Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):o879. doi: 10.1107/S1600536811008129

Ammonium piperidine-1-carbodithio­ate

Ana C Mafud a,*, Maria T P Gambardella a
PMCID: PMC3099862  PMID: 21754156

Abstract

The title compound, NH4 +·C6H10NS2 , is composed of an ammonium cation and a piperidine-1-carbodithio­ate anion which exhibits positional disorder. The atoms of the ring have a structural disorder and they are divided into two sites, with occupancy factors of 0.584 and 0.426.. In the crystal, the cation and anion are linked by N—H⋯S hydrogen bonds to form an infinite two-dimensional network.

Related literature

For the crystal structures of similar compounds, see: Wahlberg (1979, 1980, 1981).graphic file with name e-67-0o879-scheme1.jpg

Experimental

Crystal data

  • NH4 +·C6H10NS2

  • M r = 178.31

  • Monoclinic, Inline graphic

  • a = 8.8812 (9) Å

  • b = 9.0025 (9) Å

  • c = 11.8995 (5) Å

  • β = 104.318 (5)°

  • V = 921.85 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 290 K

  • 0.40 × 0.35 × 0.13 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.582, T max = 0.936

  • 2847 measured reflections

  • 2684 independent reflections

  • 2093 reflections with I > 2σ(I)

  • R int = 0.015

  • 3 standard reflections every 120 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.123

  • S = 1.06

  • 2684 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008129/su2257sup1.cif

e-67-0o879-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008129/su2257Isup2.hkl

e-67-0o879-Isup2.hkl (129.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.78 (3) 2.64 (3) 3.4029 (19) 167 (2)
N1—H2⋯S1 0.89 (3) 2.49 (3) 3.3565 (19) 164 (2)
N1—H3⋯S1ii 0.93 (3) 2.51 (3) 3.3967 (19) 159 (2)
N1—H4⋯S2iii 0.89 (3) 2.48 (3) 3.3632 (19) 170 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author is grateful to the Instituto de Química de São Carlos and the Universidade de São Paulo for supporting this study.

supplementary crystallographic information

Comment

The title compound is compossed of an ammonium cation and a piperidinedithiocarbamate anion. The crystal structures of similar compounds, for example pyrrolidinium 1-pyrrolidinecarbodithioate (Wahlberg, 1979), and β and α piperidinium 1-piperidinecarbodithionate (Wahlberg, 1980, 1981), have been reported.

The molecular structure of the title compound (Fig. 1) is built up of an ammonium cation and a disordered piperidinedithiocarbamate anion. The carbon atoms (C2-C6) are disordered, occupying two positions (A/B) with occupancies of 0.584 (8)/0.416 (8)

In the crystal the cation is linked to four piperidinedithiocarbamate anions via N-H···S hydrogen bonds (Table 1 and Fig. 2). These interactions lead to the formaion of an infinite two-dimensional network (Fig. 3), propagating in (001).

Experimental

The title compound was prepared by slow addition of 0.1 mol of CS2 to a cold solution containing 0.2 mol of ammonia and 0.2 mol of piperidine dissolved in 30 ml of ethanol-water 1:1 (v/v) medium. The mixture was kept in an ice bath during the reaction. The solid obtained was recrystallized from ethanol-water 1:1 (v/v) and dried in a vacuum oven at 323 K for 8 h. Colourless single crystals, suitable for X-ray diffraction analysis, were obtained. On heating they sublimed and decomposed.

Refinement

The H-atom positions of the ammonium cation were located in a difference Fouier map and were freely refined: N-H = 0.78 (3) - 0.93 (3) Å. The C-bound H-atoms of the anion were included in calculated positions and treated as riding atoms: C-H = 0.97 Å, with Uiso(H) = 1.2Ueq(parent C-atom).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the ammonium cation surrounded by four piperidinedithiocarbamate anions that are linked via N—H···S hydrogen bonds (see Table 1 for details). The N—H···S hydrogen bonds are shown as dotted lines.

Fig. 3.

Fig. 3.

A view along the a-axis of the crystal packing of the title compound. The N—H···S hydrogen bonds are shown as dotted lines [The minor disordered fraction of the piperidine ring and the C-bound H-atoms have been omitted for clarity; colour code: S yellow; N black; C grey; H off-white].

Crystal data

NH4+·C6H10NS2 F(000) = 384
Mr = 178.31 Dx = 1.285 Mg m3
Monoclinic, P21/a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yab Cell parameters from 14 reflections
a = 8.8812 (9) Å θ = 12.0–18.1°
b = 9.0025 (9) Å µ = 0.51 mm1
c = 11.8995 (5) Å T = 290 K
β = 104.318 (5)° Prism, colourless
V = 921.85 (14) Å3 0.40 × 0.35 × 0.13 mm
Z = 4

Data collection

Enraf–Nonius TurboCAD-4 diffractometer 2093 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.015
graphite θmax = 30.0°, θmin = 2.9°
non–profiled ω/2θ scans h = 0→12
Absorption correction: ψ scan (North et al., 1968) k = −12→0
Tmin = 0.582, Tmax = 0.936 l = −16→16
2847 measured reflections 3 standard reflections every 120 min
2684 independent reflections intensity decay: 5%

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.075P)2 + 0.1152P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123 (Δ/σ)max = 0.022
S = 1.06 Δρmax = 0.57 e Å3
2684 reflections Δρmin = −0.29 e Å3
153 parameters

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.77666 (5) 0.04141 (4) 0.55813 (3) 0.0404 (1)
S2 0.83657 (6) −0.11212 (5) 0.78409 (4) 0.0531 (1)
N2 0.8144 (3) 0.17995 (18) 0.76181 (14) 0.0669 (6)
C1 0.80997 (19) 0.05002 (17) 0.70767 (14) 0.0391 (4)
C2A 0.7452 (6) 0.3162 (4) 0.6942 (3) 0.0549 (13) 0.584 (8)
C3A 0.8316 (9) 0.4502 (5) 0.7551 (5) 0.0625 (15) 0.584 (8)
C4A 0.7868 (18) 0.4519 (18) 0.8807 (15) 0.077 (4) 0.584 (8)
C5A 0.8614 (7) 0.3215 (5) 0.9445 (4) 0.0629 (15) 0.584 (8)
C6A 0.7972 (9) 0.1813 (7) 0.8853 (5) 0.0666 (18) 0.584 (8)
C6B 0.8811 (14) 0.1978 (9) 0.8936 (6) 0.073 (3) 0.416 (8)
C3B 0.7530 (10) 0.4409 (9) 0.7391 (7) 0.062 (2) 0.416 (8)
C4B 0.816 (3) 0.472 (3) 0.866 (2) 0.079 (5) 0.416 (8)
C2B 0.8552 (8) 0.3244 (5) 0.7066 (4) 0.0507 (16) 0.416 (8)
C5B 0.7715 (14) 0.3116 (13) 0.9232 (7) 0.096 (4) 0.416 (8)
N1 0.47677 (19) 0.24531 (19) 0.40932 (17) 0.0468 (5)
H2A2 0.75640 0.31040 0.61520 0.0660* 0.584 (8)
H3A1 0.79720 0.54060 0.71210 0.0750* 0.584 (8)
H2A1 0.63550 0.32370 0.69170 0.0660* 0.584 (8)
H6A1 0.68830 0.17260 0.88500 0.0800* 0.584 (8)
H6A2 0.85200 0.09700 0.92730 0.0800* 0.584 (8)
H3A2 0.94280 0.43950 0.76510 0.0750* 0.584 (8)
H4A1 0.82450 0.54210 0.92290 0.0920* 0.584 (8)
H4A2 0.67500 0.44680 0.86980 0.0920* 0.584 (8)
H5A1 0.84560 0.32270 1.02230 0.0750* 0.584 (8)
H5A2 0.97240 0.32560 0.95090 0.0750* 0.584 (8)
H2B1 0.96390 0.34930 0.73690 0.0610* 0.416 (8)
H2B2 0.83420 0.31450 0.62300 0.0610* 0.416 (8)
H3B1 0.75430 0.53050 0.69410 0.0740* 0.416 (8)
H3B2 0.64680 0.40540 0.72460 0.0740* 0.416 (8)
H4B1 0.76550 0.55630 0.89120 0.0950* 0.416 (8)
H4B2 0.92780 0.48860 0.88470 0.0950* 0.416 (8)
H5B1 0.78720 0.32050 1.00650 0.1150* 0.416 (8)
H5B2 0.66410 0.28440 0.88930 0.1150* 0.416 (8)
H6B1 0.87760 0.10500 0.93420 0.0870* 0.416 (8)
H6B2 0.98710 0.23420 0.91150 0.0870* 0.416 (8)
H1 0.522 (3) 0.290 (3) 0.372 (2) 0.068 (8)*
H2 0.542 (3) 0.184 (3) 0.4556 (19) 0.055 (6)*
H3 0.448 (3) 0.308 (3) 0.463 (2) 0.081 (8)*
H4 0.393 (4) 0.201 (3) 0.365 (3) 0.090 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0487 (2) 0.0370 (2) 0.0367 (2) 0.0034 (2) 0.0126 (2) 0.0006 (1)
S2 0.0722 (3) 0.0415 (2) 0.0449 (2) −0.0032 (2) 0.0132 (2) 0.0091 (2)
N2 0.1274 (16) 0.0387 (8) 0.0397 (7) 0.0076 (9) 0.0302 (9) −0.0007 (6)
C1 0.0447 (8) 0.0371 (7) 0.0379 (7) −0.0001 (6) 0.0150 (6) 0.0017 (6)
C2A 0.071 (3) 0.0412 (16) 0.0505 (17) 0.0079 (16) 0.0113 (16) −0.0034 (12)
C3A 0.077 (3) 0.0394 (17) 0.068 (3) −0.001 (2) 0.012 (3) −0.0056 (16)
C4A 0.105 (6) 0.067 (8) 0.063 (5) 0.019 (6) 0.030 (4) −0.021 (4)
C5A 0.071 (3) 0.072 (3) 0.0455 (18) 0.000 (2) 0.014 (2) −0.0168 (17)
C6A 0.101 (4) 0.066 (3) 0.0404 (19) −0.004 (3) 0.032 (3) −0.0098 (17)
C6B 0.122 (7) 0.059 (3) 0.039 (3) −0.011 (5) 0.024 (4) 0.000 (2)
C3B 0.058 (4) 0.059 (3) 0.067 (4) 0.016 (3) 0.014 (3) −0.011 (3)
C4B 0.130 (11) 0.050 (4) 0.067 (7) −0.008 (6) 0.043 (6) −0.017 (4)
C2B 0.070 (4) 0.0338 (19) 0.052 (2) 0.007 (2) 0.022 (2) 0.0016 (16)
C5B 0.097 (6) 0.144 (9) 0.058 (4) −0.023 (6) 0.040 (4) −0.038 (5)
N1 0.0396 (8) 0.0394 (7) 0.0623 (9) −0.0031 (6) 0.0141 (7) 0.0027 (7)

Geometric parameters (Å, °)

S1—C1 1.7319 (17) C2A—H2A2 0.9700
S2—C1 1.7050 (16) C2B—H2B1 0.9700
N2—C1 1.331 (2) C2B—H2B2 0.9700
N2—C2A 1.512 (4) C3A—H3A1 0.9700
N2—C6A 1.515 (6) C3A—H3A2 0.9700
N2—C2B 1.540 (5) C3B—H3B1 0.9700
N2—C6B 1.542 (7) C3B—H3B2 0.9700
N1—H4 0.89 (3) C4A—H4A1 0.9700
N1—H3 0.93 (3) C4A—H4A2 0.9700
N1—H1 0.78 (3) C4B—H4B2 0.9700
N1—H2 0.89 (3) C4B—H4B1 0.9700
C2A—C3A 1.515 (7) C5A—H5A1 0.9700
C2B—C3B 1.499 (10) C5A—H5A2 0.9700
C3A—C4A 1.639 (18) C5B—H5B1 0.9700
C3B—C4B 1.50 (2) C5B—H5B2 0.9700
C4A—C5A 1.465 (17) C6A—H6A2 0.9700
C4B—C5B 1.69 (3) C6A—H6A1 0.9700
C5A—C6A 1.489 (8) C6B—H6B1 0.9700
C5B—C6B 1.514 (16) C6B—H6B2 0.9700
C2A—H2A1 0.9700
C1—N2—C2A 119.73 (19) C4A—C3A—H3A2 111.00
C1—N2—C6A 118.6 (3) C2A—C3A—H3A1 111.00
C1—N2—C2B 121.2 (2) C4B—C3B—H3B2 110.00
C1—N2—C6B 122.8 (3) C2B—C3B—H3B1 110.00
C2A—N2—C6A 112.6 (3) C2B—C3B—H3B2 110.00
C2B—N2—C6B 105.9 (4) C4B—C3B—H3B1 110.00
H1—N1—H2 109 (3) H3B1—C3B—H3B2 109.00
H1—N1—H3 110 (3) C3A—C4A—H4A1 110.00
H1—N1—H4 111 (3) C3A—C4A—H4A2 110.00
H2—N1—H3 102 (2) C5A—C4A—H4A2 110.00
H2—N1—H4 114 (3) H4A1—C4A—H4A2 109.00
H3—N1—H4 110 (3) C5A—C4A—H4A1 110.00
S2—C1—N2 120.70 (13) C5B—C4B—H4B1 112.00
S1—C1—S2 118.40 (9) H4B1—C4B—H4B2 110.00
S1—C1—N2 120.91 (13) C3B—C4B—H4B2 111.00
N2—C2A—C3A 107.5 (3) C5B—C4B—H4B2 112.00
N2—C2B—C3B 105.0 (5) C3B—C4B—H4B1 112.00
C2A—C3A—C4A 103.6 (7) C6A—C5A—H5A2 109.00
C2B—C3B—C4B 106.9 (12) C4A—C5A—H5A1 109.00
C3A—C4A—C5A 106.5 (10) C4A—C5A—H5A2 109.00
C3B—C4B—C5B 100.4 (15) C6A—C5A—H5A1 109.00
C4A—C5A—C6A 111.3 (8) H5A1—C5A—H5A2 108.00
C4B—C5B—C6B 104.9 (12) C4B—C5B—H5B2 111.00
N2—C6A—C5A 110.3 (5) C6B—C5B—H5B1 111.00
N2—C6B—C5B 101.5 (7) C4B—C5B—H5B1 111.00
C3A—C2A—H2A2 110.00 H5B1—C5B—H5B2 109.00
N2—C2A—H2A1 110.00 C6B—C5B—H5B2 111.00
N2—C2A—H2A2 110.00 N2—C6A—H6A2 110.00
C3A—C2A—H2A1 110.00 C5A—C6A—H6A1 110.00
H2A1—C2A—H2A2 108.00 H6A1—C6A—H6A2 108.00
N2—C2B—H2B1 111.00 C5A—C6A—H6A2 110.00
N2—C2B—H2B2 111.00 N2—C6A—H6A1 110.00
C3B—C2B—H2B2 111.00 H6B1—C6B—H6B2 109.00
H2B1—C2B—H2B2 109.00 N2—C6B—H6B1 111.00
C3B—C2B—H2B1 111.00 N2—C6B—H6B2 112.00
C4A—C3A—H3A1 111.00 C5B—C6B—H6B1 111.00
H3A1—C3A—H3A2 109.00 C5B—C6B—H6B2 111.00
C2A—C3A—H3A2 111.00
C2A—N2—C1—S1 17.9 (4) C1—N2—C6A—C5A 159.2 (4)
C2A—N2—C1—S2 −161.9 (3) C2A—N2—C6A—C5A −53.7 (6)
C6A—N2—C1—S1 162.6 (4) N2—C2A—C3A—C4A −65.1 (8)
C6A—N2—C1—S2 −17.3 (4) C2A—C3A—C4A—C5A 68.2 (10)
C1—N2—C2A—C3A −152.3 (4) C3A—C4A—C5A—C6A −64.0 (11)
C6A—N2—C2A—C3A 61.1 (6) C4A—C5A—C6A—N2 56.6 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···S2i 0.78 (3) 2.64 (3) 3.4029 (19) 167 (2)
N1—H2···S1 0.89 (3) 2.49 (3) 3.3565 (19) 164 (2)
N1—H3···S1ii 0.93 (3) 2.51 (3) 3.3967 (19) 159 (2)
N1—H4···S2iii 0.89 (3) 2.48 (3) 3.3632 (19) 170 (3)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1; (ii) x−1/2, −y+1/2, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2257).

References

  1. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wahlberg, A. (1979). Acta Cryst. B35, 485–487.
  8. Wahlberg, A. (1980). Acta Cryst. B36, 2099–2103.
  9. Wahlberg, A. (1981). Acta Cryst. B37, 1240–1244.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008129/su2257sup1.cif

e-67-0o879-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008129/su2257Isup2.hkl

e-67-0o879-Isup2.hkl (129.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES