Abstract
The title compound, C7H7NO2S, adopts an E conformation about the C=C bond. The torsion angle C=C—C—C is −177.7 (3)°. The crystal structure features weak intermolecular by C—H⋯O interactions.
Related literature
For the use of nitroalkenes as organic intermediates, see: Ballini & Petrini (2004 ▶); Berner et al. (2002 ▶); Ono (2001 ▶).
Experimental
Crystal data
C7H7NO2S
M r = 169.20
Monoclinic,
a = 6.7545 (6) Å
b = 16.6940 (13) Å
c = 7.4527 (4) Å
β = 110.640 (7)°
V = 786.42 (10) Å3
Z = 4
Mo Kα radiation
μ = 0.36 mm−1
T = 296 K
0.31 × 0.18 × 0.17 mm
Data collection
Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995 ▶) T min = 0.879, T max = 0.942
5936 measured reflections
1362 independent reflections
971 reflections with I > 2σ(I)
R int = 0.035
Refinement
R[F 2 > 2σ(F 2)] = 0.049
wR(F 2) = 0.170
S = 1.00
1362 reflections
102 parameters
H-atom parameters constrained
Δρmax = 0.39 e Å−3
Δρmin = −0.33 e Å−3
Data collection: PROCESS-AUTO (Rigaku, 2006 ▶); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010622/jh2274sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010622/jh2274Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C6—H6⋯O2i | 0.93 | 2.60 | 3.511 (5) | 168 |
Symmetry code: (i)
.
Acknowledgments
The authors are grateful to Mr Jianming Gu for the X-ray single crystal analysis.
supplementary crystallographic information
Comment
Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here one of this nitroalkenes, i.e. the crystal structure of the title compound. The C2═C3 bond involves the E configuration with the C2—C3—C4—C5 torsion angle of 177.71 (3)° (Fig. 1). The atoms of the thiophene ring are coplanar. The conformation of (I) is stabilized by weak intermolecular by C6—H6···O2' interaction (Fig. 2 and Table 1).
Experimental
To a solution of thiophene-2-carbaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of an cyclohexane-EtOAc solution (10:1, v/v).
Refinement
All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Figures
Fig. 1.
The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The view of intermolecular interaction illustrated as dash lines.
Crystal data
| C7H7NO2S | F(000) = 352 |
| Mr = 169.20 | Dx = 1.429 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 3534 reflections |
| a = 6.7545 (6) Å | θ = 3.2–27.4° |
| b = 16.6940 (13) Å | µ = 0.36 mm−1 |
| c = 7.4527 (4) Å | T = 296 K |
| β = 110.640 (7)° | Prism, yellow |
| V = 786.42 (10) Å3 | 0.31 × 0.18 × 0.17 mm |
| Z = 4 |
Data collection
| Rigaku R-AXIS RAPID diffractometer | 1362 independent reflections |
| Radiation source: rolling anode | 971 reflections with I > 2σ(I) |
| graphite | Rint = 0.035 |
| Detector resolution: 10.00 pixels mm-1 | θmax = 25.0°, θmin = 3.2° |
| ω scans | h = −7→8 |
| Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −19→19 |
| Tmin = 0.879, Tmax = 0.942 | l = −8→8 |
| 5936 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
| wR(F2) = 0.170 | w = 1/[σ2(Fo2) + (0.0837P)2 + 0.8184P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.00 | (Δ/σ)max = 0.001 |
| 1362 reflections | Δρmax = 0.39 e Å−3 |
| 102 parameters | Δρmin = −0.33 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0067 (6) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.21787 (15) | 0.56891 (6) | 0.61453 (16) | 0.0684 (5) | |
| C4 | 0.4914 (5) | 0.5654 (2) | 0.7041 (5) | 0.0496 (8) | |
| C3 | 0.6192 (5) | 0.4976 (2) | 0.7933 (4) | 0.0500 (8) | |
| H3 | 0.7644 | 0.5067 | 0.8373 | 0.060* | |
| N1 | 0.7349 (5) | 0.36806 (18) | 0.9203 (4) | 0.0584 (8) | |
| O2 | 0.9190 (4) | 0.39008 (17) | 0.9632 (5) | 0.0775 (9) | |
| C2 | 0.5624 (5) | 0.4238 (2) | 0.8227 (5) | 0.0493 (8) | |
| O1 | 0.6885 (5) | 0.30107 (17) | 0.9578 (5) | 0.0832 (9) | |
| C5 | 0.5793 (6) | 0.64019 (19) | 0.6781 (5) | 0.0512 (8) | |
| H5 | 0.7230 | 0.6515 | 0.7150 | 0.061* | |
| C1 | 0.3450 (6) | 0.3888 (2) | 0.7708 (6) | 0.0652 (10) | |
| H1A | 0.2975 | 0.3941 | 0.8775 | 0.098* | |
| H1B | 0.3487 | 0.3332 | 0.7398 | 0.098* | |
| H1C | 0.2496 | 0.4168 | 0.6621 | 0.098* | |
| C7 | 0.2176 (6) | 0.6653 (2) | 0.5463 (6) | 0.0698 (11) | |
| H7 | 0.0948 | 0.6947 | 0.4869 | 0.084* | |
| C6 | 0.4120 (6) | 0.6951 (2) | 0.5863 (6) | 0.0675 (11) | |
| H6 | 0.4365 | 0.7475 | 0.5568 | 0.081* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0499 (6) | 0.0587 (7) | 0.0895 (8) | −0.0017 (4) | 0.0158 (5) | 0.0006 (5) |
| C4 | 0.0447 (19) | 0.051 (2) | 0.0507 (19) | −0.0015 (14) | 0.0131 (15) | −0.0040 (14) |
| C3 | 0.0419 (17) | 0.052 (2) | 0.052 (2) | −0.0039 (14) | 0.0124 (15) | −0.0078 (15) |
| N1 | 0.0557 (19) | 0.0507 (19) | 0.0660 (19) | 0.0060 (14) | 0.0180 (15) | 0.0000 (14) |
| O2 | 0.0474 (15) | 0.0661 (18) | 0.107 (2) | 0.0055 (12) | 0.0125 (15) | 0.0016 (16) |
| C2 | 0.0468 (18) | 0.0464 (19) | 0.0532 (19) | 0.0018 (14) | 0.0157 (15) | −0.0040 (14) |
| O1 | 0.079 (2) | 0.0533 (17) | 0.118 (3) | 0.0078 (14) | 0.0349 (18) | 0.0175 (16) |
| C5 | 0.056 (2) | 0.0418 (18) | 0.0499 (19) | 0.0022 (14) | 0.0116 (15) | 0.0006 (14) |
| C1 | 0.054 (2) | 0.056 (2) | 0.082 (3) | −0.0085 (17) | 0.0198 (19) | 0.0007 (19) |
| C7 | 0.058 (2) | 0.058 (2) | 0.083 (3) | 0.0100 (18) | 0.012 (2) | 0.002 (2) |
| C6 | 0.074 (3) | 0.047 (2) | 0.076 (3) | −0.0032 (18) | 0.019 (2) | 0.0038 (18) |
Geometric parameters (Å, °)
| S1—C7 | 1.688 (4) | C2—C1 | 1.499 (5) |
| S1—C4 | 1.730 (3) | C5—C6 | 1.429 (5) |
| C4—C5 | 1.425 (5) | C5—H5 | 0.9300 |
| C4—C3 | 1.436 (5) | C1—H1A | 0.9600 |
| C3—C2 | 1.331 (5) | C1—H1B | 0.9600 |
| C3—H3 | 0.9300 | C1—H1C | 0.9600 |
| N1—O1 | 1.220 (4) | C7—C6 | 1.336 (5) |
| N1—O2 | 1.226 (4) | C7—H7 | 0.9300 |
| N1—C2 | 1.469 (4) | C6—H6 | 0.9300 |
| C7—S1—C4 | 92.09 (18) | C4—C5—H5 | 125.4 |
| C5—C4—C3 | 122.8 (3) | C6—C5—H5 | 125.4 |
| C5—C4—S1 | 110.9 (2) | C2—C1—H1A | 109.5 |
| C3—C4—S1 | 126.3 (3) | C2—C1—H1B | 109.5 |
| C2—C3—C4 | 130.0 (3) | H1A—C1—H1B | 109.5 |
| C2—C3—H3 | 115.0 | C2—C1—H1C | 109.5 |
| C4—C3—H3 | 115.0 | H1A—C1—H1C | 109.5 |
| O1—N1—O2 | 122.3 (3) | H1B—C1—H1C | 109.5 |
| O1—N1—C2 | 118.1 (3) | C6—C7—S1 | 113.0 (3) |
| O2—N1—C2 | 119.6 (3) | C6—C7—H7 | 123.5 |
| C3—C2—N1 | 116.3 (3) | S1—C7—H7 | 123.5 |
| C3—C2—C1 | 129.2 (3) | C7—C6—C5 | 114.7 (4) |
| N1—C2—C1 | 114.5 (3) | C7—C6—H6 | 122.7 |
| C4—C5—C6 | 109.3 (3) | C5—C6—H6 | 122.7 |
| C7—S1—C4—C5 | −0.3 (3) | O1—N1—C2—C1 | −3.2 (5) |
| C7—S1—C4—C3 | 179.8 (3) | O2—N1—C2—C1 | 177.6 (3) |
| C5—C4—C3—C2 | −177.7 (3) | C3—C4—C5—C6 | −179.8 (3) |
| S1—C4—C3—C2 | 2.1 (6) | S1—C4—C5—C6 | 0.3 (4) |
| C4—C3—C2—N1 | −179.7 (3) | C4—S1—C7—C6 | 0.2 (4) |
| C4—C3—C2—C1 | 0.0 (6) | S1—C7—C6—C5 | −0.1 (5) |
| O1—N1—C2—C3 | 176.6 (3) | C4—C5—C6—C7 | −0.2 (5) |
| O2—N1—C2—C3 | −2.6 (5) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C6—H6···O2i | 0.93 | 2.60 | 3.511 (5) | 168 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2274).
References
- Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.
- Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
- Ono, N. (2001). The Nitro Group in Organic Synthesis New York: Wiley-VCH.
- Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
- Rigaku Americas and Rigaku (2007). CrystalStructure Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010622/jh2274sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010622/jh2274Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


