Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 26;67(Pt 4):o983. doi: 10.1107/S1600536811010622

(E)-2-(2-Nitro­prop-1-en­yl)thio­phene

Zhao-Bo Li a,*, Li-Li Shen b, Jia-Jia Li c
PMCID: PMC3099860  PMID: 21754241

Abstract

The title compound, C7H7NO2S, adopts an E conformation about the C=C bond. The torsion angle C=C—C—C is −177.7 (3)°. The crystal structure features weak inter­molecular by C—H⋯O inter­actions.

Related literature

For the use of nitro­alkenes as organic inter­mediates, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001). graphic file with name e-67-0o983-scheme1.jpg

Experimental

Crystal data

  • C7H7NO2S

  • M r = 169.20

  • Monoclinic, Inline graphic

  • a = 6.7545 (6) Å

  • b = 16.6940 (13) Å

  • c = 7.4527 (4) Å

  • β = 110.640 (7)°

  • V = 786.42 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.31 × 0.18 × 0.17 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.879, T max = 0.942

  • 5936 measured reflections

  • 1362 independent reflections

  • 971 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.170

  • S = 1.00

  • 1362 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010622/jh2274sup1.cif

e-67-0o983-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010622/jh2274Isup2.hkl

e-67-0o983-Isup2.hkl (65.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.60 3.511 (5) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to Mr Jianming Gu for the X-ray single crystal analysis.

supplementary crystallographic information

Comment

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here one of this nitroalkenes, i.e. the crystal structure of the title compound. The C2═C3 bond involves the E configuration with the C2—C3—C4—C5 torsion angle of 177.71 (3)° (Fig. 1). The atoms of the thiophene ring are coplanar. The conformation of (I) is stabilized by weak intermolecular by C6—H6···O2' interaction (Fig. 2 and Table 1).

Experimental

To a solution of thiophene-2-carbaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of an cyclohexane-EtOAc solution (10:1, v/v).

Refinement

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The view of intermolecular interaction illustrated as dash lines.

Crystal data

C7H7NO2S F(000) = 352
Mr = 169.20 Dx = 1.429 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3534 reflections
a = 6.7545 (6) Å θ = 3.2–27.4°
b = 16.6940 (13) Å µ = 0.36 mm1
c = 7.4527 (4) Å T = 296 K
β = 110.640 (7)° Prism, yellow
V = 786.42 (10) Å3 0.31 × 0.18 × 0.17 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 1362 independent reflections
Radiation source: rolling anode 971 reflections with I > 2σ(I)
graphite Rint = 0.035
Detector resolution: 10.00 pixels mm-1 θmax = 25.0°, θmin = 3.2°
ω scans h = −7→8
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −19→19
Tmin = 0.879, Tmax = 0.942 l = −8→8
5936 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0837P)2 + 0.8184P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
1362 reflections Δρmax = 0.39 e Å3
102 parameters Δρmin = −0.33 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0067 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21787 (15) 0.56891 (6) 0.61453 (16) 0.0684 (5)
C4 0.4914 (5) 0.5654 (2) 0.7041 (5) 0.0496 (8)
C3 0.6192 (5) 0.4976 (2) 0.7933 (4) 0.0500 (8)
H3 0.7644 0.5067 0.8373 0.060*
N1 0.7349 (5) 0.36806 (18) 0.9203 (4) 0.0584 (8)
O2 0.9190 (4) 0.39008 (17) 0.9632 (5) 0.0775 (9)
C2 0.5624 (5) 0.4238 (2) 0.8227 (5) 0.0493 (8)
O1 0.6885 (5) 0.30107 (17) 0.9578 (5) 0.0832 (9)
C5 0.5793 (6) 0.64019 (19) 0.6781 (5) 0.0512 (8)
H5 0.7230 0.6515 0.7150 0.061*
C1 0.3450 (6) 0.3888 (2) 0.7708 (6) 0.0652 (10)
H1A 0.2975 0.3941 0.8775 0.098*
H1B 0.3487 0.3332 0.7398 0.098*
H1C 0.2496 0.4168 0.6621 0.098*
C7 0.2176 (6) 0.6653 (2) 0.5463 (6) 0.0698 (11)
H7 0.0948 0.6947 0.4869 0.084*
C6 0.4120 (6) 0.6951 (2) 0.5863 (6) 0.0675 (11)
H6 0.4365 0.7475 0.5568 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0499 (6) 0.0587 (7) 0.0895 (8) −0.0017 (4) 0.0158 (5) 0.0006 (5)
C4 0.0447 (19) 0.051 (2) 0.0507 (19) −0.0015 (14) 0.0131 (15) −0.0040 (14)
C3 0.0419 (17) 0.052 (2) 0.052 (2) −0.0039 (14) 0.0124 (15) −0.0078 (15)
N1 0.0557 (19) 0.0507 (19) 0.0660 (19) 0.0060 (14) 0.0180 (15) 0.0000 (14)
O2 0.0474 (15) 0.0661 (18) 0.107 (2) 0.0055 (12) 0.0125 (15) 0.0016 (16)
C2 0.0468 (18) 0.0464 (19) 0.0532 (19) 0.0018 (14) 0.0157 (15) −0.0040 (14)
O1 0.079 (2) 0.0533 (17) 0.118 (3) 0.0078 (14) 0.0349 (18) 0.0175 (16)
C5 0.056 (2) 0.0418 (18) 0.0499 (19) 0.0022 (14) 0.0116 (15) 0.0006 (14)
C1 0.054 (2) 0.056 (2) 0.082 (3) −0.0085 (17) 0.0198 (19) 0.0007 (19)
C7 0.058 (2) 0.058 (2) 0.083 (3) 0.0100 (18) 0.012 (2) 0.002 (2)
C6 0.074 (3) 0.047 (2) 0.076 (3) −0.0032 (18) 0.019 (2) 0.0038 (18)

Geometric parameters (Å, °)

S1—C7 1.688 (4) C2—C1 1.499 (5)
S1—C4 1.730 (3) C5—C6 1.429 (5)
C4—C5 1.425 (5) C5—H5 0.9300
C4—C3 1.436 (5) C1—H1A 0.9600
C3—C2 1.331 (5) C1—H1B 0.9600
C3—H3 0.9300 C1—H1C 0.9600
N1—O1 1.220 (4) C7—C6 1.336 (5)
N1—O2 1.226 (4) C7—H7 0.9300
N1—C2 1.469 (4) C6—H6 0.9300
C7—S1—C4 92.09 (18) C4—C5—H5 125.4
C5—C4—C3 122.8 (3) C6—C5—H5 125.4
C5—C4—S1 110.9 (2) C2—C1—H1A 109.5
C3—C4—S1 126.3 (3) C2—C1—H1B 109.5
C2—C3—C4 130.0 (3) H1A—C1—H1B 109.5
C2—C3—H3 115.0 C2—C1—H1C 109.5
C4—C3—H3 115.0 H1A—C1—H1C 109.5
O1—N1—O2 122.3 (3) H1B—C1—H1C 109.5
O1—N1—C2 118.1 (3) C6—C7—S1 113.0 (3)
O2—N1—C2 119.6 (3) C6—C7—H7 123.5
C3—C2—N1 116.3 (3) S1—C7—H7 123.5
C3—C2—C1 129.2 (3) C7—C6—C5 114.7 (4)
N1—C2—C1 114.5 (3) C7—C6—H6 122.7
C4—C5—C6 109.3 (3) C5—C6—H6 122.7
C7—S1—C4—C5 −0.3 (3) O1—N1—C2—C1 −3.2 (5)
C7—S1—C4—C3 179.8 (3) O2—N1—C2—C1 177.6 (3)
C5—C4—C3—C2 −177.7 (3) C3—C4—C5—C6 −179.8 (3)
S1—C4—C3—C2 2.1 (6) S1—C4—C5—C6 0.3 (4)
C4—C3—C2—N1 −179.7 (3) C4—S1—C7—C6 0.2 (4)
C4—C3—C2—C1 0.0 (6) S1—C7—C6—C5 −0.1 (5)
O1—N1—C2—C3 176.6 (3) C4—C5—C6—C7 −0.2 (5)
O2—N1—C2—C3 −2.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2i 0.93 2.60 3.511 (5) 168

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2274).

References

  1. Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.
  2. Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Ono, N. (2001). The Nitro Group in Organic Synthesis New York: Wiley-VCH.
  7. Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku Americas and Rigaku (2007). CrystalStructure Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811010622/jh2274sup1.cif

e-67-0o983-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010622/jh2274Isup2.hkl

e-67-0o983-Isup2.hkl (65.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES