.0028 (8) −0.0013 (8)
C14 0.0304 (10) 0.0312 (10) 0.0294 (10) −0.0107 (8) −0.0044 (8) 0.0001 (8)
C15 0.0427 (12) 0.0504 (13) 0.0353 (11) −0.0240 (11) −0.0077 (9) 0.0077 (10)
C16 0.0547 (14) 0.0554 (14) 0.0344 (12) −0.0228 (12) −0.0046 (10) 0.0139 (11)
C17 0.0525 (14) 0.0514 (13) 0.0328 (11) −0.0175 (12) −0.0172 (10) 0.0080 (10)
C18 0.0647 (16) 0.0673 (17) 0.0505 (14) −0.0409 (15) −0.0305 (13) 0.0161 (13)
O1 0.0332 (8) 0.0368 (8) 0.0388 (8) 0.0007 (6) −0.0063 (6) −0.0089 (6)
O2 0.0422 (9) 0.0523 (10) 0.0592 (11) 0.0077 (8) −0.0209 (8) −0.0240 (8)
O3 0.0843 (14) 0.0318 (8) 0.0698 (12) 0.0038 (9) −0.0443 (11) −0.0131 (8)
O4 0.0576 (10) 0.0363 (8) 0.0385 (9) −0.0028 (7) −0.0146 (7) −0.0057 (7)
C19 0.0283 (10) 0.0339 (10) 0.0403 (11) −0.0075 (9) −0.0023 (9) −0.0071 (9)
C20 0.0323 (11) 0.0402 (12) 0.0548 (14) −0.0055 (10) −0.0065 (10) −0.0173 (11)
C21 0.0513 (14) 0.0279 (10) 0.0444 (13) −0.0021 (10) 0.0034 (11) 0.0016 (9)
C22 0.0467 (13) 0.0358 (11) 0.0321 (11) 0.0000 (10) 0.0002 (9) 0.0000 (9)
C23 0.0342 (11) 0.0290 (10) 0.0366 (11) −0.0035 (9) −0.0044 (9) −0.0035 (8)
O5 0.0563 (11) 0.0361 (8) 0.0383 (9) 0.0071 (8) 0.0062 (8) 0.0002 (7)
O6 0.0427 (9) 0.0372 (8) 0.0377 (8) 0.0011 (7) −0.0176 (7) −0.0052 (7)
O7 0.0537 (12) 0.0469 (10) 0.0649 (12) −0.0047 (9) −0.0044 (9) 0.0092 (10)
O8 0.0539 (11) 0.0508 (10) 0.0560 (11) −0.0131 (9) 0.0140 (9) 0.0071 (9)
O9 0.0596 (12) 0.0499 (11) 0.0728 (13) −0.0290 (10) −0.0019 (10) 0.0093 (9)

Geometric parameters (Å, °)

Ni1—N2 1.9862 (17) C10—C12 1.488 (3)
Ni1—O6 2.0203 (16) C13—C14 1.482 (3)
Ni1—O1 2.0300 (16) C14—C15 1.383 (3)
Ni1—O5 2.0563 (19) C15—C16 1.383 (3)
Ni1—N1 2.1426 (17) C15—H15A 0.9300
Ni1—N3 2.1723 (18) C16—C17 1.360 (3)
N1—C1 1.338 (3) C16—H16A 0.9300
N1—C5 1.350 (2) C17—C18 1.374 (3)
N2—C11 1.328 (2) C17—H17A 0.9300
N2—C12 1.331 (2) C18—H18A 0.9300
N3—C6 1.341 (3) O1—C19 1.256 (2)
N3—C10 1.349 (3) O2—C19 1.246 (3)
N4—C11 1.324 (2) O3—C23 1.243 (3)
N4—C13 1.350 (2) O4—C23 1.250 (3)
N5—C12 1.325 (2) C19—C20 1.521 (3)
N5—C13 1.344 (2) C20—C21 1.517 (3)
N6—C18 1.327 (3) C20—H20A 0.9700
N6—C14 1.333 (3) C20—H20B 0.9700
C1—C2 1.383 (3) C21—C22 1.522 (3)
C1—H1A 0.9300 C21—H21A 0.9700
C2—C3 1.373 (3) C21—H21B 0.9700
C2—H2A 0.9300 C22—C23 1.516 (3)
C3—C4 1.392 (3) C22—H22A 0.9700
C3—H3A 0.9300 C22—H22B 0.9700
C4—C5 1.382 (3) O5—H5B 0.76 (3)
C4—H4A 0.9300 O5—H5C 0.87 (3)
C5—C11 1.491 (3) O6—H6B 0.86 (3)
C6—C7 1.378 (3) O6—H6C 0.83 (3)
C6—H6A 0.9300 O7—H7B 0.82 (4)
C7—C8 1.373 (3) O7—H7C 0.86 (4)
C7—H7A 0.9300 O8—H8B 0.82 (3)
C8—C9 1.391 (3) O8—H8C 0.85 (4)
C8—H8A 0.9300 O9—H9B 0.86 (3)
C9—C10 1.382 (3) O9—H9C 0.75 (3)
C9—H9A 0.9300
N2—Ni1—O6 176.98 (7) N4—C11—C5 122.12 (17)
N2—Ni1—O1 97.21 (7) N2—C11—C5 113.91 (16)
O6—Ni1—O1 84.47 (7) N5—C12—N2 123.69 (17)
N2—Ni1—O5 92.47 (8) N5—C12—C10 122.62 (17)
O6—Ni1—O5 85.93 (8) N2—C12—C10 113.68 (16)
O1—Ni1—O5 170.19 (7) N5—C13—N4 125.81 (17)
N2—Ni1—N1 77.29 (7) N5—C13—C14 117.32 (16)
O6—Ni1—N1 100.17 (7) N4—C13—C14 116.87 (16)
O1—Ni1—N1 92.45 (6) N6—C14—C15 121.97 (19)
O5—Ni1—N1 91.20 (8) N6—C14—C13 116.15 (17)
N2—Ni1—N3 76.38 (7) C15—C14—C13 121.88 (18)
O6—Ni1—N3 106.09 (7) C16—C15—C14 118.6 (2)
O1—Ni1—N3 92.88 (7) C16—C15—H15A 120.7
O5—Ni1—N3 87.86 (7) C14—C15—H15A 120.7
N1—Ni1—N3 153.58 (6) C17—C16—C15 119.7 (2)
C1—N1—C5 117.66 (17) C17—C16—H16A 120.2
C1—N1—Ni1 128.33 (14) C15—C16—H16A 120.2
C5—N1—Ni1 113.96 (12) C16—C17—C18 117.9 (2)
C11—N2—C12 117.66 (16) C16—C17—H17A 121.1
C11—N2—Ni1 120.20 (13) C18—C17—H17A 121.1
C12—N2—Ni1 121.24 (13) N6—C18—C17 123.9 (2)
C6—N3—C10 117.70 (18) N6—C18—H18A 118.0
C6—N3—Ni1 128.03 (15) C17—C18—H18A 118.0
C10—N3—Ni1 114.10 (13) C19—O1—Ni1 130.93 (14)
C11—N4—C13 114.29 (16) O2—C19—O1 125.7 (2)
C12—N5—C13 114.55 (16) O2—C19—C20 118.44 (19)
C18—N6—C14 117.96 (18) O1—C19—C20 115.89 (19)
N1—C1—C2 122.9 (2) C21—C20—C19 112.55 (18)
N1—C1—H1A 118.5 C21—C20—H20A 109.1
C2—C1—H1A 118.5 C19—C20—H20A 109.1
C3—C2—C1 118.9 (2) C21—C20—H20B 109.1
C3—C2—H2A 120.6 C19—C20—H20B 109.1
C1—C2—H2A 120.6 H20A—C20—H20B 107.8
C2—C3—C4 119.4 (2) C20—C21—C22 112.16 (19)
C2—C3—H3A 120.3 C20—C21—H21A 109.2
C4—C3—H3A 120.3 C22—C21—H21A 109.2
C5—C4—C3 118.1 (2) C20—C21—H21B 109.2
C5—C4—H4A 121.0 C22—C21—H21B 109.2
C3—C4—H4A 121.0 H21A—C21—H21B 107.9
N1—C5—C4 123.05 (18) C23—C22—C21 114.68 (18)
N1—C5—C11 114.11 (16) C23—C22—H22A 108.6
C4—C5—C11 122.83 (18) C21—C22—H22A 108.6
N3—C6—C7 122.6 (2) C23—C22—H22B 108.6
N3—C6—H6A 118.7 C21—C22—H22B 108.6
C7—C6—H6A 118.7 H22A—C22—H22B 107.6
C8—C7—C6 119.3 (2) O3—C23—O4 123.91 (19)
C8—C7—H7A 120.3 O3—C23—C22 116.88 (19)
C6—C7—H7A 120.3 O4—C23—C22 119.10 (19)
C7—C8—C9 119.4 (2) Ni1—O5—H5B 126 (3)
C7—C8—H8A 120.3 Ni1—O5—H5C 126 (2)
C9—C8—H8A 120.3 H5B—O5—H5C 107 (3)
C10—C9—C8 117.8 (2) Ni1—O6—H6B 117 (2)
C10—C9—H9A 121.1 Ni1—O6—H6C 115 (2)
C8—C9—H9A 121.1 H6B—O6—H6C 109 (3)
N3—C10—C9 123.23 (18) H7B—O7—H7C 109 (3)
N3—C10—C12 113.92 (17) H8B—O8—H8C 110 (3)
C9—C10—C12 122.83 (18) H9B—O9—H9C 107 (3)
N4—C11—N2 123.96 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5B···O8 0.77 (3) 1.97 (3) 2.719 (3) 167 (3)
O5—H5C···O4i 0.87 (3) 1.79 (3) 2.651 (2) 176 (4)
O6—H6B···O3i 0.86 (2) 1.80 (3) 2.655 (2) 173 (3)
O6—H6C···O3ii 0.82 (3) 1.90 (3) 2.706 (3) 166 (3)
O7—H7B···O4i 0.82 (3) 2.12 (3) 2.940 (3) 172 (3)
O7—H7C···O2i 0.86 (4) 1.91 (4) 2.747 (3) 166 (3)
O8—H8B···O9iii 0.82 (4) 1.92 (4) 2.695 (3) 157 (4)
O8—H8C···O7 0.84 (4) 1.96 (4) 2.753 (3) 156 (4)
O9—H9B···O8 0.86 (4) 2.06 (4) 2.907 (3) 170 (4)
O9—H9C···N6iv 0.75 (4) 2.18 (4) 2.854 (3) 150 (4)

Symmetry codes: (i) x+1, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2302).

References

  1. Glaser, T., Lügger, T. & Fröhlich, R. (2004). Eur. J. Inorg. Chem. pp. 394–400.
  2. Gupta, N., Grover, N., Neyhart, G. A., Singh, P. & Thorp, H. H. (1993). Inorg. Chem. 32, 310–316
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Witter, A. E. & Luther, G. W. (2002). Mar. Chem. 77, 143–156.
  8. Zheng, Y. Q., Xu, W., Lin, F. & Fang, G. S. (2006). J. Coord. Chem. 59, 1825–1834.
  9. Zhou, X. P., Zhang, X. J., Lin, S. H. & Li, D. (2007). Cryst. Growth Des. 7, 485–487.
  10. Zibaseresht, R. & Hartshorn, R. M. (2005). Aust. J. Chem. 58, 345–353.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006842/pk2302sup1.cif

e-67-0m393-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006842/pk2302Isup2.hkl

e-67-0m393-Isup2.hkl (288.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES