Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):o876. doi: 10.1107/S160053681100910X

2,5-Bis{2,2-bis­[4-(dimethyl­amino)­phen­yl]ethen­yl}-N,N′-diphenyl-N,N′-dipropyl­benzene-1,4-diamine

Volker Schmitt a, Dieter Schollmeyer a, Heiner Detert a,*
PMCID: PMC3099848  PMID: 21754153

Abstract

The title compound, C60H68N6, was prepared by Horner olefination of a terephthaldialdehyde and a diaryl­methyl phospho­nate. There is one half-mol­ecule, located on an inversion centre, in the asymmetric unit. The dihedral angle between the plane of the vinyl­ene unit and the central ring is 36.79 (15)°, while those between the vinyl­ene unit and the lateral phenyl rings are 53.04 (10) and 53.74 (9)°.

Related literature

For conjugated oligomers with basic sites as sensing materials for polarity and cations, see: Detert & Sugiono (2004, 2005); Wilson & Bunz (2005); Zucchero et al. (2009). For typical synthetic approaches to larger stilbenoid dyes, see: Drefahl & Plötner (1961); Stalmach et al. (1996). For crystal structures of phenyl­ene­vinyl­ene oligomers, see: van Hutten et al. (1999); Detert et al. (2001). For optical properties of dyes which are highly sensitive towards environmental changes, see: Detert et al. (2001); Strehmel et al. (2003); Nemkovich et al. (2010). For the synthesis of the title compound, see: Schmitt (2005); Zheng et al. (2003).graphic file with name e-67-0o876-scheme1.jpg

Experimental

Crystal data

  • C60H68N6

  • M r = 873.20

  • Monoclinic, Inline graphic

  • a = 20.485 (9) Å

  • b = 12.0782 (16) Å

  • c = 21.108 (9) Å

  • β = 107.60 (2)°

  • V = 4978 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 4859 measured reflections

  • 4720 independent reflections

  • 3352 reflections with I > 2σ(I)

  • R int = 0.064

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.232

  • S = 1.09

  • 4720 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100910X/bt5488sup1.cif

e-67-0o876-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100910X/bt5488Isup2.hkl

e-67-0o876-Isup2.hkl (231.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound was prepared as part of a project focusing on chromophores and fluorophores based on oligo(phenylenevinylene)s with multiple basic sites, see: Detert & Sugiono (2004, 2005). The optical properties of these dyes are highly sensitive towards changes of the environment see: Detert et al. (2001); Strehmel et al. (2003) and Nemkovich et al. (2010).

The compound, prepared in a twofold Horner olefination of a central dialdehyde and a diarylmethylphosphonate, crystallized from chloroform/methanol in block-shaped crystals. The packing of the molecules is based on van-der-Waals interactions. The molecules contain a center of symmetry, due to sterical crowding, the rigid units phenylene and vinylene show large torsion angles disturbing the conjugation along the π-system. The torsion angle C2—C1—C4—C5 amount to -33.7 (4)° between the central ring and the vinylene units and to 49° - 55° between vinylene and lateral phenyl rings. These subunits are essentially planar, with torsion angles of less than 3° in the phenylene rings and a maximum distortion of -6.4 (4) along the cis-configurated C1—C4—C5—C6 vinylene bond. The geometries of the central and peripheral amino groups are significantly different due to the different substitution: diarylalkylamine versus aryldialkylamine, and the sterical crowding in the middle of the molecule. The C3—N24-bonds of the p-aminoaniline moiety 1.423 (3) Å are significantly longer than all other aryl-N bonds: C18—N21: 1.387 (3) Å; C9—N12: N24—C25: 1.394 (3) and the peripheral nitrogen atoms are slightly planarized with sums of the C—N bond angles of 353.6° around N12 and 355.4° around N21 but the sum of the bond angles at the p-aminoaniline N atoms amount to 359.9°. Dihedral angles of the disubstituted amino groups and the mean planes of the adjacent phenylene ring are small for the dimethylamino groups (C13—N12—C14)-(C6 - C11): 25.8 (3)° and (C22—N21—C23)-(C15 - C20): 22.4 (3)° but, large for the p-aminoaniline unit (C25—N24—C31)-(C2—C3—C1): 59.3 (3)°.

Experimental

The title compound was prepared via Horner olefination of a solution of 2,5-Bis(N-propyl-N-phenylamino)terephthalaldehyde (120 mg, 0.30 mmol) (Schmitt, 2005) and diethyl bis[4-(N,N-dimethylamino)phenyl]methylphosphonate (Zheng et al., 2003) (257 mg, 0.66 mmol) in anhydrous THF (30 ml) and potassium-t-butylate (112 mg, 0.99 mmol) at 273 K. After stirring for 30 min, the mixture was allowed to reach ambient temperature and after 4 h stirring, water (60 ml) was added and the product extracted with ethyl acetate (3 x 30 ml). The pooled organic layers were washed with brine, dried over MgSO4 and concentrated. The residue was purified by chromatography and recrystallization from dichloromethane/methanol. Yield: 190 mg (50%) of an orange solid with m.p. = 487 K.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C60H68N6 F(000) = 1880
Mr = 873.20 Dx = 1.165 Mg m3
Monoclinic, C2/c Melting point: 487 K
Hall symbol: -C 2yc Cu Kα radiation, λ = 1.54178 Å
a = 20.485 (9) Å Cell parameters from 25 reflections
b = 12.0782 (16) Å θ = 25–42°
c = 21.108 (9) Å µ = 0.52 mm1
β = 107.60 (2)° T = 193 K
V = 4978 (3) Å3 Block, orange
Z = 4 0.50 × 0.30 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.064
Radiation source: rotating anode θmax = 69.9°, θmin = 4.3°
graphite h = 0→24
ω/2θ scans k = −14→0
4859 measured reflections l = −25→24
4720 independent reflections 3 standard reflections every 60 min
3352 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1466P)2 + 0.3409P] where P = (Fo2 + 2Fc2)/3
4720 reflections (Δ/σ)max < 0.001
303 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. 1H-NMR (CDCl3, 400 MHz): δ (ppm) = 7.24 (s, 2H), 7.10 (t, 8H), 6.87 (d, 3J = 8.7 Hz, 4H), 6.83 (t, 4H), 6.78 (d, 3J = 8.2 Hz, 8H), 6.76 (s, 2H), 6.67 (d, 3J = 8.6 Hz, 4H), 6.50 (s, 2H), 6.48 (d, 3J = 8.7 Hz, 4H), 6.43 (d, 3J = 8.6 Hz, 4H), 2.89 (s, 24H). 13C-NMR (CDCl3, 75 MHz): δ (ppm) = 149.6, 149.3, 147.5, 143.3, 142.3, 136.9, 132.2, 131.0, 128.7, 121.8, 121.0, 120.4 , 112.0, 111.6, 40.4, 20.4, 11.5. UV-vis (CH2Cl2): λmax = 406 nm, ε = 33680 cm2/mmol.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.21619 (12) 0.6465 (2) 0.48219 (12) 0.0467 (6)
C2 0.28093 (12) 0.6668 (2) 0.47567 (12) 0.0483 (6)
H2 0.3025 0.6096 0.4584 0.058*
C3 0.18502 (12) 0.7339 (2) 0.50685 (12) 0.0462 (6)
C4 0.18219 (12) 0.5391 (2) 0.46690 (12) 0.0469 (6)
H4 0.1543 0.5189 0.4937 0.056*
C5 0.18481 (12) 0.4645 (2) 0.41993 (11) 0.0440 (5)
C6 0.21911 (11) 0.4822 (2) 0.36801 (11) 0.0430 (5)
C7 0.26348 (12) 0.4027 (2) 0.35679 (12) 0.0463 (6)
H7 0.2729 0.3386 0.3841 0.056*
C8 0.29436 (13) 0.4136 (2) 0.30741 (13) 0.0500 (6)
H8 0.3254 0.3583 0.3025 0.060*
C9 0.28079 (12) 0.5045 (2) 0.26460 (12) 0.0475 (6)
C10 0.23708 (13) 0.5856 (2) 0.27643 (13) 0.0485 (6)
H10 0.2276 0.6498 0.2492 0.058*
C11 0.20742 (13) 0.5744 (2) 0.32659 (12) 0.0490 (6)
H11 0.1781 0.6314 0.3331 0.059*
N12 0.30968 (12) 0.5151 (2) 0.21328 (11) 0.0596 (6)
C13 0.34078 (19) 0.4193 (3) 0.19338 (18) 0.0781 (10)
H13A 0.3765 0.3900 0.2318 0.117*
H13B 0.3611 0.4405 0.1587 0.117*
H13C 0.3058 0.3624 0.1761 0.117*
C14 0.28180 (17) 0.5965 (3) 0.16197 (16) 0.0688 (8)
H14A 0.2329 0.5822 0.1412 0.103*
H14B 0.3057 0.5919 0.1283 0.103*
H14C 0.2879 0.6707 0.1817 0.103*
C15 0.14780 (12) 0.3576 (2) 0.41640 (11) 0.0442 (5)
C16 0.15885 (13) 0.2878 (2) 0.47074 (12) 0.0498 (6)
H16 0.1926 0.3070 0.5111 0.060*
C17 0.12212 (14) 0.1909 (2) 0.46776 (14) 0.0549 (7)
H17 0.1316 0.1446 0.5059 0.066*
C18 0.07141 (12) 0.1598 (2) 0.40984 (14) 0.0510 (6)
C19 0.06118 (13) 0.2285 (2) 0.35475 (14) 0.0542 (6)
H19 0.0276 0.2093 0.3142 0.065*
C20 0.09921 (14) 0.3244 (2) 0.35803 (13) 0.0512 (6)
H20 0.0918 0.3686 0.3193 0.061*
N21 0.03150 (13) 0.0666 (2) 0.40884 (14) 0.0673 (7)
C22 −0.01593 (18) 0.0313 (3) 0.34656 (19) 0.0805 (10)
H22A −0.0489 0.0907 0.3285 0.121*
H22B −0.0404 −0.0349 0.3539 0.121*
H22C 0.0093 0.0140 0.3151 0.121*
C23 0.0580 (2) −0.0200 (3) 0.4572 (2) 0.0881 (11)
H23A 0.1007 −0.0488 0.4518 0.132*
H23B 0.0243 −0.0799 0.4503 0.132*
H23C 0.0668 0.0102 0.5021 0.132*
N24 0.11885 (10) 0.7210 (2) 0.51472 (10) 0.0497 (5)
C25 0.06185 (12) 0.6998 (2) 0.46013 (12) 0.0486 (6)
C26 0.06600 (15) 0.7106 (3) 0.39625 (14) 0.0683 (9)
H26 0.1082 0.7313 0.3897 0.082*
C27 0.0099 (2) 0.6919 (5) 0.34216 (18) 0.1160 (19)
H27 0.0141 0.6985 0.2987 0.139*
C28 −0.0521 (2) 0.6637 (5) 0.3498 (2) 0.124 (2)
H28 −0.0910 0.6514 0.3122 0.149*
C29 −0.05672 (18) 0.6539 (4) 0.4124 (2) 0.0959 (14)
H29 −0.0996 0.6355 0.4183 0.115*
C30 −0.00108 (14) 0.6698 (3) 0.46759 (16) 0.0609 (7)
H30 −0.0055 0.6604 0.5108 0.073*
C31 0.11212 (13) 0.7389 (2) 0.58080 (13) 0.0540 (6)
H31A 0.0648 0.7633 0.5765 0.065*
H31B 0.1438 0.7987 0.6033 0.065*
C32 0.1277 (2) 0.6363 (4) 0.62248 (18) 0.0875 (12)
H32A 0.1751 0.6121 0.6271 0.105*
H32B 0.0962 0.5764 0.5999 0.105*
C33 0.1201 (2) 0.6556 (4) 0.69168 (17) 0.0960 (14)
H33A 0.1442 0.7236 0.7107 0.144*
H33B 0.1398 0.5927 0.7205 0.144*
H33C 0.0715 0.6627 0.6881 0.144*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0514 (12) 0.0491 (14) 0.0409 (12) −0.0079 (10) 0.0160 (10) −0.0105 (11)
C2 0.0514 (13) 0.0504 (15) 0.0440 (13) −0.0024 (10) 0.0160 (10) −0.0127 (11)
C3 0.0485 (12) 0.0505 (15) 0.0417 (12) −0.0045 (10) 0.0167 (9) −0.0093 (11)
C4 0.0519 (12) 0.0476 (14) 0.0434 (12) −0.0059 (10) 0.0179 (10) −0.0065 (11)
C5 0.0476 (11) 0.0452 (13) 0.0386 (12) −0.0045 (10) 0.0123 (9) −0.0020 (10)
C6 0.0475 (11) 0.0417 (13) 0.0393 (12) −0.0044 (9) 0.0125 (9) −0.0072 (10)
C7 0.0540 (13) 0.0385 (13) 0.0461 (13) 0.0005 (10) 0.0147 (10) −0.0024 (10)
C8 0.0531 (13) 0.0461 (14) 0.0518 (14) 0.0028 (10) 0.0172 (11) −0.0049 (11)
C9 0.0482 (12) 0.0469 (14) 0.0481 (13) −0.0073 (10) 0.0154 (10) −0.0057 (11)
C10 0.0548 (13) 0.0418 (14) 0.0499 (14) −0.0016 (10) 0.0173 (11) 0.0023 (11)
C11 0.0542 (13) 0.0445 (14) 0.0483 (14) 0.0006 (10) 0.0155 (10) −0.0051 (11)
N12 0.0667 (13) 0.0645 (16) 0.0563 (13) 0.0005 (11) 0.0316 (11) 0.0015 (12)
C13 0.089 (2) 0.089 (3) 0.075 (2) 0.0114 (19) 0.0523 (18) 0.0008 (19)
C14 0.0745 (18) 0.078 (2) 0.0602 (17) −0.0070 (16) 0.0301 (14) 0.0106 (16)
C15 0.0479 (11) 0.0475 (14) 0.0386 (12) −0.0022 (10) 0.0153 (9) −0.0041 (10)
C16 0.0515 (13) 0.0520 (15) 0.0428 (13) −0.0047 (11) 0.0094 (10) −0.0026 (11)
C17 0.0586 (14) 0.0541 (16) 0.0501 (14) −0.0031 (12) 0.0134 (11) 0.0099 (12)
C18 0.0475 (12) 0.0437 (14) 0.0620 (16) 0.0002 (10) 0.0168 (11) −0.0017 (12)
C19 0.0531 (13) 0.0499 (16) 0.0526 (14) −0.0022 (11) 0.0054 (11) −0.0061 (12)
C20 0.0605 (14) 0.0484 (15) 0.0411 (13) −0.0038 (11) 0.0098 (10) −0.0009 (11)
N21 0.0619 (13) 0.0475 (14) 0.0880 (18) −0.0083 (10) 0.0162 (12) 0.0049 (13)
C22 0.0738 (19) 0.059 (2) 0.103 (3) −0.0172 (16) 0.0191 (18) −0.0126 (19)
C23 0.101 (3) 0.054 (2) 0.113 (3) −0.0063 (18) 0.037 (2) 0.015 (2)
N24 0.0468 (11) 0.0617 (14) 0.0425 (11) −0.0074 (9) 0.0164 (8) −0.0121 (10)
C25 0.0510 (13) 0.0464 (14) 0.0479 (14) −0.0044 (10) 0.0142 (10) −0.0128 (11)
C26 0.0606 (16) 0.097 (3) 0.0457 (15) 0.0038 (16) 0.0140 (12) −0.0092 (16)
C27 0.086 (3) 0.207 (6) 0.0492 (19) 0.018 (3) 0.0109 (17) −0.029 (3)
C28 0.064 (2) 0.198 (6) 0.089 (3) 0.005 (3) −0.0083 (19) −0.064 (3)
C29 0.0549 (17) 0.122 (4) 0.103 (3) −0.0181 (19) 0.0137 (18) −0.048 (3)
C30 0.0520 (14) 0.0620 (18) 0.0696 (18) −0.0091 (12) 0.0199 (13) −0.0150 (14)
C31 0.0545 (13) 0.0617 (17) 0.0475 (14) −0.0002 (12) 0.0179 (10) −0.0085 (13)
C32 0.099 (3) 0.099 (3) 0.075 (2) 0.044 (2) 0.0414 (19) 0.023 (2)
C33 0.089 (2) 0.144 (4) 0.061 (2) 0.044 (2) 0.0324 (17) 0.035 (2)

Geometric parameters (Å, °)

C1—C2 1.396 (3) C18—N21 1.387 (3)
C1—C3 1.412 (3) C18—C19 1.392 (4)
C1—C4 1.461 (4) C19—C20 1.386 (4)
C2—C3i 1.380 (4) C19—H19 0.9500
C2—H2 0.9500 C20—H20 0.9500
C3—C2i 1.380 (4) N21—C22 1.443 (4)
C3—N24 1.423 (3) N21—C23 1.447 (4)
C4—C5 1.353 (3) C22—H22A 0.9800
C4—H4 0.9500 C22—H22B 0.9800
C5—C6 1.485 (3) C22—H22C 0.9800
C5—C15 1.487 (3) C23—H23A 0.9800
C6—C7 1.391 (3) C23—H23B 0.9800
C6—C11 1.391 (4) C23—H23C 0.9800
C7—C8 1.380 (4) N24—C25 1.394 (3)
C7—H7 0.9500 N24—C31 1.459 (3)
C8—C9 1.395 (4) C25—C26 1.383 (4)
C8—H8 0.9500 C25—C30 1.393 (4)
C9—N12 1.388 (3) C26—C27 1.372 (5)
C9—C10 1.399 (4) C26—H26 0.9500
C10—C11 1.377 (4) C27—C28 1.371 (7)
C10—H10 0.9500 C27—H27 0.9500
C11—H11 0.9500 C28—C29 1.359 (6)
N12—C13 1.443 (4) C28—H28 0.9500
N12—C14 1.447 (4) C29—C30 1.374 (4)
C13—H13A 0.9800 C29—H29 0.9500
C13—H13B 0.9800 C30—H30 0.9500
C13—H13C 0.9800 C31—C32 1.497 (5)
C14—H14A 0.9800 C31—H31A 0.9900
C14—H14B 0.9800 C31—H31B 0.9900
C14—H14C 0.9800 C32—C33 1.533 (5)
C15—C16 1.386 (4) C32—H32A 0.9900
C15—C20 1.389 (3) C32—H32B 0.9900
C16—C17 1.382 (4) C33—H33A 0.9800
C16—H16 0.9500 C33—H33B 0.9800
C17—C18 1.395 (4) C33—H33C 0.9800
C17—H17 0.9500
C2—C1—C3 117.0 (2) C20—C19—C18 121.1 (2)
C2—C1—C4 122.5 (2) C20—C19—H19 119.5
C3—C1—C4 120.4 (2) C18—C19—H19 119.5
C3i—C2—C1 123.0 (2) C19—C20—C15 121.8 (2)
C3i—C2—H2 118.5 C19—C20—H20 119.1
C1—C2—H2 118.5 C15—C20—H20 119.1
C2i—C3—C1 120.0 (2) C18—N21—C22 119.0 (3)
C2i—C3—N24 119.1 (2) C18—N21—C23 118.8 (3)
C1—C3—N24 120.9 (2) C22—N21—C23 115.7 (3)
C5—C4—C1 129.1 (2) N21—C22—H22A 109.5
C5—C4—H4 115.4 N21—C22—H22B 109.5
C1—C4—H4 115.4 H22A—C22—H22B 109.5
C4—C5—C6 125.2 (2) N21—C22—H22C 109.5
C4—C5—C15 118.8 (2) H22A—C22—H22C 109.5
C6—C5—C15 115.8 (2) H22B—C22—H22C 109.5
C7—C6—C11 116.3 (2) N21—C23—H23A 109.5
C7—C6—C5 120.3 (2) N21—C23—H23B 109.5
C11—C6—C5 123.3 (2) H23A—C23—H23B 109.5
C8—C7—C6 122.3 (2) N21—C23—H23C 109.5
C8—C7—H7 118.8 H23A—C23—H23C 109.5
C6—C7—H7 118.8 H23B—C23—H23C 109.5
C7—C8—C9 121.2 (2) C25—N24—C3 120.86 (19)
C7—C8—H8 119.4 C25—N24—C31 121.3 (2)
C9—C8—H8 119.4 C3—N24—C31 117.7 (2)
N12—C9—C8 121.9 (2) C26—C25—C30 117.8 (3)
N12—C9—C10 121.4 (2) C26—C25—N24 120.4 (2)
C8—C9—C10 116.6 (2) C30—C25—N24 121.8 (2)
C11—C10—C9 121.6 (2) C27—C26—C25 120.9 (3)
C11—C10—H10 119.2 C27—C26—H26 119.6
C9—C10—H10 119.2 C25—C26—H26 119.6
C10—C11—C6 122.0 (2) C28—C27—C26 121.1 (4)
C10—C11—H11 119.0 C28—C27—H27 119.5
C6—C11—H11 119.0 C26—C27—H27 119.5
C9—N12—C13 118.9 (2) C29—C28—C27 118.4 (3)
C9—N12—C14 118.8 (2) C29—C28—H28 120.8
C13—N12—C14 115.9 (2) C27—C28—H28 120.8
N12—C13—H13A 109.5 C28—C29—C30 121.9 (4)
N12—C13—H13B 109.5 C28—C29—H29 119.1
H13A—C13—H13B 109.5 C30—C29—H29 119.1
N12—C13—H13C 109.5 C29—C30—C25 120.0 (3)
H13A—C13—H13C 109.5 C29—C30—H30 120.0
H13B—C13—H13C 109.5 C25—C30—H30 120.0
N12—C14—H14A 109.5 N24—C31—C32 112.0 (3)
N12—C14—H14B 109.5 N24—C31—H31A 109.2
H14A—C14—H14B 109.5 C32—C31—H31A 109.2
N12—C14—H14C 109.5 N24—C31—H31B 109.2
H14A—C14—H14C 109.5 C32—C31—H31B 109.2
H14B—C14—H14C 109.5 H31A—C31—H31B 107.9
C16—C15—C20 116.8 (2) C31—C32—C33 111.7 (3)
C16—C15—C5 122.3 (2) C31—C32—H32A 109.3
C20—C15—C5 120.9 (2) C33—C32—H32A 109.3
C17—C16—C15 121.8 (2) C31—C32—H32B 109.3
C17—C16—H16 119.1 C33—C32—H32B 109.3
C15—C16—H16 119.1 H32A—C32—H32B 107.9
C16—C17—C18 121.3 (2) C32—C33—H33A 109.5
C16—C17—H17 119.4 C32—C33—H33B 109.5
C18—C17—H17 119.4 H33A—C33—H33B 109.5
N21—C18—C19 122.1 (3) C32—C33—H33C 109.5
N21—C18—C17 120.7 (3) H33A—C33—H33C 109.5
C19—C18—C17 117.1 (2) H33B—C33—H33C 109.5
C3—C1—C2—C3i 1.1 (4) C5—C15—C16—C17 177.2 (2)
C4—C1—C2—C3i −176.6 (2) C15—C16—C17—C18 −0.9 (4)
C2—C1—C3—C2i −1.1 (4) C16—C17—C18—N21 −175.3 (3)
C4—C1—C3—C2i 176.7 (2) C16—C17—C18—C19 2.1 (4)
C2—C1—C3—N24 179.6 (2) N21—C18—C19—C20 176.4 (3)
C4—C1—C3—N24 −2.6 (4) C17—C18—C19—C20 −1.0 (4)
C2—C1—C4—C5 −33.7 (4) C18—C19—C20—C15 −1.6 (4)
C3—C1—C4—C5 148.6 (3) C16—C15—C20—C19 2.8 (4)
C1—C4—C5—C6 −6.4 (4) C5—C15—C20—C19 −176.0 (2)
C1—C4—C5—C15 177.1 (2) C19—C18—N21—C22 8.5 (4)
C4—C5—C6—C7 131.4 (3) C17—C18—N21—C22 −174.2 (3)
C15—C5—C6—C7 −52.0 (3) C19—C18—N21—C23 159.1 (3)
C4—C5—C6—C11 −51.3 (3) C17—C18—N21—C23 −23.6 (4)
C15—C5—C6—C11 125.4 (3) C2i—C3—N24—C25 118.7 (3)
C11—C6—C7—C8 −0.1 (3) C1—C3—N24—C25 −61.9 (4)
C5—C6—C7—C8 177.4 (2) C2i—C3—N24—C31 −56.8 (3)
C6—C7—C8—C9 −1.9 (4) C1—C3—N24—C31 122.5 (3)
C7—C8—C9—N12 −177.9 (2) C3—N24—C25—C26 −11.8 (4)
C7—C8—C9—C10 2.9 (4) C31—N24—C25—C26 163.6 (3)
N12—C9—C10—C11 178.9 (2) C3—N24—C25—C30 169.8 (3)
C8—C9—C10—C11 −1.9 (4) C31—N24—C25—C30 −14.8 (4)
C9—C10—C11—C6 −0.1 (4) C30—C25—C26—C27 −0.3 (6)
C7—C6—C11—C10 1.2 (3) N24—C25—C26—C27 −178.8 (4)
C5—C6—C11—C10 −176.3 (2) C25—C26—C27—C28 1.1 (8)
C8—C9—N12—C13 15.2 (4) C26—C27—C28—C29 −0.5 (9)
C10—C9—N12—C13 −165.6 (3) C27—C28—C29—C30 −0.9 (9)
C8—C9—N12—C14 165.9 (3) C28—C29—C30—C25 1.7 (7)
C10—C9—N12—C14 −14.9 (4) C26—C25—C30—C29 −1.1 (5)
C4—C5—C15—C16 −55.0 (3) N24—C25—C30—C29 177.4 (3)
C6—C5—C15—C16 128.2 (3) C25—N24—C31—C32 98.4 (3)
C4—C5—C15—C20 123.8 (3) C3—N24—C31—C32 −86.1 (3)
C6—C5—C15—C20 −53.0 (3) N24—C31—C32—C33 −179.7 (3)
C20—C15—C16—C17 −1.6 (4)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5488).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Detert, H., Schollmeyer, D. & Sugiono, E. (2001). Eur. J. Org. Chem. pp. 2927–2938.
  3. Detert, H. & Sugiono, E. (2004). Synth. Met. 147, 233–236.
  4. Detert, H. & Sugiono, E. (2005). J. Lumin 112, 372–376.
  5. Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.
  6. Drefahl, G. & Plötner, G. (1961). Chem. Ber. 94, 907–914.
  7. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  8. Hutten, P. F. van, Wildeman, J., Meetsma, A. & Hadziioannou, G. (1999). J. Am. Chem. Soc. 121, 5910–5918.
  9. Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.
  10. Schmitt, V. (2005). Diploma thesis, University of Mainz, Mainz, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Stalmach, U., Kolshorn, H., Brehm, I. & Meier, H. (1996). Liebigs Ann pp. 1449–1456.
  14. Strehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249–259. [DOI] [PubMed]
  15. Wilson, J. N. & Bunz, U. H. F. (2005). J. Am. Chem. Soc. 127, 4124–4125. [DOI] [PubMed]
  16. Zheng, S., Barlow, S., Parker, T. C. & Marder, S. R. (2003). Tetrahedron Lett. 44, 7989–7992.
  17. Zucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). Chem. Eur. J. 15, 13075–13081. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100910X/bt5488sup1.cif

e-67-0o876-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100910X/bt5488Isup2.hkl

e-67-0o876-Isup2.hkl (231.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES