Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):m458–m459. doi: 10.1107/S160053681100941X

The one-dimensional organic–inorganic hybrid: catena-poly[bis­[1-(3-ammonio­prop­yl)-1H-imidazolium] [[iodidoplumbate(II)]-tri-μ-iodido-plumbate(II)-tri-μ-iodido-[iodidoplumbate(II)]-di-μ-iodido]]

A Trigui a, H Boughzala b,*, A Driss b, Y Abid a
PMCID: PMC3099864  PMID: 21753976

Abstract

The organic–inorganic hybrid, {(C6H13N3)2[Pb3I10]}n, was obtained by the reaction of 1-(3-ammonio­prop­yl)imidazolium triiodide and PbI2 at room temperature. The structure contains one-dimensional {[Pb3I10]4−}n polymeric anions spreading parallel to [001], resulting from face–face–edge association of PbI6 distorted octa­hedra. One of the PbII cations is imposed at an inversion centre, whereas the second occupies a general position. N—H⋯I hydrogen bonds connect the organic cations and inorganic anions.

Related literature

For organic–inorganic hybrid materials, see: Billing & Lemmerer (2004); Dammak et al. (2009); Elleuch et al. (2007, 2010); Gebauer & Schmid (1999); Ishihara et al. (1990); Krautscheid et al. (2001). For the structures of lead iodide-based complexes, see: Maxcy et al. (2003); Mitzi et al. (2001); Mousdis et al. (1998); Papavassiliou et al. (1999); Samet Kallel et al. (2008).graphic file with name e-67-0m458-scheme1.jpg

Experimental

Crystal data

  • (C6H13N3)2[Pb3I10]

  • M r = 2144.99

  • Triclinic, Inline graphic

  • a = 8.652 (3) Å

  • b = 11.728 (5) Å

  • c = 11.972 (6) Å

  • α = 117.21 (3)°

  • β = 98.05 (2)°

  • γ = 107.17 (3)°

  • V = 976.7 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 20.81 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.02 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.139, T max = 0.624

  • 4950 measured reflections

  • 3796 independent reflections

  • 2749 reflections with I > 2σ(I)

  • R int = 0.024

  • 2 standard reflections every 120 min intensity decay: 6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.110

  • S = 1.02

  • 3796 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Δρmax = 2.17 e Å−3

  • Δρmin = −2.09 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100941X/yk2002sup1.cif

e-67-0m458-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100941X/yk2002Isup2.hkl

e-67-0m458-Isup2.hkl (186.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pb1—I5 3.155 (2)
Pb1—I1 3.1757 (13)
Pb1—I3 3.2264 (14)
Pb1—I1i 3.2652 (13)
Pb1—I2 3.3039 (14)
Pb1—I4 3.309 (2)
Pb2—I4 3.2105 (15)
Pb2—I3 3.2388 (14)
Pb2—I2 3.263 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯I5 0.89 2.84 3.67 (2) 156
N9—H9B⋯I2iii 0.89 2.90 3.68 (2) 147
N9—H9C⋯I5iv 0.89 2.89 3.64 (2) 143

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Recently, self-assembling organic–inorganic hybrid compounds have been the focus of a great number of investigations owing to their unique structural, magnetic, optical nonlinear and optoelectronic functionality (Papavassiliou et al., 1999; Ishihara et al., 1990; Mitzi et al., 2001). In particular, the lead iodide-based hybrid materials have been extensively studied (Gebauer & Schmid, 1999; Dammak et al., 2009; Elleuch et al., 2010) since they show strong room temperature excitonic optical features with large exciton binding energy and oscillator strengths. These low dimensional complexes include zero dimensional (0D), one dimensional (1D), and two dimensional (2D) lead iodide networks with organic groups as spacers. Among them, 1D-hybrids are more attractive in nanoscaled applications since they form a variety of crystalline structures, which differ in the inorganic chain where the [PbI6] octahedra can be connected in different ways: face sharing (Elleuch et al., 2007), edge sharing (Samet Kallel et al., 2008), corner sharing (Mousdis et al., 1998) or through several combinations of these various types of sharing (Maxcy et al., 2003; Billing & Lemmerer, 2004; Krautscheid et al., 2001), as in the case of our compound. We present here the structure of the organic–inorganic one dimensional hybrid compound (C6H13N3)2Pb3I10.

The crystal structure of the title compound consists of (Pb3I10)n4n- chains extending along [001] with the 1-(3-ammoniopropyl)-imidazolium cations as counter-ions (Fig. 1). The inorganic anion, shown in Fig. 1, can be considered as a set of mixed face-shared/edge-shared octahedra. In fact, the unit cell contains three octahedra with two crystallographically independent Pb atoms: Pb1 and Pb2. The central Pb2 octahedron is connected to the Pb1 octahedra by shared faces, while the Pb1 octahedra are linked via edge-sharing at both ends of Pb3I104- to adjacent units.

The coordination octahedron of the central lead ion Pb2 is only slightly distorted since it is located on an inversion centre and is bound to three unique I atoms: I2, I3 and I4, which participate in the face-sharing between the Pb2 and Pb1 octahedra. The bond lengths around Pb2 are very similar (3.2105 (15), 3.2388 (14), 3.263 (2) Å), the bond angles I—Pb2—I deviate slightly from ideal octahedral values, ranging from 83° to 94°. In contrast, Pb1 has a more distorted environement with Pb—I distances ranging from 3.155 (2) to 3.309 (2) Å and with all cis and trans angles different (see Table 1). This Pb atom is bonded to five unique I atoms, where two I1 atoms are responsible for the edge sharing between the neighbouring units to form one-dimensional infinite chains. Atom I5 is the only halide not involved in any bonding with adjacent octahedra and has the shortest Pb—I distance [3.155 (2) Å].

Cations fill channels between the anionic chains (Fig.2). Each terminal ammonium group forms three N—H···I hydrogen bonds to I atoms of three different chains (see Table 2).

Experimental

Single crystals of (C6H13N3)2Pb3I10 were grown by the slow evaporation at room temperature of a solution containing PbI2 and C6H13N3I3 salts. An aqueous solution of HI was added to the aminopropylimidazole to synthesize C6H13N3I3 precursor. Under ambient conditions, stoechiometric amounts of C6H13N3I3 and PbI2 with excess HI were sailed in DMF. This mixture was stirred and remained clear without any precipitate. Pale-yellow flatted crystals were obtained few weeks later. Supplementary data for this paper are available from the IUCr electronic archives (Reference: CCDC 782074).

Refinement

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å (CH2) or 0.93 Å (CH) and N—H = 0.89 Å (NH3) or 0.86 Å (NH) with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

View of the asymmetric unit of (C6H13N3)2Pb3I10 with some adjacent atoms showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 2 - y, 1 - z, (ii) 1 - x, 2 - y, 2 - z]

Fig. 2.

Fig. 2.

The crystal packing of (C6H13N3)2Pb3I10 viewed along [001] direction and showing the N—H···I hydrogen bonding (dashed lines).

Crystal data

(C6H13N3)2[Pb3I10] Z = 1
Mr = 2144.99 F(000) = 916
Triclinic, P1 Dx = 3.647 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.652 (3) Å Cell parameters from 25 reflections
b = 11.728 (5) Å θ = 9–15°
c = 11.972 (6) Å µ = 20.81 mm1
α = 117.21 (3)° T = 293 K
β = 98.05 (2)° Flat, yellow
γ = 107.17 (3)° 0.4 × 0.2 × 0.02 mm
V = 976.7 (9) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 2749 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.024
graphite θmax = 26.0°, θmin = 2.0°
non–profiled ω/2θ scans h = −10→2
Absorption correction: ψ scan (North et al., 1968) k = −14→14
Tmin = 0.139, Tmax = 0.624 l = −14→14
4950 measured reflections 2 standard reflections every 120 min
3796 independent reflections intensity decay: 6%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.063P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
3796 reflections Δρmax = 2.17 e Å3
143 parameters Δρmin = −2.09 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00169 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.45091 (5) 0.90517 (4) 0.62320 (4) 0.03669 (15)
Pb2 0.5000 1.0000 1.0000 0.03708 (18)
I1 0.76440 (9) 0.98779 (8) 0.52450 (7) 0.0436 (2)
I2 0.14853 (9) 0.82298 (7) 0.74775 (7) 0.0436 (2)
I3 0.67368 (10) 0.82982 (8) 0.79737 (7) 0.0432 (2)
I4 0.59957 (11) 1.21598 (7) 0.90100 (8) 0.0505 (2)
I5 0.30697 (11) 0.59287 (8) 0.38118 (8) 0.0501 (2)
N9 0.2562 (18) 0.3757 (14) 0.5290 (12) 0.073 (4)
H9A 0.2959 0.4198 0.4885 0.109*
H9B 0.1595 0.3006 0.4732 0.109*
H9C 0.3332 0.3487 0.5545 0.109*
C8 0.223 (2) 0.4705 (14) 0.6451 (14) 0.060 (4)
H8A 0.1398 0.5000 0.6172 0.073*
H8B 0.3281 0.5534 0.7047 0.073*
C7 0.1565 (18) 0.3985 (15) 0.7187 (14) 0.057 (3)
H7A 0.1032 0.4516 0.7762 0.069*
H7B 0.0682 0.3058 0.6536 0.069*
C6 0.2864 (16) 0.3825 (13) 0.8013 (12) 0.050 (3)
H6A 0.3363 0.3245 0.7449 0.060*
H6B 0.3773 0.4739 0.8663 0.060*
N1 0.2042 (13) 0.3173 (9) 0.8694 (9) 0.045 (2)
C2 0.1429 (17) 0.1818 (12) 0.8230 (12) 0.050 (3)
H2 0.1488 0.1127 0.7458 0.060*
N3 0.0710 (14) 0.1625 (10) 0.9077 (11) 0.054 (3)
H3 0.0212 0.0825 0.8993 0.065*
C4 0.0878 (19) 0.2879 (14) 1.0096 (14) 0.058 (3)
H4 0.0471 0.3025 1.0808 0.069*
C5 0.1731 (18) 0.3842 (14) 0.9870 (13) 0.057 (3)
H5 0.2065 0.4805 1.0411 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.0386 (3) 0.0395 (2) 0.0362 (2) 0.01781 (19) 0.01491 (18) 0.02124 (19)
Pb2 0.0412 (3) 0.0372 (3) 0.0332 (3) 0.0167 (3) 0.0139 (2) 0.0179 (2)
I1 0.0373 (4) 0.0564 (4) 0.0468 (4) 0.0216 (4) 0.0182 (3) 0.0318 (4)
I2 0.0343 (4) 0.0428 (4) 0.0479 (4) 0.0126 (3) 0.0151 (3) 0.0210 (3)
I3 0.0473 (4) 0.0506 (4) 0.0447 (4) 0.0300 (4) 0.0203 (3) 0.0272 (3)
I4 0.0590 (5) 0.0321 (4) 0.0514 (4) 0.0121 (4) 0.0103 (4) 0.0213 (3)
I5 0.0543 (5) 0.0409 (4) 0.0411 (4) 0.0177 (4) 0.0087 (4) 0.0140 (3)
N9 0.090 (10) 0.089 (9) 0.074 (8) 0.051 (8) 0.035 (7) 0.057 (7)
C8 0.085 (11) 0.058 (8) 0.062 (8) 0.034 (8) 0.029 (7) 0.045 (7)
C7 0.063 (9) 0.065 (8) 0.062 (8) 0.030 (7) 0.026 (7) 0.042 (7)
C6 0.045 (7) 0.053 (7) 0.055 (7) 0.021 (6) 0.019 (6) 0.030 (6)
N1 0.044 (6) 0.038 (5) 0.042 (5) 0.015 (4) 0.006 (4) 0.017 (4)
C2 0.055 (8) 0.038 (6) 0.041 (6) 0.021 (6) 0.005 (6) 0.012 (5)
N3 0.056 (7) 0.041 (5) 0.058 (6) 0.007 (5) 0.009 (5) 0.030 (5)
C4 0.068 (9) 0.061 (8) 0.058 (8) 0.026 (7) 0.038 (7) 0.037 (7)
C5 0.064 (9) 0.045 (7) 0.051 (7) 0.020 (7) 0.018 (7) 0.018 (6)

Geometric parameters (Å, °)

Pb1—I5 3.155 (2) C8—H8A 0.9700
Pb1—I1 3.1757 (13) C8—H8B 0.9700
Pb1—I3 3.2264 (14) C7—C6 1.502 (18)
Pb1—I1i 3.2652 (13) C7—H7A 0.9700
Pb1—I2 3.3039 (14) C7—H7B 0.9700
Pb1—I4 3.309 (2) C6—N1 1.473 (16)
Pb2—I4 3.2105 (15) C6—H6A 0.9700
Pb2—I4ii 3.2105 (14) C6—H6B 0.9700
Pb2—I3 3.2388 (14) N1—C2 1.315 (15)
Pb2—I3ii 3.2388 (14) N1—C5 1.375 (16)
Pb2—I2ii 3.263 (2) C2—N3 1.331 (17)
Pb2—I2 3.263 (2) C2—H2 0.9300
I1—Pb1i 3.2653 (13) N3—C4 1.362 (16)
N9—C8 1.460 (17) N3—H3 0.8600
N9—H9A 0.8900 C4—C5 1.318 (19)
N9—H9B 0.8900 C4—H4 0.9300
N9—H9C 0.8900 C5—H5 0.9300
C8—C7 1.536 (19)
I5—Pb1—I1 90.09 (5) C8—N9—H9C 109.5
I5—Pb1—I3 89.89 (5) H9A—N9—H9C 109.5
I1—Pb1—I3 88.94 (4) H9B—N9—H9C 109.5
I5—Pb1—I1i 95.96 (5) N9—C8—C7 111.1 (11)
I1—Pb1—I1i 92.18 (4) N9—C8—H8A 109.4
I3—Pb1—I1i 174.05 (2) C7—C8—H8A 109.4
I5—Pb1—I2 91.62 (5) N9—C8—H8B 109.4
I1—Pb1—I2 175.04 (2) C7—C8—H8B 109.4
I3—Pb1—I2 86.41 (4) H8A—C8—H8B 108.0
I1i—Pb1—I2 92.27 (4) C6—C7—C8 116.4 (12)
I5—Pb1—I4 172.82 (3) C6—C7—H7A 108.2
I1—Pb1—I4 94.09 (5) C8—C7—H7A 108.2
I3—Pb1—I4 84.36 (5) C6—C7—H7B 108.2
I1i—Pb1—I4 89.73 (5) C8—C7—H7B 108.2
I2—Pb1—I4 83.75 (5) H7A—C7—H7B 107.3
I4—Pb2—I4ii 180.0 N1—C6—C7 109.8 (10)
I4—Pb2—I3 85.76 (4) N1—C6—H6A 109.7
I4ii—Pb2—I3 94.24 (4) C7—C6—H6A 109.7
I3—Pb2—I3ii 180.0 N1—C6—H6B 109.7
I4ii—Pb2—I2 94.02 (5) C7—C6—H6B 109.7
I4—Pb2—I2 85.98 (5) H6A—C6—H6B 108.2
I3ii—Pb2—I2 93.10 (5) C2—N1—C5 108.9 (12)
I3—Pb2—I2 86.90 (5) C2—N1—C6 124.3 (10)
I2ii—Pb2—I2 180.0 C5—N1—C6 126.8 (10)
I3ii—Pb2—I2ii 86.90 (5) N1—C2—N3 106.8 (10)
I3—Pb2—I2ii 93.10 (5) N1—C2—H2 126.6
I4ii—Pb2—I2ii 85.98 (5) N3—C2—H2 126.6
I4—Pb2—I2ii 94.02 (5) C2—N3—C4 110.1 (10)
I4—Pb2—I3ii 94.24 (4) C2—N3—H3 124.9
I4ii—Pb2—I3ii 85.76 (4) C4—N3—H3 124.9
Pb1—I1—Pb1i 87.82 (4) C5—C4—N3 106.2 (11)
Pb2—I2—Pb1 76.05 (4) C5—C4—H4 126.9
Pb1—I3—Pb2 77.46 (4) N3—C4—H4 126.9
Pb2—I4—Pb1 76.68 (5) C4—C5—N1 108.0 (12)
C8—N9—H9A 109.5 C4—C5—H5 126.0
C8—N9—H9B 109.5 N1—C5—H5 126.0
H9A—N9—H9B 109.5

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N9—H9A···I5 0.89 2.84 3.67 (2) 156
N9—H9B···I2iii 0.89 2.90 3.68 (2) 147
N9—H9C···I5iv 0.89 2.89 3.64 (2) 143

Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2002).

References

  1. Billing, D. G. & Lemmerer, A. (2004). Acta Cryst. C60, m224–m226. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Dammak, T., Koubaa, M., Boukheddaden, K., Boughzala, H., Mlayah, A. & Abid, Y. (2009). J. Phys. Chem. 113, 19305–19309.
  4. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
  5. Elleuch, S., Boughzala, H., Driss, A. & Abid, Y. (2007). Acta Cryst. E63, m306–m308.
  6. Elleuch, S., Dammak, T., Abid, Y., Mlayah, A. & Boughzala, H. (2010). J. Lumin. 130, 531–535.
  7. Gebauer, T. & Schmid, G. (1999). Z. Anorg. Allg. Chem. 625, 1124–1128.
  8. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  9. Ishihara, T., Takahashi, J. & Goto, T. (1990). Phys. Rev. B, 42, 17, 11099–11107. [DOI] [PubMed]
  10. Krautscheid, H., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104.
  11. Maxcy, K. R., Willett, R. D., Mitzi, D. B. & Afzali, A. (2003). Acta Cryst. E59, m364–m366.
  12. Mitzi, D. B., Chondroudis, K. & Kagan, C. R. (2001). IBM J. Res. Dev. 45, 29–45.
  13. Mousdis, G. A., Gionis, V., Papavassiliou, C. P. & Terzis, A. (1998). J. Mater. Chem. 8, 2259–2262.
  14. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  15. Papavassiliou, G. C., Mousdis, G. A. & Koutselas, I. B. (1999). Adv. Mater. Opt. Electron. 9, 265–271.
  16. Samet Kallel, E., Boughzala, H., Driss, A. & Abid, Y. (2008). Acta Cryst. E64, m921. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100941X/yk2002sup1.cif

e-67-0m458-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100941X/yk2002Isup2.hkl

e-67-0m458-Isup2.hkl (186.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES