Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 5;67(Pt 4):o799. doi: 10.1107/S1600536811007495

3-(3-Chloro­phen­yl)-1-methyl-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carbonitrile

K Swaminathan a, K Sethusankar a,*, G Murugan b, M Bakthadoss b
PMCID: PMC3099863  PMID: 21754088

Abstract

In the title compound, C18H15ClN2O2, the five-membered isoxazole ring adopts an envelope conformation [the deviation of the N atom is 0.3154 (15) Å] and the six-membered pyran ring adopts a half-chair conformation. The mean plane through all atoms of the isoxazole ring forms dihedral angles of 47.98 (8)° with the mean plane of the chromene ring system and 75.10 (9)° with the chloro­benzene ring.

Related literature

For the synthesis of tricyclic chromenoisoxazolidines, see: Bakthadoss & Murugan (2010). For uses of isoxazole derivatives, see: Loh et al. (2010); Winn et al. (1976). For a related structure, see: Gunasekaran et al. (2010). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-0o799-scheme1.jpg

Experimental

Crystal data

  • C18H15ClN2O2

  • M r = 326.77

  • Monoclinic, Inline graphic

  • a = 10.0141 (4) Å

  • b = 9.2358 (3) Å

  • c = 17.5945 (6) Å

  • β = 102.354 (2)°

  • V = 1589.60 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.928, T max = 0.952

  • 20534 measured reflections

  • 4926 independent reflections

  • 3390 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.151

  • S = 1.04

  • 4926 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007495/rk2265sup1.cif

e-67-0o799-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007495/rk2265Isup2.hkl

e-67-0o799-Isup2.hkl (241.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KSN and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

supplementary crystallographic information

Comment

Using Baylis-Hillman derivatives through in situ formation of nitrones followed by an intramolecular [3+2] dipolar cycloaddition reaction sequence is a novel and simple method of synthesizing tricyclic chromenoisoxozolidine frameworks. The new [3+2] cycloaddition reaction leads to a novel class of angularly substituted fused tricyclic chromenoisoxazolidines, creating two rings and three contiguous stereocenters, one of them being a tetrasubstituted carbon center. (Bakthadoss & Murugan, 2010). Benzopyran and isoxazolidine derivatives are well known for their biological activity and proven medicinal utility. For example, benzopyran derivatives possess antipsychotic and antidepressant activities (Winn et al., 1976). Isoxazolidine and isoxazole sulfonamide are found to inhibit HIV-1 infection in human CD4+ lymphocytic T cells (Loh et al., 2010).

The title compound C18H15N2O2Cl comprises a chromenoisoxazole ring system attached to a chlorobenzene ring and a carbonitrile group. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated at (Fig. 1). In the isoxazole ring (N1/O2/C7/C8/C10), the deviation of atom N1 is -0.3154 (15)Å. This ring adopts an envelope conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.5041 (15)Å and φ2 = 44.23 (17)°. The dihedral angle between the chromeno ring system (O1/C1–C9) and the isoxazole ring(N1/O2/C7/C8/C10) is 47.98 (8)°. The isoxazole ring (N1/O2/C7/C8/C10) also forms a dihedral angle of 75.10 (9)° with the the chlorobenzene ring (C11–C16).

In the chromeno ring system, the dihedral angle between the pyran ring (O1/C1/C6-C9) and the benzene ring(C1-C6) is 3.50 (9)°. The deviation of atom C9 from the mean plane of the pyran ring is 0.3068 (17)Å. The pyran ring adopts half chair conformation (H-form), with puckering parameters (Cremer & Pople, 1975) q2 = 0.3501 (17)Å, q3 = -0.3037 (16)Å and φ2 = 94.7 (2)°. The pyran ring (O1/C1/C6–C9) also forms an interplanar angle of 49.31 (8)° with the isoxazole ring (N1/O2/C7/C8/C10). The chlorobenzene ring(C11–C16) forms an interplanar angle of 51.98 (8)° with the mean plane of the fused isoxazole–pyran ring system (N1/O1/O2/C1/C6–C10). Also, the dihedral angle between the chlorobenzene ring (C11–C16) and the chromeno ring system (O1/C1–C9) is 39.95 (7)°. The title compound exhibits structural similarities with other reported related structures (Gunasekaran et al., 2010). There are no classic hydrogen bonds.

Experimental

A mixture of the compound (E)-2-((2-formylphenoxy) methyl)-3-(3-chlorophenyl) acrylonitrile (1.0 mmol) with N-methylhydroxylamine hydrochloride (1.1 mmol), pyridine (0.24 ml, 3 mmol) and ethanol (5 ml) were placed in a round bottom flask and refluxed for 6 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure. The crude product was diluted with water (10 ml) and dilute HCl (5 ml) and extracted with ethylacetate (20 ml). The organic layer was washed with brine solution (10 ml) and concentrated. The crude product was purified by column chromatography to provide the pure desired compound, as a colourless solid.

Refinement

All hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98Å and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitary radius.

Crystal data

C18H15ClN2O2 F(000) = 680
Mr = 326.77 Dx = 1.365 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4926 reflections
a = 10.0141 (4) Å θ = 1.0–25.0°
b = 9.2358 (3) Å µ = 0.25 mm1
c = 17.5945 (6) Å T = 295 K
β = 102.354 (2)° Block, colourless
V = 1589.60 (10) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4926 independent reflections
Radiation source: fine-focus sealed tube 3390 reflections with I > 2σ(I)
graphite Rint = 0.026
ω scans θmax = 30.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→13
Tmin = 0.928, Tmax = 0.952 k = −13→12
20534 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.525P] where P = (Fo2 + 2Fc2)/3
4926 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.63 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.71130 (16) 0.55309 (17) 0.60426 (9) 0.0414 (3)
C2 0.7392 (2) 0.5485 (2) 0.53022 (11) 0.0558 (5)
H2 0.6764 0.5081 0.4890 0.067*
C3 0.8604 (2) 0.6042 (3) 0.51838 (13) 0.0661 (6)
H3 0.8786 0.6031 0.4687 0.079*
C4 0.9552 (2) 0.6618 (3) 0.57932 (14) 0.0666 (6)
H4 1.0375 0.6980 0.5710 0.080*
C5 0.92754 (19) 0.6654 (2) 0.65242 (12) 0.0527 (4)
H5 0.9924 0.7029 0.6936 0.063*
C6 0.80402 (15) 0.61383 (17) 0.66604 (9) 0.0391 (3)
C7 0.77527 (14) 0.61740 (15) 0.74613 (8) 0.0347 (3)
H7 0.8576 0.5912 0.7847 0.042*
C8 0.65603 (14) 0.51912 (15) 0.75457 (8) 0.0345 (3)
C9 0.54349 (15) 0.53043 (18) 0.68020 (9) 0.0400 (3)
H9A 0.4677 0.4683 0.6851 0.048*
H9B 0.5100 0.6292 0.6743 0.048*
C10 0.60629 (16) 0.58987 (17) 0.82461 (9) 0.0392 (3)
H10 0.5095 0.6157 0.8079 0.047*
C11 0.62489 (15) 0.49933 (17) 0.89708 (9) 0.0382 (3)
C12 0.74430 (16) 0.50552 (19) 0.95373 (10) 0.0435 (4)
H12 0.8145 0.5681 0.9483 0.052*
C13 0.75772 (19) 0.4174 (2) 1.01837 (10) 0.0503 (4)
C14 0.6564 (2) 0.3247 (2) 1.02857 (12) 0.0584 (5)
H14 0.6676 0.2664 1.0726 0.070*
C15 0.5385 (2) 0.3195 (2) 0.97269 (12) 0.0621 (5)
H15 0.4687 0.2569 0.9788 0.075*
C16 0.52159 (19) 0.4062 (2) 0.90713 (11) 0.0512 (4)
H16 0.4406 0.4020 0.8697 0.061*
C17 0.8261 (2) 0.86941 (19) 0.78734 (11) 0.0531 (4)
H17A 0.7878 0.9520 0.8080 0.080*
H17B 0.8582 0.8975 0.7418 0.080*
H17C 0.9010 0.8321 0.8257 0.080*
C18 0.69897 (16) 0.36725 (17) 0.76710 (10) 0.0405 (3)
N1 0.72137 (14) 0.75768 (14) 0.76661 (7) 0.0396 (3)
N2 0.72938 (17) 0.24949 (17) 0.77403 (11) 0.0618 (4)
O1 0.59142 (12) 0.48990 (13) 0.61273 (7) 0.0470 (3)
O2 0.68515 (14) 0.71908 (12) 0.84078 (7) 0.0481 (3)
Cl1 0.90798 (6) 0.42666 (9) 1.08998 (4) 0.0900 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0467 (8) 0.0382 (8) 0.0375 (8) 0.0095 (6) 0.0049 (6) −0.0010 (6)
C2 0.0680 (12) 0.0572 (11) 0.0404 (9) 0.0170 (9) 0.0079 (8) −0.0024 (8)
C3 0.0852 (14) 0.0674 (13) 0.0533 (11) 0.0204 (11) 0.0318 (11) 0.0081 (10)
C4 0.0685 (12) 0.0649 (13) 0.0749 (14) 0.0032 (10) 0.0344 (11) 0.0058 (11)
C5 0.0475 (9) 0.0522 (10) 0.0595 (11) −0.0014 (8) 0.0142 (8) −0.0013 (8)
C6 0.0402 (7) 0.0350 (7) 0.0406 (8) 0.0046 (6) 0.0055 (6) 0.0011 (6)
C7 0.0346 (6) 0.0300 (7) 0.0355 (7) 0.0006 (5) −0.0015 (5) −0.0001 (5)
C8 0.0353 (7) 0.0285 (6) 0.0369 (7) 0.0029 (5) 0.0016 (5) −0.0002 (5)
C9 0.0341 (7) 0.0415 (8) 0.0406 (8) 0.0013 (6) −0.0007 (6) −0.0047 (6)
C10 0.0401 (7) 0.0358 (7) 0.0402 (8) 0.0050 (6) 0.0053 (6) −0.0013 (6)
C11 0.0402 (7) 0.0351 (7) 0.0404 (8) 0.0004 (6) 0.0111 (6) −0.0026 (6)
C12 0.0395 (7) 0.0456 (9) 0.0454 (8) −0.0006 (7) 0.0091 (6) 0.0074 (7)
C13 0.0550 (10) 0.0499 (10) 0.0453 (9) 0.0078 (8) 0.0091 (7) 0.0076 (7)
C14 0.0899 (14) 0.0380 (9) 0.0523 (10) −0.0021 (9) 0.0262 (10) 0.0051 (8)
C15 0.0824 (14) 0.0455 (10) 0.0662 (12) −0.0269 (10) 0.0331 (11) −0.0089 (9)
C16 0.0518 (9) 0.0503 (10) 0.0517 (10) −0.0143 (8) 0.0119 (8) −0.0137 (8)
C17 0.0676 (11) 0.0342 (8) 0.0540 (10) −0.0085 (8) 0.0052 (8) −0.0031 (7)
C18 0.0404 (7) 0.0326 (7) 0.0471 (8) 0.0010 (6) 0.0061 (6) 0.0004 (6)
N1 0.0513 (7) 0.0293 (6) 0.0360 (6) 0.0008 (5) 0.0045 (5) 0.0011 (5)
N2 0.0636 (10) 0.0364 (8) 0.0845 (12) 0.0068 (7) 0.0135 (9) 0.0031 (8)
O1 0.0452 (6) 0.0517 (7) 0.0392 (6) −0.0014 (5) −0.0016 (5) −0.0116 (5)
O2 0.0751 (8) 0.0314 (6) 0.0395 (6) −0.0028 (5) 0.0158 (5) −0.0031 (4)
Cl1 0.0704 (4) 0.1252 (6) 0.0635 (4) 0.0115 (4) −0.0098 (3) 0.0284 (3)

Geometric parameters (Å, °)

C1—O1 1.371 (2) C10—O2 1.4257 (19)
C1—C6 1.388 (2) C10—C11 1.503 (2)
C1—C2 1.390 (2) C10—H10 0.9800
C2—C3 1.375 (3) C11—C12 1.384 (2)
C2—H2 0.9300 C11—C16 1.385 (2)
C3—C4 1.378 (3) C12—C13 1.381 (2)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.373 (3) C13—C14 1.369 (3)
C4—H4 0.9300 C13—Cl1 1.7459 (19)
C5—C6 1.393 (2) C14—C15 1.366 (3)
C5—H5 0.9300 C14—H14 0.9300
C6—C7 1.498 (2) C15—C16 1.385 (3)
C7—N1 1.4775 (19) C15—H15 0.9300
C7—C8 1.532 (2) C16—H16 0.9300
C7—H7 0.9800 C17—N1 1.461 (2)
C8—C18 1.470 (2) C17—H17A 0.9600
C8—C9 1.537 (2) C17—H17B 0.9600
C8—C10 1.567 (2) C17—H17C 0.9600
C9—O1 1.423 (2) C18—N2 1.129 (2)
C9—H9A 0.9700 N1—O2 1.4711 (17)
C9—H9B 0.9700
O1—C1—C6 122.77 (14) O2—C10—C11 109.49 (12)
O1—C1—C2 116.42 (15) O2—C10—C8 104.48 (12)
C6—C1—C2 120.75 (17) C11—C10—C8 115.63 (12)
C3—C2—C1 119.44 (19) O2—C10—H10 109.0
C3—C2—H2 120.3 C11—C10—H10 109.0
C1—C2—H2 120.3 C8—C10—H10 109.0
C2—C3—C4 120.68 (19) C12—C11—C16 119.17 (16)
C2—C3—H3 119.7 C12—C11—C10 121.27 (14)
C4—C3—H3 119.7 C16—C11—C10 119.56 (15)
C5—C4—C3 119.7 (2) C13—C12—C11 119.03 (16)
C5—C4—H4 120.2 C13—C12—H12 120.5
C3—C4—H4 120.2 C11—C12—H12 120.5
C4—C5—C6 121.15 (19) C14—C13—C12 122.17 (17)
C4—C5—H5 119.4 C14—C13—Cl1 118.99 (15)
C6—C5—H5 119.4 C12—C13—Cl1 118.84 (14)
C1—C6—C5 118.25 (16) C15—C14—C13 118.59 (17)
C1—C6—C7 120.97 (14) C15—C14—H14 120.7
C5—C6—C7 120.71 (15) C13—C14—H14 120.7
N1—C7—C6 113.74 (12) C14—C15—C16 120.76 (17)
N1—C7—C8 99.38 (11) C14—C15—H15 119.6
C6—C7—C8 112.88 (12) C16—C15—H15 119.6
N1—C7—H7 110.1 C15—C16—C11 120.27 (17)
C6—C7—H7 110.1 C15—C16—H16 119.9
C8—C7—H7 110.1 C11—C16—H16 119.9
C18—C8—C7 111.76 (12) N1—C17—H17A 109.5
C18—C8—C9 109.29 (12) N1—C17—H17B 109.5
C7—C8—C9 108.78 (12) H17A—C17—H17B 109.5
C18—C8—C10 114.32 (13) N1—C17—H17C 109.5
C7—C8—C10 102.39 (11) H17A—C17—H17C 109.5
C9—C8—C10 110.04 (12) H17B—C17—H17C 109.5
O1—C9—C8 112.07 (12) N2—C18—C8 177.46 (19)
O1—C9—H9A 109.2 C17—N1—O2 104.46 (12)
C8—C9—H9A 109.2 C17—N1—C7 113.60 (13)
O1—C9—H9B 109.2 O2—N1—C7 100.14 (10)
C8—C9—H9B 109.2 C1—O1—C9 115.99 (12)
H9A—C9—H9B 107.9 C10—O2—N1 104.90 (11)
O1—C1—C2—C3 −177.20 (17) C7—C8—C10—C11 −114.23 (14)
C6—C1—C2—C3 0.3 (3) C9—C8—C10—C11 130.25 (14)
C1—C2—C3—C4 1.3 (3) O2—C10—C11—C12 −28.6 (2)
C2—C3—C4—C5 −0.9 (3) C8—C10—C11—C12 89.10 (18)
C3—C4—C5—C6 −1.0 (3) O2—C10—C11—C16 152.35 (14)
O1—C1—C6—C5 175.18 (15) C8—C10—C11—C16 −89.99 (18)
C2—C1—C6—C5 −2.2 (2) C16—C11—C12—C13 0.7 (2)
O1—C1—C6—C7 −1.9 (2) C10—C11—C12—C13 −178.38 (15)
C2—C1—C6—C7 −179.23 (15) C11—C12—C13—C14 −0.4 (3)
C4—C5—C6—C1 2.5 (3) C11—C12—C13—Cl1 −179.51 (13)
C4—C5—C6—C7 179.59 (17) C12—C13—C14—C15 0.1 (3)
C1—C6—C7—N1 −98.81 (17) Cl1—C13—C14—C15 179.19 (15)
C5—C6—C7—N1 84.21 (18) C13—C14—C15—C16 −0.1 (3)
C1—C6—C7—C8 13.4 (2) C14—C15—C16—C11 0.4 (3)
C5—C6—C7—C8 −163.53 (14) C12—C11—C16—C15 −0.7 (3)
N1—C7—C8—C18 −158.11 (12) C10—C11—C16—C15 178.42 (16)
C6—C7—C8—C18 81.06 (15) C6—C7—N1—C17 −77.41 (16)
N1—C7—C8—C9 81.13 (13) C8—C7—N1—C17 162.38 (12)
C6—C7—C8—C9 −39.70 (16) C6—C7—N1—O2 171.80 (12)
N1—C7—C8—C10 −35.30 (13) C8—C7—N1—O2 51.59 (12)
C6—C7—C8—C10 −156.14 (12) C6—C1—O1—C9 20.4 (2)
C18—C8—C9—O1 −63.51 (17) C2—C1—O1—C9 −162.18 (15)
C7—C8—C9—O1 58.76 (16) C8—C9—O1—C1 −49.34 (18)
C10—C8—C9—O1 170.19 (12) C11—C10—O2—N1 150.44 (12)
C18—C8—C10—O2 127.25 (13) C8—C10—O2—N1 26.01 (14)
C7—C8—C10—O2 6.19 (14) C17—N1—O2—C10 −167.72 (13)
C9—C8—C10—O2 −109.34 (13) C7—N1—O2—C10 −49.94 (13)
C18—C8—C10—C11 6.83 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2265).

References

  1. Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gunasekaran, B., Kathiravan, S., Raghunathan, R. & Manivannan, V. (2010). Acta Cryst. E66, o611–o612. [DOI] [PMC free article] [PubMed]
  6. Loh, B., Vozzolo, L., Mok, B. J., Lee, C. C., Fitzmaurice, R. J., Caddick, S. & Fassati, A. (2010). J. Med. Chem. 52, 6966–6978. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Winn, M., Arendsen, D., Dodge, P., Dren, A., Dunnigan, D., Hallas, R., Hwang, K., Kyncl, J., Lee, Y. H., Plotnikoff, N., Young Zaugg, H., Dalzell, H. & Razdan, R. K. (1976). J. Med. Chem. 19, 461–471. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007495/rk2265sup1.cif

e-67-0o799-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007495/rk2265Isup2.hkl

e-67-0o799-Isup2.hkl (241.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES