Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):o894. doi: 10.1107/S1600536811009214

(E)-3-(1-Methyl-1H-pyrrol-2-yl)-1-phenyl­prop-2-en-1-one

Li Liu a, Jian Li b, Ying Shao c,*
PMCID: PMC3099856  PMID: 21754169

Abstract

The crystal structure of the title compound, C14H13NO, exhibits an E configuration. The conjugated compound is slightly twisted with a dihedral angle of 29.3° between the benzene and pyrrole rings. Two inter­molecular C—H⋯O inter­actions lead to a dimer. In the crystal, intermolecular C—H⋯O interactions generate an inversion dimer.

Related literature

For related literature on chalcone and its derivatives, see: Kelly et al. (2004); Takahashi et al. (2005). For the anti­cancer properties of chalcone derivatives, see: Zi & Simoneau (2005); Bennasroune et al. (2004); Moriarty et al. (2006). For a related structure, see Jing (2009).graphic file with name e-67-0o894-scheme1.jpg

Experimental

Crystal data

  • C14H13NO

  • M r = 211.25

  • Monoclinic, Inline graphic

  • a = 13.209 (2) Å

  • b = 4.8849 (9) Å

  • c = 18.036 (3) Å

  • β = 102.394 (4)°

  • V = 1136.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.981, T max = 0.985

  • 5920 measured reflections

  • 1996 independent reflections

  • 1459 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.153

  • S = 1.00

  • 1996 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009214/fl2335sup1.cif

e-67-0o894-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009214/fl2335Isup2.hkl

e-67-0o894-Isup2.hkl (98.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.96 2.49 3.434 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge Changzhou University for financial support (grant Nos. ZMF 1002100 and ZMF 10020010).

supplementary crystallographic information

Comment

Chalcone and its derivatives have been of interest because they can serve as precursors for the biosynthesis of flavonoids and substrates for the evaluation of many organic reactions (Kelly et al., 2004; Takahashi et al., 2005). The most important naturally occurring chalcone has shown potential as a drug candidate, flavokawain A from kava extracts which has strong anti-proliferative and apoptotic effects against human bladder cancer cells (Zi et al., 2005). Pyrrole-based derivatives were also reported as potent anticancer agents (Bennasroune et al., 2004; Moriarty et al., 2006). We now report the structure of a chalcone derivative with an N-methyl pyrrole group.

The title compound exists as the most stable (E)-configuration (Fig.1). The pyrrole ring is connected to the phenyl group through the C5—C6=C7—C8—C9 chain with the C=C bond length being 1.332 (3) Å. The dihedral angle between the benzene ring and pyrrole ring is 29.3°, larger than that of (E)-3-(4-Fluorophenyl)-1-phenyl-2- propen-1-one (Jing, 2009) which demonstrate that the pyrrole unit influences the twist between the two rings.

There is a intramolecular C6—H6···O1 interaction between the carbonyl and olefinic H atom (Table 1). In its packing structure, hydrogen-bonded dimers are formed via intermolecular C1—H1C···O1 interactionss (Fig.2).

Experimental

A solution of 1-methylpyrrole-2-carboxaldehyde (0.20 g, 1.8 mmol) in ethanol (15 ml) was added slowly to a mixture of acetophenone (0.22 g, 1.8 mmol) and KOH (0.10 g, 1.8 mmol) in methanol (30 ml) over 30 minutes at room temperature. The mixture was stirred for 16 h, and the yellow solid (0.31 g, 88.6%) was collected by filtration. Single crystals suitable for X-ray diffraction were obtained after recrystallization from ethanol.

Refinement

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(C). Benzene and ethylene H atoms were also assigned to calculated positions with C—H = 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound drawn with 30% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of title compound showing the hydrogen-bonding dimer.

Crystal data

C14H13NO F(000) = 448
Mr = 211.25 Dx = 1.235 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1712 reflections
a = 13.209 (2) Å θ = 2.3–27.0°
b = 4.8849 (9) Å µ = 0.08 mm1
c = 18.036 (3) Å T = 296 K
β = 102.394 (4)° Prism, yellow
V = 1136.6 (4) Å3 0.25 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1996 independent reflections
Radiation source: fine-focus sealed tube 1459 reflections with I > 2σ(I)
graphite Rint = 0.036
φ and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −14→15
Tmin = 0.981, Tmax = 0.985 k = −5→5
5920 measured reflections l = −21→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.038P] where P = (Fo2 + 2Fc2)/3
1996 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.12 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.49092 (14) 0.6200 (4) 0.10561 (11) 0.0666 (5)
H1A 0.5321 0.7628 0.1338 0.100*
H1B 0.4586 0.6867 0.0561 0.100*
H1C 0.5345 0.4668 0.1006 0.100*
C2 0.39810 (16) 0.6409 (4) 0.21180 (10) 0.0628 (5)
H2 0.4367 0.7835 0.2380 0.075*
C3 0.31956 (16) 0.5074 (4) 0.23440 (11) 0.0671 (5)
H3 0.2954 0.5409 0.2783 0.080*
C4 0.28227 (14) 0.3116 (4) 0.17956 (10) 0.0599 (5)
H4 0.2286 0.1892 0.1804 0.072*
C5 0.33895 (13) 0.3300 (3) 0.12319 (9) 0.0497 (4)
C6 0.33082 (14) 0.1826 (3) 0.05417 (9) 0.0528 (5)
H6 0.3806 0.2200 0.0261 0.063*
C7 0.25918 (14) −0.0039 (4) 0.02554 (10) 0.0555 (5)
H7 0.2072 −0.0442 0.0514 0.067*
C8 0.26049 (14) −0.1460 (3) −0.04539 (9) 0.0533 (5)
C9 0.16992 (13) −0.3136 (3) −0.08205 (9) 0.0522 (5)
C10 0.07359 (15) −0.2885 (4) −0.06423 (11) 0.0693 (6)
H10 0.0645 −0.1675 −0.0264 0.083*
C11 −0.00986 (17) −0.4435 (5) −0.10267 (13) 0.0820 (6)
H11 −0.0748 −0.4233 −0.0911 0.098*
C12 0.00353 (19) −0.6241 (5) −0.15709 (13) 0.0828 (7)
H12 −0.0520 −0.7295 −0.1820 0.099*
C13 0.0988 (2) −0.6518 (4) −0.17544 (13) 0.0791 (6)
H13 0.1074 −0.7752 −0.2128 0.095*
C14 0.18079 (16) −0.4978 (4) −0.13874 (10) 0.0636 (5)
H14 0.2448 −0.5164 −0.1518 0.076*
N1 0.41137 (10) 0.5347 (3) 0.14553 (7) 0.0526 (4)
O1 0.33614 (10) −0.1304 (3) −0.07478 (7) 0.0721 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0590 (11) 0.0738 (12) 0.0670 (12) −0.0017 (10) 0.0131 (9) −0.0013 (10)
C2 0.0711 (12) 0.0597 (11) 0.0545 (10) 0.0080 (9) 0.0067 (9) −0.0111 (9)
C3 0.0788 (13) 0.0739 (12) 0.0514 (11) 0.0111 (10) 0.0204 (9) −0.0058 (9)
C4 0.0664 (11) 0.0655 (11) 0.0496 (10) 0.0013 (9) 0.0164 (8) 0.0008 (8)
C5 0.0557 (10) 0.0477 (9) 0.0449 (9) 0.0075 (8) 0.0091 (7) 0.0017 (7)
C6 0.0621 (10) 0.0502 (9) 0.0477 (9) 0.0061 (8) 0.0152 (8) 0.0039 (7)
C7 0.0610 (11) 0.0597 (10) 0.0471 (9) 0.0040 (8) 0.0149 (8) 0.0000 (8)
C8 0.0607 (10) 0.0529 (10) 0.0468 (9) 0.0049 (8) 0.0126 (8) 0.0016 (7)
C9 0.0605 (11) 0.0487 (9) 0.0460 (9) 0.0056 (8) 0.0082 (7) 0.0069 (7)
C10 0.0669 (12) 0.0757 (12) 0.0644 (12) 0.0061 (10) 0.0120 (9) −0.0022 (10)
C11 0.0627 (13) 0.0969 (15) 0.0819 (15) −0.0026 (12) 0.0056 (11) 0.0084 (13)
C12 0.0885 (16) 0.0747 (14) 0.0731 (14) −0.0180 (12) −0.0095 (12) 0.0096 (11)
C13 0.0952 (16) 0.0692 (13) 0.0691 (13) −0.0103 (12) 0.0090 (12) −0.0103 (10)
C14 0.0760 (13) 0.0622 (11) 0.0505 (10) 0.0003 (9) 0.0085 (9) −0.0053 (8)
N1 0.0548 (9) 0.0533 (8) 0.0483 (8) 0.0064 (7) 0.0081 (6) 0.0003 (6)
O1 0.0733 (9) 0.0885 (10) 0.0591 (8) −0.0093 (7) 0.0244 (7) −0.0155 (7)

Geometric parameters (Å, °)

C1—N1 1.456 (2) C7—C8 1.459 (2)
C1—H1A 0.9600 C7—H7 0.9300
C1—H1B 0.9600 C8—O1 1.2298 (19)
C1—H1C 0.9600 C8—C9 1.483 (2)
C2—N1 1.349 (2) C9—C10 1.383 (2)
C2—C3 1.360 (3) C9—C14 1.392 (2)
C2—H2 0.9300 C10—C11 1.393 (3)
C3—C4 1.388 (3) C10—H10 0.9300
C3—H3 0.9300 C11—C12 1.359 (3)
C4—C5 1.389 (2) C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.375 (3)
C5—N1 1.383 (2) C12—H12 0.9300
C5—C6 1.422 (2) C13—C14 1.367 (3)
C6—C7 1.335 (2) C13—H13 0.9300
C6—H6 0.9300 C14—H14 0.9300
N1—C1—H1A 109.5 O1—C8—C7 120.81 (16)
N1—C1—H1B 109.5 O1—C8—C9 119.64 (15)
H1A—C1—H1B 109.5 C7—C8—C9 119.56 (16)
N1—C1—H1C 109.5 C10—C9—C14 118.22 (17)
H1A—C1—H1C 109.5 C10—C9—C8 122.82 (16)
H1B—C1—H1C 109.5 C14—C9—C8 118.92 (16)
N1—C2—C3 109.48 (17) C9—C10—C11 120.35 (19)
N1—C2—H2 125.3 C9—C10—H10 119.8
C3—C2—H2 125.3 C11—C10—H10 119.8
C2—C3—C4 107.09 (17) C12—C11—C10 120.0 (2)
C2—C3—H3 126.5 C12—C11—H11 120.0
C4—C3—H3 126.5 C10—C11—H11 120.0
C3—C4—C5 108.21 (16) C11—C12—C13 120.4 (2)
C3—C4—H4 125.9 C11—C12—H12 119.8
C5—C4—H4 125.9 C13—C12—H12 119.8
N1—C5—C4 106.34 (14) C14—C13—C12 120.0 (2)
N1—C5—C6 122.59 (15) C14—C13—H13 120.0
C4—C5—C6 131.06 (16) C12—C13—H13 120.0
C7—C6—C5 126.73 (17) C13—C14—C9 121.0 (2)
C7—C6—H6 116.6 C13—C14—H14 119.5
C5—C6—H6 116.6 C9—C14—H14 119.5
C6—C7—C8 121.53 (17) C2—N1—C5 108.86 (15)
C6—C7—H7 119.2 C2—N1—C1 124.94 (16)
C8—C7—H7 119.2 C5—N1—C1 126.19 (14)
N1—C2—C3—C4 −0.4 (2) C8—C9—C10—C11 177.39 (17)
C2—C3—C4—C5 −0.4 (2) C9—C10—C11—C12 1.2 (3)
C3—C4—C5—N1 1.03 (18) C10—C11—C12—C13 −1.1 (3)
C3—C4—C5—C6 −178.39 (17) C11—C12—C13—C14 0.2 (3)
N1—C5—C6—C7 −175.01 (15) C12—C13—C14—C9 0.6 (3)
C4—C5—C6—C7 4.3 (3) C10—C9—C14—C13 −0.6 (3)
C5—C6—C7—C8 −178.64 (15) C8—C9—C14—C13 −178.38 (16)
C6—C7—C8—O1 11.5 (3) C3—C2—N1—C5 1.1 (2)
C6—C7—C8—C9 −169.16 (15) C3—C2—N1—C1 −177.72 (16)
O1—C8—C9—C10 −163.32 (17) C4—C5—N1—C2 −1.29 (18)
C7—C8—C9—C10 17.3 (2) C6—C5—N1—C2 178.19 (15)
O1—C8—C9—C14 14.4 (2) C4—C5—N1—C1 177.48 (15)
C7—C8—C9—C14 −164.97 (15) C6—C5—N1—C1 −3.0 (2)
C14—C9—C10—C11 −0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1C···O1i 0.96 2.49 3.434 (2) 169
C6—H6···O1 0.93 2.48 2.797 (2) 100

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2335).

References

  1. Bennasroune, A., Gardin, A., Aunis, D., Cremel, G. & Hubert, P. (2004). Crit. Rev. Oncol. Hematol. 50, 23–38. [DOI] [PubMed]
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jing, L.-H. (2009). Acta Cryst. E65, o2515. [DOI] [PMC free article] [PubMed]
  4. Kelly, D. R., Caroff, E., Flood, R. W., Heal, W. & Roberts, S. M. (2004). Chem. Commun. pp. 2016–2017. [DOI] [PubMed]
  5. Moriarty, K. J., Koblish, H. K., Garrabrant, T., Maisuria, J., Khalil, E., Ali, F., Petrounia, I. P., Crysler, C. S., Maroney, A. C., Johnson, D. L. & Galemmo, R. A. (2006). Bioorg. Med. Chem. Lett. 16, 5778–5783. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Takahashi, Y., Yamamoto, Y., Katagiri, K., Danjo, H., Yamaguchi, K. & Imamoto, T. (2005). J. Org. Chem. 70, 9009–9012. [DOI] [PubMed]
  8. Zi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479–3486. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009214/fl2335sup1.cif

e-67-0o894-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009214/fl2335Isup2.hkl

e-67-0o894-Isup2.hkl (98.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES