Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):o916. doi: 10.1107/S1600536811009536

2-(4-Chloro­benzamido)­acetic acid

Islam Ullah Khan a,*, Muneeb Hayat Khan a, Muhammad Nadeem Arshad a, Mehmet Akkurt b,*
PMCID: PMC3099855  PMID: 21754187

Abstract

In the crystal structure of the title mol­ecule, C9H8ClNO3, adjacent mol­ecules are arranged into centrosymmetric dimers through pairs of inter­molecular O—H⋯O inter­actions. Inter­molecular N—H⋯O hydrogen bonds link the dimers into a layer parallel to the bc plane. In the layer, mol­ecules are packed in a face-to-face π-stacked arrangment, showing π–π stacking inter­actions between the benzene rings with a centroid–centroid distance of 3.6884 (8) Å.

Related literature

For crystallographic studies of benzamide derivatives, see: Donnelly et al. (2008); Mugnoli et al. (1991); Stensland et al. (1995). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-0o916-scheme1.jpg

Experimental

Crystal data

  • C9H8ClNO3

  • M r = 213.61

  • Monoclinic, Inline graphic

  • a = 10.5035 (2) Å

  • b = 13.2105 (4) Å

  • c = 7.1226 (2) Å

  • β = 102.203 (1)°

  • V = 965.98 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.36 × 0.21 × 0.13 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 9027 measured reflections

  • 2365 independent reflections

  • 1627 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.098

  • S = 1.02

  • 2365 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009536/is2688sup1.cif

e-67-0o916-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009536/is2688Isup2.hkl

e-67-0o916-Isup2.hkl (116.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.06 (2) 2.8491 (19) 160 (2)
O3—H1O⋯O1ii 0.83 (1) 1.85 (2) 2.6613 (16) 165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

supplementary crystallographic information

Comment

Benzamide is originally a derivative of benzoic acid. Some benzamide derivatives are in use as Analgesics (Ethenzamide, Salicylamide), Antiemetics/Prokinetics (Alizapride, Bromopride, Cinitapride, Cisapride, Clebopride) and Antipsychotics (Amisulpride, Nemonapride, Remoxipride, Sulpiride, Sultopride). Other benzamides are being prepared and there crystallographic studies are done (Donnelly et al., 2008; Stensland et al., 1995; Mugnoli et al., 1991). The given benzamide derivative was prepared using the simple route using water as solvent.

In the title compound (I), (Fig. 1), the bond lengths and bond angles are in agreement with those reported in the literature (Allen et al., 1987). The C1—C6—C7—O1, C1—C6—C7—N1, O1—C7—N1—C8, N1—C8—C9—O2 and N1—C8—C9—O3 torsion angles are 20.2 (2), -159.08 (14), -3.2 (2), 17.7 (2) and -163.65 (14)°, respectively.

In the crystal structure, the molecules adopt a face-to-face π-stacked packing arrangement showing π–π stacking interactions involving the benzene rings [Cg1···Cg1i = 3.6884 (8) Å; symmetry code: (i) x, 3/2 - y, -1/2 + z; Cg1 is a centroid of the benzene ring (C1–C6)].

Experimental

The calculated amount of glycine (0.5 g, 6.494 mmol) was carefully weighed and transferred to R.B.F (50 ml) containing 10 ml of distilled water. The pH of the water was maintained at 8 with 10% Sod. Carbonate solution which results in the complete dissolution of glycine. Then 4-chlorobenzoyl chloride (0.83 ml, 6.494 mmol) was added and pH was maintained at 8. After 3.5 h the TLC showed the completion of reaction giving a single spot of the product. The reaction mixture was then acidified with 3 N HCl up to pH 3 which resulted in the insoluble precipitate formation. Precipitates were filtered, washed, dried and then crystallized in methanol.

Refinement

In the last cycles of the refinement, 2 reflections (1 0 0) and (0 2 0) were eliminated due to being poorly measured in the vicinity of the beam stop. H atoms bounded to C atoms were positioned geometrically with C—H = 0.93 and 0.97 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The hydroxyl and amine H atoms were located in a difference Fourier map, and refined with the distance restraints N—H = 0.86 (2) Å and O—H = 0.82 (2) Å. Their isotropic displacement parameters were set to be 1.2Ueq(N) for amine and 1.5Ueq(O) for hydroxyl.

Figures

Fig. 1.

Fig. 1.

The title molecule with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the centrosymmetric dimers forming through a pair of O—H···O interactions which are connected to each other through intermolecular N—H···O interactions. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C9H8ClNO3 F(000) = 440
Mr = 213.61 Dx = 1.469 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3071 reflections
a = 10.5035 (2) Å θ = 2.5–26.5°
b = 13.2105 (4) Å µ = 0.37 mm1
c = 7.1226 (2) Å T = 296 K
β = 102.203 (1)° Needle, colourless
V = 965.98 (4) Å3 0.36 × 0.21 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1627 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.028
graphite θmax = 28.3°, θmin = 3.3°
φ and ω scans h = −13→13
9027 measured reflections k = −17→17
2365 independent reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.1658P] where P = (Fo2 + 2Fc2)/3
2365 reflections (Δ/σ)max = 0.001
133 parameters Δρmax = 0.21 e Å3
2 restraints Δρmin = −0.24 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.15861 (4) 0.81838 (4) 0.19567 (7) 0.0678 (2)
O1 0.65691 (11) 0.52525 (8) 0.26411 (16) 0.0518 (4)
O2 0.46720 (11) 0.64368 (9) 0.49155 (17) 0.0576 (4)
O3 0.31367 (11) 0.53263 (9) 0.37136 (17) 0.0519 (4)
N1 0.53959 (13) 0.65903 (11) 0.1375 (2) 0.0515 (5)
C1 0.88594 (15) 0.60968 (12) 0.1921 (2) 0.0457 (5)
C2 1.00353 (16) 0.65563 (13) 0.1908 (2) 0.0499 (6)
C3 1.00957 (15) 0.75964 (13) 0.1880 (2) 0.0453 (5)
C4 0.90087 (16) 0.81827 (12) 0.1838 (2) 0.0465 (5)
C5 0.78344 (15) 0.77170 (11) 0.1832 (2) 0.0423 (5)
C6 0.77497 (14) 0.66710 (11) 0.1887 (2) 0.0379 (4)
C7 0.65311 (14) 0.61215 (11) 0.2002 (2) 0.0407 (5)
C8 0.41924 (16) 0.61044 (15) 0.1527 (2) 0.0539 (6)
C9 0.40478 (14) 0.59869 (11) 0.3568 (2) 0.0411 (5)
H1 0.88100 0.53940 0.19530 0.0550*
H1N 0.538 (2) 0.7167 (13) 0.092 (3) 0.0810*
H1O 0.315 (2) 0.5241 (19) 0.487 (2) 0.1020*
H2 1.07760 0.61690 0.19170 0.0600*
H4 0.90650 0.88850 0.18130 0.0560*
H5 0.70930 0.81080 0.17910 0.0510*
H8A 0.41540 0.54410 0.09330 0.0650*
H8B 0.34680 0.65000 0.08250 0.0650*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0478 (3) 0.0785 (4) 0.0752 (3) −0.0209 (2) 0.0086 (2) −0.0017 (2)
O1 0.0541 (7) 0.0422 (7) 0.0616 (7) 0.0003 (5) 0.0180 (5) 0.0100 (5)
O2 0.0571 (8) 0.0578 (7) 0.0566 (7) −0.0178 (6) 0.0089 (6) −0.0106 (6)
O3 0.0439 (6) 0.0499 (7) 0.0600 (7) −0.0122 (5) 0.0067 (5) 0.0017 (6)
N1 0.0389 (8) 0.0556 (9) 0.0604 (9) 0.0027 (6) 0.0113 (6) 0.0169 (7)
C1 0.0449 (9) 0.0391 (8) 0.0547 (9) 0.0039 (7) 0.0141 (7) 0.0045 (7)
C2 0.0392 (9) 0.0546 (10) 0.0566 (10) 0.0065 (7) 0.0119 (7) 0.0016 (7)
C3 0.0414 (9) 0.0532 (10) 0.0401 (8) −0.0082 (7) 0.0060 (6) −0.0003 (7)
C4 0.0524 (10) 0.0391 (8) 0.0461 (9) −0.0040 (7) 0.0061 (7) 0.0011 (7)
C5 0.0431 (9) 0.0409 (8) 0.0425 (8) 0.0065 (6) 0.0081 (6) 0.0036 (6)
C6 0.0395 (8) 0.0407 (8) 0.0338 (7) 0.0019 (6) 0.0084 (6) 0.0048 (6)
C7 0.0435 (9) 0.0406 (9) 0.0394 (8) 0.0018 (6) 0.0117 (6) 0.0035 (6)
C8 0.0374 (9) 0.0698 (12) 0.0530 (10) −0.0044 (8) 0.0065 (7) −0.0001 (8)
C9 0.0300 (8) 0.0351 (8) 0.0568 (9) 0.0026 (6) 0.0062 (7) −0.0004 (7)

Geometric parameters (Å, °)

Cl1—C3 1.7377 (17) C3—C4 1.375 (2)
O1—C7 1.2325 (18) C4—C5 1.378 (2)
O2—C9 1.1993 (19) C5—C6 1.386 (2)
O3—C9 1.3153 (19) C6—C7 1.489 (2)
O3—H1O 0.829 (14) C8—C9 1.501 (2)
N1—C8 1.442 (2) C1—H1 0.9300
N1—C7 1.334 (2) C2—H2 0.9300
N1—H1N 0.827 (18) C4—H4 0.9300
C1—C2 1.378 (2) C5—H5 0.9300
C1—C6 1.387 (2) C8—H8A 0.9700
C2—C3 1.376 (2) C8—H8B 0.9700
C9—O3—H1O 108.0 (16) N1—C8—C9 112.86 (13)
C7—N1—C8 120.26 (14) O2—C9—O3 123.33 (14)
C7—N1—H1N 120.1 (15) O2—C9—C8 125.00 (14)
C8—N1—H1N 119.6 (15) O3—C9—C8 111.66 (13)
C2—C1—C6 120.68 (15) C2—C1—H1 120.00
C1—C2—C3 118.96 (15) C6—C1—H1 120.00
C2—C3—C4 121.49 (15) C1—C2—H2 120.00
Cl1—C3—C2 119.31 (13) C3—C2—H2 121.00
Cl1—C3—C4 119.18 (13) C3—C4—H4 120.00
C3—C4—C5 119.17 (15) C5—C4—H4 120.00
C4—C5—C6 120.53 (14) C4—C5—H5 120.00
C1—C6—C5 119.16 (14) C6—C5—H5 120.00
C1—C6—C7 117.49 (13) N1—C8—H8A 109.00
C5—C6—C7 123.29 (14) N1—C8—H8B 109.00
N1—C7—C6 118.25 (13) C9—C8—H8A 109.00
O1—C7—N1 120.86 (14) C9—C8—H8B 109.00
O1—C7—C6 120.89 (13) H8A—C8—H8B 108.00
C8—N1—C7—C6 −177.54 (13) C3—C4—C5—C6 0.6 (2)
C7—N1—C8—C9 67.7 (2) C4—C5—C6—C7 176.22 (13)
C8—N1—C7—O1 3.2 (2) C4—C5—C6—C1 −0.9 (2)
C2—C1—C6—C7 −177.03 (13) C1—C6—C7—O1 20.2 (2)
C2—C1—C6—C5 0.3 (2) C1—C6—C7—N1 −159.08 (14)
C6—C1—C2—C3 0.6 (2) C5—C6—C7—O1 −156.98 (14)
C1—C2—C3—Cl1 177.54 (11) C5—C6—C7—N1 23.8 (2)
C1—C2—C3—C4 −0.9 (2) N1—C8—C9—O2 16.7 (2)
Cl1—C3—C4—C5 −178.18 (11) N1—C8—C9—O3 −163.65 (14)
C2—C3—C4—C5 0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.83 (2) 2.06 (2) 2.8491 (19) 160 (2)
O3—H1O···O1ii 0.83 (1) 1.85 (2) 2.6613 (16) 165 (2)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2688).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Mugnoli, A., Carnasciali, M. M., Sancassan, F., Novi, M. & Petrillo, G. (1991). Acta Cryst. C47, 1916–1919.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stensland, B., Csöregh, I. & Högberg, T. (1995). Acta Cryst. B51, 847–856.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009536/is2688sup1.cif

e-67-0o916-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009536/is2688Isup2.hkl

e-67-0o916-Isup2.hkl (116.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES