Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):o752. doi: 10.1107/S1600536811007148

rac-Dimethyl 2-(1H-pyrrole-2-carboxamido)­butane­dioate

Le Zheng a, Fang Hu a, Xiang Chao Zeng a,*, Kai Ping Li a
PMCID: PMC3099858  PMID: 21754049

Abstract

The title compound, C11H14N2O5, was synthesized by condensation of (RS)-2-amino­succinic acid dimethyl ester with 2-trichloro­acetyl­pyrrole at room temperature. The amide group is twisted by 7.4 (1)° from the plane of the pyrrole ring. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into chains extending along the c axis.

Related literature

For the bioactivity of pyrrole derivatives, see: Fabio et al. (2007); Banwell et al. (2006). For related structures, see: Zeng et al. (2010); Li et al. (2009); Liu et al. (2006).graphic file with name e-67-0o752-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O5

  • M r = 254.24

  • Monoclinic, Inline graphic

  • a = 9.1387 (8) Å

  • b = 15.2715 (11) Å

  • c = 9.6238 (9) Å

  • β = 105.750 (9)°

  • V = 1292.69 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.48 × 0.26 × 0.21 mm

Data collection

  • Oxford Gemini S Ultra area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.952, T max = 0.978

  • 5286 measured reflections

  • 2534 independent reflections

  • 1563 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.163

  • S = 1.05

  • 2534 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007148/cv5056sup1.cif

e-67-0o752-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007148/cv5056Isup2.hkl

e-67-0o752-Isup2.hkl (124.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.96 2.804 (3) 167
N2—H2A⋯O1i 0.86 1.99 2.845 (3) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Natural Science Foundation of Guangdong Province, China, for financial support (grant No. 06300581).

supplementary crystallographic information

Comment

Pyrrole derivatives show various biological activities, for instance, antitumor activity (Banwell et al., 2006). Some of them are known as metabotropic receptor antagonists (Fabio et al., 2007). Herewith we present the title compound (I), which is a new pyrrole derivative.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in 1-benzyl-N-methyl-1H-pyrrole-2-carboxamide (Zeng et al., 2010) and 3-(1-ethyl-1H-pyrrole-2-carboxamido) propionic acid monohydrate (Li et al., 2009). In the crystal structure, enantiomorphous molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) into chains extended along the c axis (Fig. 2).

Experimental

The hydrochloric acid salt of (RS)-2-aminosuccinic acid dimethyl ester (0.99 g, 5 mmol) and 2-trichloroacetylpyrrole (1.27 g, 6 mmol) were added to acetonitrile (12 ml), followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 12 h. After the reaction mixture was filtered, the filtrate was evaporated in vacuo, and then the residue was chromatographed over silica gel using EtOAc-petroleum ether (3:7 v/v) as eluting solvent and the title compound (I) was obtained as a light yellow solid (72.3% yield). Monoclinic crystals suitable for X-ray analysis (m.p. 384 K) grew over a period of five days when the EtOH solution of I was exposed to the air at room temperature.

Refinement

All H atoms were positioned geometrically [C—H 0.93-0.98Å, N—H 0.86 Å] and refined using a riding model, with Uiso = 1.2-1.5 Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A portion of the crystal packing viewed approximately along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C11H14N2O5 Dx = 1.306 Mg m3
Mr = 254.24 Melting point: 384 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.1387 (8) Å Cell parameters from 1891 reflections
b = 15.2715 (11) Å θ = 3.5–29.4°
c = 9.6238 (9) Å µ = 0.10 mm1
β = 105.750 (9)° T = 293 K
V = 1292.69 (19) Å3 Prism, light yellow
Z = 4 0.48 × 0.26 × 0.21 mm
F(000) = 536

Data collection

Oxford Gemini S Ultra area-detector diffractometer 2534 independent reflections
Radiation source: fine-focus sealed tube 1563 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −11→7
Tmin = 0.952, Tmax = 0.978 k = −15→18
5286 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.3001P] where P = (Fo2 + 2Fc2)/3
2534 reflections (Δ/σ)max = 0.012
165 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.8723 (2) 0.22381 (12) 0.93777 (18) 0.0598 (6)
N2 0.8981 (2) 0.20231 (12) 0.7148 (2) 0.0454 (5)
H2A 0.8870 0.2226 0.6292 0.055*
N1 0.7370 (2) 0.36401 (14) 0.6269 (2) 0.0552 (6)
H1A 0.7730 0.3439 0.5594 0.066*
C5 0.8472 (3) 0.24881 (15) 0.8093 (2) 0.0422 (6)
C4 0.7615 (3) 0.32843 (16) 0.7622 (3) 0.0429 (6)
O3 0.9219 (2) −0.02724 (12) 0.8003 (3) 0.0796 (7)
O5 1.2703 (2) 0.15643 (15) 0.5747 (3) 0.0843 (7)
C7 0.8551 (3) 0.04766 (17) 0.7534 (3) 0.0522 (7)
C3 0.6833 (3) 0.37952 (17) 0.8361 (3) 0.0546 (7)
H3 0.6793 0.3712 0.9307 0.065*
C6 0.9717 (3) 0.11846 (15) 0.7531 (3) 0.0482 (7)
H6 1.0386 0.1232 0.8515 0.058*
C9 1.2137 (3) 0.15003 (18) 0.6855 (4) 0.0585 (7)
C8 1.0705 (3) 0.09670 (17) 0.6529 (3) 0.0546 (7)
H8A 1.0969 0.0350 0.6622 0.065*
H8B 1.0127 0.1072 0.5538 0.065*
O2 0.7223 (2) 0.05805 (14) 0.7203 (3) 0.0953 (9)
O4 1.2728 (3) 0.18044 (18) 0.8018 (3) 0.1036 (9)
C2 0.6111 (3) 0.44624 (19) 0.7425 (4) 0.0681 (9)
H2 0.5493 0.4900 0.7631 0.082*
C1 0.6480 (4) 0.4351 (2) 0.6160 (4) 0.0718 (9)
H1 0.6168 0.4709 0.5351 0.086*
C11 0.8246 (4) −0.1018 (2) 0.8043 (4) 0.0895 (11)
H11A 0.7600 −0.0886 0.8652 0.134*
H11B 0.8863 −0.1519 0.8418 0.134*
H11C 0.7633 −0.1144 0.7084 0.134*
C10 1.4150 (4) 0.2024 (3) 0.5989 (5) 0.1034 (14)
H10A 1.4106 0.2562 0.6490 0.155*
H10B 1.4344 0.2147 0.5078 0.155*
H10C 1.4951 0.1663 0.6559 0.155*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0845 (15) 0.0672 (12) 0.0320 (10) 0.0113 (10) 0.0231 (9) 0.0068 (9)
N2 0.0597 (14) 0.0481 (12) 0.0324 (11) 0.0102 (9) 0.0190 (10) 0.0027 (9)
N1 0.0586 (15) 0.0614 (14) 0.0459 (13) 0.0154 (11) 0.0147 (11) 0.0060 (11)
C5 0.0451 (14) 0.0481 (14) 0.0354 (13) −0.0034 (11) 0.0143 (11) −0.0020 (11)
C4 0.0429 (14) 0.0483 (14) 0.0377 (13) 0.0000 (11) 0.0113 (11) −0.0031 (11)
O3 0.0615 (14) 0.0542 (12) 0.1168 (19) 0.0094 (10) 0.0136 (13) 0.0197 (12)
O5 0.0604 (14) 0.1133 (18) 0.0853 (17) 0.0004 (12) 0.0300 (13) 0.0117 (14)
C7 0.0528 (17) 0.0549 (16) 0.0487 (16) 0.0091 (13) 0.0135 (13) 0.0059 (12)
C3 0.0487 (16) 0.0610 (17) 0.0569 (17) 0.0007 (12) 0.0192 (14) −0.0126 (14)
C6 0.0551 (16) 0.0492 (15) 0.0398 (14) 0.0068 (12) 0.0122 (12) −0.0003 (11)
C9 0.0544 (18) 0.0568 (17) 0.067 (2) 0.0100 (13) 0.0212 (16) −0.0023 (15)
C8 0.0487 (16) 0.0591 (16) 0.0548 (17) 0.0081 (12) 0.0122 (13) −0.0084 (13)
O2 0.0527 (14) 0.0739 (15) 0.156 (3) 0.0068 (11) 0.0223 (15) 0.0351 (14)
O4 0.0874 (19) 0.125 (2) 0.097 (2) −0.0370 (15) 0.0233 (15) −0.0456 (16)
C2 0.0446 (17) 0.0597 (18) 0.097 (3) 0.0085 (13) 0.0137 (17) −0.0148 (17)
C1 0.069 (2) 0.070 (2) 0.073 (2) 0.0214 (16) 0.0127 (17) 0.0125 (17)
C11 0.092 (3) 0.0549 (19) 0.117 (3) −0.0051 (17) 0.020 (2) 0.0205 (19)
C10 0.057 (2) 0.122 (3) 0.138 (4) −0.004 (2) 0.038 (2) 0.029 (3)

Geometric parameters (Å, °)

O1—C5 1.254 (3) C3—H3 0.9300
N2—C5 1.333 (3) C6—C8 1.526 (3)
N2—C6 1.447 (3) C6—H6 0.9800
N2—H2A 0.8600 C9—O4 1.197 (4)
N1—C1 1.343 (3) C9—C8 1.500 (4)
N1—C4 1.372 (3) C8—H8A 0.9700
N1—H1A 0.8600 C8—H8B 0.9700
C5—C4 1.451 (3) C2—C1 1.360 (4)
C4—C3 1.378 (3) C2—H2 0.9300
O3—C7 1.317 (3) C1—H1 0.9300
O3—C11 1.452 (4) C11—H11A 0.9600
O5—C9 1.310 (3) C11—H11B 0.9600
O5—C10 1.458 (4) C11—H11C 0.9600
C7—O2 1.179 (3) C10—H10A 0.9600
C7—C6 1.519 (4) C10—H10B 0.9600
C3—C2 1.401 (4) C10—H10C 0.9600
C5—N2—C6 121.4 (2) O4—C9—C8 123.6 (3)
C5—N2—H2A 119.3 O5—C9—C8 112.7 (3)
C6—N2—H2A 119.3 C9—C8—C6 112.4 (2)
C1—N1—C4 109.5 (2) C9—C8—H8A 109.1
C1—N1—H1A 125.3 C6—C8—H8A 109.1
C4—N1—H1A 125.3 C9—C8—H8B 109.1
O1—C5—N2 120.4 (2) C6—C8—H8B 109.1
O1—C5—C4 120.1 (2) H8A—C8—H8B 107.8
N2—C5—C4 119.5 (2) C1—C2—C3 107.2 (2)
N1—C4—C3 107.0 (2) C1—C2—H2 126.4
N1—C4—C5 124.3 (2) C3—C2—H2 126.4
C3—C4—C5 128.7 (2) N1—C1—C2 108.9 (3)
C7—O3—C11 117.4 (2) N1—C1—H1 125.6
C9—O5—C10 116.6 (3) C2—C1—H1 125.6
O2—C7—O3 123.8 (3) O3—C11—H11A 109.5
O2—C7—C6 125.1 (2) O3—C11—H11B 109.5
O3—C7—C6 111.0 (2) H11A—C11—H11B 109.5
C4—C3—C2 107.5 (3) O3—C11—H11C 109.5
C4—C3—H3 126.3 H11A—C11—H11C 109.5
C2—C3—H3 126.3 H11B—C11—H11C 109.5
N2—C6—C7 110.6 (2) O5—C10—H10A 109.5
N2—C6—C8 110.2 (2) O5—C10—H10B 109.5
C7—C6—C8 112.5 (2) H10A—C10—H10B 109.5
N2—C6—H6 107.8 O5—C10—H10C 109.5
C7—C6—H6 107.8 H10A—C10—H10C 109.5
C8—C6—H6 107.8 H10B—C10—H10C 109.5
O4—C9—O5 123.7 (3)
C6—N2—C5—O1 5.4 (4) O2—C7—C6—N2 3.4 (4)
C6—N2—C5—C4 −174.2 (2) O3—C7—C6—N2 −174.5 (2)
C1—N1—C4—C3 0.5 (3) O2—C7—C6—C8 −120.3 (3)
C1—N1—C4—C5 177.2 (2) O3—C7—C6—C8 61.8 (3)
O1—C5—C4—N1 175.5 (2) C10—O5—C9—O4 1.1 (4)
N2—C5—C4—N1 −4.9 (4) C10—O5—C9—C8 −176.2 (2)
O1—C5—C4—C3 −8.5 (4) O4—C9—C8—C6 26.0 (4)
N2—C5—C4—C3 171.0 (2) O5—C9—C8—C6 −156.8 (2)
C11—O3—C7—O2 3.1 (5) N2—C6—C8—C9 73.9 (3)
C11—O3—C7—C6 −178.9 (3) C7—C6—C8—C9 −162.1 (2)
N1—C4—C3—C2 0.2 (3) C4—C3—C2—C1 −0.8 (3)
C5—C4—C3—C2 −176.3 (2) C4—N1—C1—C2 −1.0 (3)
C5—N2—C6—C7 76.9 (3) C3—C2—C1—N1 1.1 (4)
C5—N2—C6—C8 −158.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 1.96 2.804 (3) 167
N2—H2A···O1i 0.86 1.99 2.845 (3) 176

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5056).

References

  1. Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627–4638. [DOI] [PubMed]
  2. Fabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254–2259. [DOI] [PubMed]
  3. Li, D. D., Tang, G. H., Zeng, X. C., Huang, G. & Xu, X. Y. (2009). Acta Cryst. E65, o1865. [DOI] [PMC free article] [PubMed]
  4. Liu, P.-R., Zeng, X.-C. & Xu, S.-H. (2006). Acta Cryst. E62, o1181–o1183.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zeng, X. C., Li, K. P., Hu, F. & Zheng, L. (2010). Acta Cryst. E66, o2051. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007148/cv5056sup1.cif

e-67-0o752-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007148/cv5056Isup2.hkl

e-67-0o752-Isup2.hkl (124.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES