Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 23;67(Pt 4):o943–o944. doi: 10.1107/S1600536811010038

3-(2-Hy­droxy­phen­yl)-1-{(E)-[1-(pyrazin-2-yl)ethyl­idene]amino}­thio­urea monohydrate

Erna Normaya a, Yang Farina b,, Siti Nadiah Abd Halim c, Edward R T Tiekink c,*
PMCID: PMC3099853  PMID: 21754211

Abstract

In the title compound, C13H13N5OS·H2O, the thio­urea mol­ecules closely resemble each other and are approximately planar; the dihedral angles formed between the terminal benzene rings are 7.88 (8) and 7.20 (8)°, respectively. The observed planarity correlates with the presence of bifurcated N—H⋯(O,N) hydrogen bonds. In the crystal, the mol­ecules are connected into supra­molecular double chains via a combination of N—H⋯S (linking the two independent mol­ecules), O—H⋯O and O—H⋯N (linking dimeric aggregates into a supra­molecular chain via hy­droxy–water, water–water and water–pyrazine inter­actions) and O—H⋯S hydrogen bonds (connecting two chains). The chains are further connected by C—H⋯N and C—H⋯S inter­actions.

Related literature

For biological activity of thio­urea derivatives, see: Venkatachalam et al. (2004). For related structures, see: Gunasekaran et al. (2010); Dzulkifli et al. (2011). For additional geometric analysis, see: Spek (2009).graphic file with name e-67-0o943-scheme1.jpg

Experimental

Crystal data

  • C13H13N5OS·H2O

  • M r = 305.36

  • Triclinic, Inline graphic

  • a = 7.9808 (5) Å

  • b = 11.7557 (8) Å

  • c = 16.4160 (11) Å

  • α = 99.638 (1)°

  • β = 94.128 (1)°

  • γ = 109.200 (1)°

  • V = 1420.54 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.18 × 0.14 × 0.11 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.656, T max = 0.746

  • 18244 measured reflections

  • 6505 independent reflections

  • 5267 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.110

  • S = 1.04

  • 6505 reflections

  • 411 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010038/hg5012sup1.cif

e-67-0o943-sup1.cif (26KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010038/hg5012Isup2.hkl

e-67-0o943-Isup2.hkl (311.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1 0.88 (1) 2.11 (2) 2.5720 (15) 112 (1)
N1—H1n⋯N3 0.88 (1) 2.04 (2) 2.5435 (18) 116 (1)
N6—H6n⋯O2 0.87 (1) 2.11 (2) 2.5676 (15) 112 (1)
N6—H6n⋯N8 0.87 (1) 2.02 (2) 2.5358 (17) 117 (1)
O1—H1o⋯O1w 0.83 (1) 1.86 (1) 2.6820 (15) 170 (2)
O2—H2o⋯O2wi 0.83 (1) 1.83 (1) 2.6481 (16) 169 (2)
O1w—H1w⋯N9ii 0.84 (1) 1.96 (1) 2.7958 (17) 169 (2)
O1w—H2w⋯S2iii 0.83 (2) 2.82 (2) 3.4648 (13) 136 (2)
O2w—H3w⋯N4 0.84 (1) 2.02 (1) 2.8547 (17) 171 (2)
O2w—H4w⋯O1w 0.85 (2) 2.00 (2) 2.8357 (18) 169 (2)
N2—H2n⋯S2iv 0.87 (1) 2.67 (1) 3.4802 (12) 156 (1)
N7—H7n⋯S1v 0.87 (1) 2.58 (1) 3.4508 (12) 176 (2)
C16—H16⋯N5vi 0.95 2.58 3.517 (2) 172
C22—H22a⋯S1v 0.98 2.79 3.4454 (16) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

We thank to University Kebangsaan Malaysia, the Inter­national Islamic University Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grant GUP-NBT-08–27-112. The authors also thank the University of Malaya for support of the crystallographic facility and acknowledge an UMRG grant (RG125/10AFR).

supplementary crystallographic information

Comment

Thiourea derivatives have biological potential (Venkatachalam et al., 2004) and attract continuing structural studies (Gunasekaran et al., 2010; Dzulkifli et al., 2011).

The title compound (I), Fig. 1, features two independent thiourea derivatives and two water molecules of crystallization in the asymmetric unit. As seen from the overlay diagram, Fig. 2, there are small differences between the independent thiourea molecules. These relate to the relative orientations of the terminal benzene rings; the r.m.s. deviation of bond distances = 0.0032 Å (Spek, 2009). The similarity between the molecules is seen in the dihedral angle formed between the rings = 7.88 (8) ° for the S1-containing molecule and 7.20 (8) ° for the other. The planarity of each molecule is readily explained in terms of bifurcated intramolecular N—H···O,N hydrogen bonds, Table 1.

The most prominent feature of the crystal packing is the formation of supramolecular double chains along [111]. The two molecules comprising the asymmetric unit are connected via an eight-membered {···HNC═S}2 synthon and the resulting dimeric aggregates are connected by two molecules of water via a sequence of O—H···O hydrogen bonds. Thus, the hydroxyl group of one molecule is connected to a water molecule which hydrogen bonds to the second water molecule which in turn links the second hydroxyl group. Hydrogen bonds between the water molecules and pyrazine-N atoms close two fused 16-membered {···HOH···NC3N2CNC2OH···O} synthons. This arrangement is stabilized by the intramolecular interactions outlined above. The result is a supramolecular chain, Fig. 3. Pairs of chains are linked via water-O—H···S hydrogen bonds leading to a double chain, Fig. 4. The chains are consolidated in the crystal packing by C—H···N and C—H···S interactions, Table 1 and Fig. 5.

Experimental

The reaction of 2-acetylpyrazine with methyl hydrazinecarbodithioate (II) formed (E)-methyl-2-(1-(pyrazin-2-yl)ethylidene)hydrazinecarbodithioate (III). The condensation reaction of (III) with 2-phenolamine produced the title compound, (I), i.e. (E)-N-(2-hydroxyphenyl)-2-(1-(pyrazin-2- yl)ethylidene)hydrazinecarbothioamide (yield:73.3%, M.pt. 469—471 K).

Slow recrystallization of its butanol solution afforded yellow crystals of (I). Elemental anal. (calc.): C, 51.80 (51.13); H, 4.91 (4.95), N, 24.10 (22.94) %. FT—IR (νmax; cm-1): (O—H) 3459, (N—H) 3209, (C\b C) 3016, (CH3) 2925, (C═N) 1609, (C≐C aromatic) 1555, (C—N) 1366, (pyrazyl) 1162, (N —N) 1121 and (C═S) 1023.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The water-H and amine-H atoms were refined with the distance restraints O—H = 0.84±0.01 Å and N–H = 0.88±0.01 Å, and with Uiso(H) = yUequiv(parent atom); y = 1.5 for O, and 1.2 for N. In addition, each pair of water-H atoms were constrained to be separated by 1.39±0.02 Å. Owing to poor agreement, the reflections (37 13) and (3 6 14) were omitted from the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structures of the components defining the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Overlay diagram showing the superimposition of the S1-containing molecule (red) with the S2-containing molecule (blue).

Fig. 3.

Fig. 3.

Supramolecular chain in (I) mediated by O—H···O (orange), O—H···N (blue) and N—H···S (purple) hydrogen bonding shown as dashed lines.

Fig. 4.

Fig. 4.

Supramolecular double chain in (I) whereby the chain in Fig. 3 is connected via O—H···S hydrogen bonds shown as green dashed lines.

Fig. 5.

Fig. 5.

View in projection down the a axis of the crystal packing for (I). The C—H···N and C—H···S contacts are shown as pink dashed lines.

Crystal data

C13H13N5OS·H2O Z = 4
Mr = 305.36 F(000) = 640
Triclinic, P1 Dx = 1.428 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9808 (5) Å Cell parameters from 6288 reflections
b = 11.7557 (8) Å θ = 2.5–30.6°
c = 16.4160 (11) Å µ = 0.24 mm1
α = 99.638 (1)° T = 100 K
β = 94.128 (1)° Block, yellow
γ = 109.200 (1)° 0.18 × 0.14 × 0.11 mm
V = 1420.54 (16) Å3

Data collection

Bruker SMART APEX diffractometer 6505 independent reflections
Radiation source: fine-focus sealed tube 5267 reflections with I > 2σ(I)
graphite Rint = 0.031
ω scans θmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.656, Tmax = 0.746 k = −15→15
18244 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.4197P] where P = (Fo2 + 2Fc2)/3
6505 reflections (Δ/σ)max = 0.001
411 parameters Δρmax = 0.39 e Å3
12 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.09788 (5) 0.17115 (3) 0.34884 (2) 0.02054 (11)
O1 0.19179 (14) 0.50524 (9) 0.62276 (6) 0.0191 (2)
H1O 0.223 (2) 0.5485 (15) 0.6707 (7) 0.029*
N1 0.06763 (16) 0.35848 (11) 0.48035 (7) 0.0160 (3)
H1N 0.1553 (18) 0.4298 (10) 0.4942 (10) 0.019*
N2 0.17706 (16) 0.37485 (11) 0.35765 (7) 0.0155 (3)
H2N 0.176 (2) 0.3458 (15) 0.3051 (6) 0.019*
N3 0.30025 (16) 0.48289 (11) 0.40124 (7) 0.0151 (2)
N4 0.63006 (17) 0.80104 (11) 0.55376 (8) 0.0187 (3)
N5 0.65300 (16) 0.74828 (11) 0.38282 (8) 0.0173 (3)
C1 0.04480 (19) 0.40506 (13) 0.62335 (9) 0.0157 (3)
C2 −0.0340 (2) 0.38248 (14) 0.69423 (9) 0.0193 (3)
H2 0.0134 0.4390 0.7459 0.023*
C3 −0.1821 (2) 0.27734 (14) 0.68991 (9) 0.0201 (3)
H3 −0.2360 0.2619 0.7386 0.024*
C4 −0.2515 (2) 0.19499 (14) 0.61453 (9) 0.0194 (3)
H4 −0.3522 0.1228 0.6119 0.023*
C5 −0.17480 (19) 0.21715 (13) 0.54249 (9) 0.0175 (3)
H5 −0.2234 0.1606 0.4910 0.021*
C6 −0.02660 (19) 0.32252 (13) 0.54647 (8) 0.0148 (3)
C7 0.05216 (19) 0.30635 (13) 0.39999 (9) 0.0153 (3)
C8 0.42014 (19) 0.55019 (13) 0.36458 (8) 0.0147 (3)
C9 0.4445 (2) 0.52302 (14) 0.27451 (8) 0.0187 (3)
H9A 0.4149 0.4342 0.2557 0.028*
H9B 0.5692 0.5659 0.2680 0.028*
H9C 0.3653 0.5512 0.2410 0.028*
C10 0.53888 (18) 0.66744 (13) 0.41919 (9) 0.0146 (3)
C11 0.52873 (19) 0.69459 (13) 0.50503 (9) 0.0167 (3)
H11 0.4468 0.6349 0.5290 0.020*
C12 0.7435 (2) 0.88265 (14) 0.51665 (9) 0.0201 (3)
H12 0.8179 0.9601 0.5491 0.024*
C13 0.7538 (2) 0.85604 (14) 0.43227 (10) 0.0210 (3)
H13 0.8353 0.9162 0.4084 0.025*
S2 1.07562 (5) 1.30651 (3) 0.14135 (2) 0.01929 (10)
O2 0.78422 (15) 0.96845 (10) −0.13104 (6) 0.0210 (2)
H2O 0.746 (2) 0.9237 (16) −0.1782 (7) 0.032*
N6 0.91194 (16) 1.11695 (11) 0.01014 (7) 0.0157 (2)
H6N 0.8277 (18) 1.0449 (10) −0.0021 (10) 0.019*
N7 0.80922 (16) 1.09918 (11) 0.13407 (7) 0.0157 (3)
H7N 0.829 (2) 1.1201 (15) 0.1885 (6) 0.019*
N8 0.68925 (16) 0.98922 (10) 0.09106 (7) 0.0150 (2)
N9 0.35318 (18) 0.67259 (12) −0.06046 (8) 0.0230 (3)
N10 0.34629 (17) 0.72072 (12) 0.11192 (8) 0.0194 (3)
C14 0.92330 (19) 1.07099 (13) −0.13441 (9) 0.0164 (3)
C15 0.9944 (2) 1.09597 (14) −0.20668 (9) 0.0201 (3)
H15 0.9453 1.0394 −0.2581 0.024*
C16 1.1376 (2) 1.20380 (14) −0.20400 (10) 0.0212 (3)
H16 1.1856 1.2213 −0.2536 0.025*
C17 1.2101 (2) 1.28569 (14) −0.12866 (10) 0.0212 (3)
H17 1.3081 1.3591 −0.1271 0.025*
C18 1.1413 (2) 1.26184 (14) −0.05531 (9) 0.0185 (3)
H18 1.1926 1.3182 −0.0039 0.022*
C19 0.99712 (19) 1.15496 (13) −0.05791 (8) 0.0154 (3)
C20 0.93076 (18) 1.16914 (13) 0.09055 (8) 0.0143 (3)
C21 0.57203 (19) 0.92136 (13) 0.12853 (9) 0.0157 (3)
C22 0.5460 (2) 0.94878 (14) 0.21817 (9) 0.0215 (3)
H22A 0.5889 1.0380 0.2386 0.032*
H22B 0.6137 0.9122 0.2512 0.032*
H22C 0.4185 0.9141 0.2233 0.032*
C23 0.45390 (19) 0.80368 (13) 0.07433 (9) 0.0158 (3)
C24 0.4564 (2) 0.77884 (14) −0.01203 (9) 0.0200 (3)
H24 0.5342 0.8397 −0.0367 0.024*
C25 0.2466 (2) 0.58978 (14) −0.02229 (10) 0.0238 (3)
H25 0.1707 0.5126 −0.0547 0.029*
C26 0.2442 (2) 0.61369 (14) 0.06273 (10) 0.0227 (3)
H26 0.1674 0.5520 0.0872 0.027*
O1W 0.29296 (15) 0.66684 (11) 0.76876 (7) 0.0240 (3)
H1W 0.320 (3) 0.6634 (19) 0.8187 (7) 0.036*
H2W 0.209 (2) 0.6932 (18) 0.7662 (11) 0.036*
O2W 0.62751 (16) 0.80846 (11) 0.72836 (7) 0.0264 (3)
H4W 0.5218 (15) 0.7672 (16) 0.7342 (11) 0.040*
H3W 0.634 (3) 0.8147 (19) 0.6783 (7) 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0241 (2) 0.01728 (19) 0.01090 (18) −0.00349 (15) 0.00142 (14) −0.00018 (13)
O1 0.0207 (5) 0.0182 (5) 0.0111 (5) −0.0003 (4) 0.0027 (4) −0.0024 (4)
N1 0.0165 (6) 0.0149 (6) 0.0117 (6) −0.0001 (5) 0.0033 (5) 0.0003 (5)
N2 0.0180 (6) 0.0140 (6) 0.0091 (5) −0.0001 (5) 0.0020 (5) −0.0006 (5)
N3 0.0156 (6) 0.0141 (6) 0.0125 (6) 0.0027 (5) 0.0002 (5) 0.0000 (5)
N4 0.0196 (6) 0.0176 (6) 0.0157 (6) 0.0040 (5) −0.0003 (5) 0.0009 (5)
N5 0.0162 (6) 0.0180 (6) 0.0154 (6) 0.0026 (5) 0.0029 (5) 0.0038 (5)
C1 0.0171 (7) 0.0164 (7) 0.0136 (7) 0.0060 (5) 0.0022 (5) 0.0025 (5)
C2 0.0243 (8) 0.0221 (7) 0.0125 (7) 0.0089 (6) 0.0043 (6) 0.0033 (6)
C3 0.0241 (8) 0.0241 (8) 0.0159 (7) 0.0106 (6) 0.0090 (6) 0.0075 (6)
C4 0.0191 (7) 0.0189 (7) 0.0211 (7) 0.0054 (6) 0.0078 (6) 0.0064 (6)
C5 0.0181 (7) 0.0181 (7) 0.0144 (7) 0.0050 (6) 0.0022 (5) 0.0006 (6)
C6 0.0175 (7) 0.0168 (7) 0.0113 (6) 0.0070 (6) 0.0043 (5) 0.0033 (5)
C7 0.0161 (7) 0.0162 (7) 0.0127 (7) 0.0047 (5) 0.0012 (5) 0.0025 (5)
C8 0.0165 (7) 0.0154 (7) 0.0113 (6) 0.0049 (5) 0.0013 (5) 0.0019 (5)
C9 0.0213 (7) 0.0202 (7) 0.0112 (7) 0.0034 (6) 0.0034 (6) 0.0017 (6)
C10 0.0138 (7) 0.0158 (7) 0.0140 (7) 0.0048 (5) 0.0017 (5) 0.0033 (5)
C11 0.0189 (7) 0.0157 (7) 0.0133 (7) 0.0035 (6) 0.0007 (5) 0.0027 (5)
C12 0.0202 (7) 0.0152 (7) 0.0200 (7) 0.0015 (6) 0.0000 (6) 0.0010 (6)
C13 0.0192 (7) 0.0184 (7) 0.0211 (8) 0.0008 (6) 0.0017 (6) 0.0046 (6)
S2 0.0241 (2) 0.01506 (18) 0.01128 (18) −0.00166 (14) 0.00061 (14) 0.00055 (13)
O2 0.0234 (6) 0.0209 (5) 0.0113 (5) 0.0005 (4) 0.0013 (4) −0.0016 (4)
N6 0.0174 (6) 0.0131 (6) 0.0116 (6) −0.0005 (5) 0.0031 (5) 0.0001 (5)
N7 0.0198 (6) 0.0135 (6) 0.0093 (5) 0.0010 (5) 0.0018 (5) −0.0003 (5)
N8 0.0170 (6) 0.0118 (6) 0.0135 (6) 0.0026 (5) 0.0008 (5) 0.0004 (4)
N9 0.0229 (7) 0.0214 (7) 0.0180 (6) 0.0018 (5) 0.0023 (5) −0.0022 (5)
N10 0.0179 (6) 0.0185 (6) 0.0187 (6) 0.0013 (5) 0.0022 (5) 0.0057 (5)
C14 0.0183 (7) 0.0169 (7) 0.0150 (7) 0.0073 (6) 0.0030 (5) 0.0029 (6)
C15 0.0251 (8) 0.0255 (8) 0.0117 (7) 0.0116 (6) 0.0033 (6) 0.0032 (6)
C16 0.0264 (8) 0.0259 (8) 0.0181 (7) 0.0138 (7) 0.0106 (6) 0.0097 (6)
C17 0.0223 (8) 0.0212 (7) 0.0225 (8) 0.0076 (6) 0.0088 (6) 0.0079 (6)
C18 0.0196 (7) 0.0189 (7) 0.0167 (7) 0.0057 (6) 0.0052 (6) 0.0034 (6)
C19 0.0187 (7) 0.0182 (7) 0.0110 (6) 0.0079 (6) 0.0037 (5) 0.0035 (5)
C20 0.0158 (7) 0.0146 (6) 0.0114 (6) 0.0042 (5) 0.0015 (5) 0.0021 (5)
C21 0.0173 (7) 0.0167 (7) 0.0127 (7) 0.0054 (6) 0.0019 (5) 0.0029 (5)
C22 0.0231 (8) 0.0217 (8) 0.0136 (7) 0.0011 (6) 0.0044 (6) 0.0003 (6)
C23 0.0150 (7) 0.0160 (7) 0.0153 (7) 0.0040 (5) 0.0018 (5) 0.0027 (5)
C24 0.0202 (7) 0.0194 (7) 0.0154 (7) 0.0015 (6) 0.0021 (6) 0.0006 (6)
C25 0.0215 (8) 0.0166 (7) 0.0264 (8) 0.0008 (6) 0.0015 (6) −0.0016 (6)
C26 0.0194 (7) 0.0188 (7) 0.0248 (8) −0.0001 (6) 0.0017 (6) 0.0055 (6)
O1W 0.0261 (6) 0.0278 (6) 0.0161 (5) 0.0115 (5) −0.0008 (5) −0.0039 (5)
O2W 0.0304 (6) 0.0284 (6) 0.0128 (5) 0.0032 (5) 0.0014 (5) −0.0014 (5)

Geometric parameters (Å, °)

S1—C7 1.6797 (14) O2—H2O 0.832 (9)
O1—C1 1.3638 (17) N6—C20 1.3347 (17)
O1—H1O 0.834 (9) N6—C19 1.4094 (18)
N1—C7 1.3370 (18) N6—H6N 0.871 (9)
N1—C6 1.4087 (18) N7—N8 1.3671 (16)
N1—H1N 0.878 (9) N7—C20 1.3782 (18)
N2—N3 1.3656 (16) N7—H7N 0.874 (9)
N2—C7 1.3727 (18) N8—C21 1.2830 (18)
N2—H2N 0.872 (9) N9—C24 1.3294 (19)
N3—C8 1.2837 (18) N9—C25 1.342 (2)
N4—C11 1.3289 (18) N10—C26 1.3379 (19)
N4—C12 1.3471 (19) N10—C23 1.3403 (18)
N5—C10 1.3372 (18) C14—C15 1.386 (2)
N5—C13 1.3425 (19) C14—C19 1.4122 (19)
C1—C2 1.385 (2) C15—C16 1.392 (2)
C1—C6 1.4078 (19) C15—H15 0.9500
C2—C3 1.389 (2) C16—C17 1.387 (2)
C2—H2 0.9500 C16—H16 0.9500
C3—C4 1.387 (2) C17—C18 1.392 (2)
C3—H3 0.9500 C17—H17 0.9500
C4—C5 1.394 (2) C18—C19 1.389 (2)
C4—H4 0.9500 C18—H18 0.9500
C5—C6 1.391 (2) C21—C23 1.4844 (19)
C5—H5 0.9500 C21—C22 1.4972 (19)
C8—C10 1.4854 (19) C22—H22A 0.9800
C8—C9 1.5000 (19) C22—H22B 0.9800
C9—H9A 0.9800 C22—H22C 0.9800
C9—H9B 0.9800 C23—C24 1.402 (2)
C9—H9C 0.9800 C24—H24 0.9500
C10—C11 1.4061 (19) C25—C26 1.380 (2)
C11—H11 0.9500 C25—H25 0.9500
C12—C13 1.383 (2) C26—H26 0.9500
C12—H12 0.9500 O1W—H1W 0.845 (9)
C13—H13 0.9500 O1W—H2W 0.829 (9)
S2—C20 1.6799 (14) O2W—H4W 0.845 (9)
O2—C14 1.3562 (18) O2W—H3W 0.842 (9)
C1—O1—H1O 109.1 (13) C20—N6—C19 133.48 (12)
C7—N1—C6 133.34 (12) C20—N6—H6N 111.9 (11)
C7—N1—H1N 112.4 (11) C19—N6—H6N 114.6 (11)
C6—N1—H1N 114.2 (11) N8—N7—C20 117.62 (11)
N3—N2—C7 117.93 (11) N8—N7—H7N 123.7 (11)
N3—N2—H2N 123.7 (11) C20—N7—H7N 117.2 (11)
C7—N2—H2N 118.4 (11) C21—N8—N7 120.02 (12)
C8—N3—N2 120.36 (12) C24—N9—C25 116.48 (13)
C11—N4—C12 116.55 (13) C26—N10—C23 116.37 (13)
C10—N5—C13 116.46 (13) O2—C14—C15 124.21 (13)
O1—C1—C2 123.55 (13) O2—C14—C19 115.96 (12)
O1—C1—C6 116.29 (12) C15—C14—C19 119.83 (14)
C2—C1—C6 120.16 (13) C14—C15—C16 120.11 (14)
C1—C2—C3 120.07 (14) C14—C15—H15 119.9
C1—C2—H2 120.0 C16—C15—H15 119.9
C3—C2—H2 120.0 C17—C16—C15 119.82 (14)
C4—C3—C2 119.96 (14) C17—C16—H16 120.1
C4—C3—H3 120.0 C15—C16—H16 120.1
C2—C3—H3 120.0 C16—C17—C18 120.92 (15)
C3—C4—C5 120.61 (14) C16—C17—H17 119.5
C3—C4—H4 119.7 C18—C17—H17 119.5
C5—C4—H4 119.7 C19—C18—C17 119.41 (14)
C6—C5—C4 119.63 (13) C19—C18—H18 120.3
C6—C5—H5 120.2 C17—C18—H18 120.3
C4—C5—H5 120.2 C18—C19—N6 126.65 (13)
C5—C6—C1 119.56 (13) C18—C19—C14 119.91 (13)
C5—C6—N1 127.05 (13) N6—C19—C14 113.44 (12)
C1—C6—N1 113.39 (12) N6—C20—N7 113.11 (12)
N1—C7—N2 113.40 (12) N6—C20—S2 128.34 (11)
N1—C7—S1 127.44 (11) N7—C20—S2 118.52 (10)
N2—C7—S1 119.15 (10) N8—C21—C23 113.87 (12)
N3—C8—C10 114.04 (12) N8—C21—C22 127.09 (13)
N3—C8—C9 126.55 (13) C23—C21—C22 119.03 (12)
C10—C8—C9 119.37 (12) C21—C22—H22A 109.5
C8—C9—H9A 109.5 C21—C22—H22B 109.5
C8—C9—H9B 109.5 H22A—C22—H22B 109.5
H9A—C9—H9B 109.5 C21—C22—H22C 109.5
C8—C9—H9C 109.5 H22A—C22—H22C 109.5
H9A—C9—H9C 109.5 H22B—C22—H22C 109.5
H9B—C9—H9C 109.5 N10—C23—C24 121.20 (13)
N5—C10—C11 121.07 (13) N10—C23—C21 116.94 (12)
N5—C10—C8 117.13 (12) C24—C23—C21 121.86 (13)
C11—C10—C8 121.77 (13) N9—C24—C23 121.95 (14)
N4—C11—C10 122.14 (13) N9—C24—H24 119.0
N4—C11—H11 118.9 C23—C24—H24 119.0
C10—C11—H11 118.9 N9—C25—C26 121.75 (14)
N4—C12—C13 121.38 (14) N9—C25—H25 119.1
N4—C12—H12 119.3 C26—C25—H25 119.1
C13—C12—H12 119.3 N10—C26—C25 122.24 (14)
N5—C13—C12 122.38 (14) N10—C26—H26 118.9
N5—C13—H13 118.8 C25—C26—H26 118.9
C12—C13—H13 118.8 H1W—O1W—H2W 109.0 (16)
C14—O2—H2O 111.0 (14) H4W—O2W—H3W 110.5 (16)
C7—N2—N3—C8 179.84 (13) C20—N7—N8—C21 −179.19 (13)
O1—C1—C2—C3 −179.12 (13) O2—C14—C15—C16 −179.93 (14)
C6—C1—C2—C3 0.9 (2) C19—C14—C15—C16 −0.3 (2)
C1—C2—C3—C4 −0.1 (2) C14—C15—C16—C17 0.6 (2)
C2—C3—C4—C5 −0.6 (2) C15—C16—C17—C18 −0.1 (2)
C3—C4—C5—C6 0.4 (2) C16—C17—C18—C19 −0.6 (2)
C4—C5—C6—C1 0.4 (2) C17—C18—C19—N6 179.92 (14)
C4—C5—C6—N1 179.51 (14) C17—C18—C19—C14 0.8 (2)
O1—C1—C6—C5 178.95 (13) C20—N6—C19—C18 5.0 (3)
C2—C1—C6—C5 −1.1 (2) C20—N6—C19—C14 −175.84 (15)
O1—C1—C6—N1 −0.25 (18) O2—C14—C19—C18 179.25 (13)
C2—C1—C6—N1 179.70 (13) C15—C14—C19—C18 −0.4 (2)
C7—N1—C6—C5 −2.7 (3) O2—C14—C19—N6 0.05 (18)
C7—N1—C6—C1 176.41 (15) C15—C14—C19—N6 −179.61 (13)
C6—N1—C7—N2 −179.14 (14) C19—N6—C20—N7 176.62 (14)
C6—N1—C7—S1 0.5 (2) C19—N6—C20—S2 −1.4 (2)
N3—N2—C7—N1 1.30 (19) N8—N7—C20—N6 0.04 (18)
N3—N2—C7—S1 −178.38 (10) N8—N7—C20—S2 178.23 (10)
N2—N3—C8—C10 177.27 (12) N7—N8—C21—C23 −178.68 (12)
N2—N3—C8—C9 −0.6 (2) N7—N8—C21—C22 0.9 (2)
C13—N5—C10—C11 −0.9 (2) C26—N10—C23—C24 0.7 (2)
C13—N5—C10—C8 177.13 (13) C26—N10—C23—C21 −178.17 (13)
N3—C8—C10—N5 −172.44 (13) N8—C21—C23—N10 170.53 (13)
C9—C8—C10—N5 5.6 (2) C22—C21—C23—N10 −9.1 (2)
N3—C8—C10—C11 5.6 (2) N8—C21—C23—C24 −8.3 (2)
C9—C8—C10—C11 −176.37 (13) C22—C21—C23—C24 172.12 (14)
C12—N4—C11—C10 0.2 (2) C25—N9—C24—C23 −0.3 (2)
N5—C10—C11—N4 0.4 (2) N10—C23—C24—N9 −0.1 (2)
C8—C10—C11—N4 −177.57 (13) C21—C23—C24—N9 178.71 (14)
C11—N4—C12—C13 −0.3 (2) C24—N9—C25—C26 0.0 (2)
C10—N5—C13—C12 0.9 (2) C23—N10—C26—C25 −0.9 (2)
N4—C12—C13—N5 −0.2 (2) N9—C25—C26—N10 0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1n···O1 0.878 (13) 2.107 (16) 2.5720 (15) 112.3 (12)
N1—H1n···N3 0.878 (13) 2.038 (15) 2.5435 (18) 115.5 (13)
N6—H6n···O2 0.871 (12) 2.112 (16) 2.5676 (15) 111.9 (12)
N6—H6n···N8 0.871 (12) 2.023 (15) 2.5358 (17) 116.7 (13)
O1—H1o···O1w 0.833 (12) 1.857 (13) 2.6820 (15) 170.3 (16)
O2—H2o···O2wi 0.833 (13) 1.826 (14) 2.6481 (16) 168.9 (17)
O1w—H1w···N9ii 0.844 (13) 1.962 (12) 2.7958 (17) 169 (2)
O1w—H2w···S2iii 0.827 (18) 2.822 (18) 3.4648 (13) 136.0 (16)
O2w—H3w···N4 0.841 (13) 2.021 (12) 2.8547 (17) 171 (2)
O2w—H4w···O1w 0.845 (15) 2.001 (16) 2.8357 (18) 169.1 (16)
N2—H2n···S2iv 0.871 (10) 2.667 (10) 3.4802 (12) 155.9 (14)
N7—H7n···S1v 0.874 (10) 2.579 (10) 3.4508 (12) 175.6 (15)
C16—H16···N5vi 0.95 2.58 3.517 (2) 172
C22—H22a···S1v 0.98 2.79 3.4454 (16) 125

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) −x+1, −y+2, −z+1; (iv) x−1, y−1, z; (v) x+1, y+1, z; (vi) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5012).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst E67, o872. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model 19, 557–559. [DOI] [PubMed]
  6. Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2572–o2573. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010038/hg5012sup1.cif

e-67-0o943-sup1.cif (26KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010038/hg5012Isup2.hkl

e-67-0o943-Isup2.hkl (311.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES