Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):m514. doi: 10.1107/S1600536811011202

Tetra­kis[μ-N,N′-bis­(4-bromo­phen­yl)formamidinato-κ2 N:N′]dimolyb­denum(II) tetra­hydro­furan solvate

L-J Han a,*
PMCID: PMC3099865  PMID: 21754018

Abstract

The title complex, [Mo2(C13H9N2Br2)4]·C4H8O, contains a quadruply bonded Mo2 4+ unit equatorially coordinated by four N,N′-bis­(4-bromo­phen­yl)formamidinate ligands, forming a dimetal paddlewheel complex. The centroid of the Mo—Mo bond is located on a special position with 2/m symmetry. In the crystal, complex mol­ecules are linked by Br⋯Br inter­actions [3.7049 (10) Å]. The disordered solvent mol­ecule could not be satisfactorily modelled and was therefore eliminated from the final refinement.

Related literature

For the nature of halogen–halogen inter­actions, see: Domercq et al. (2001); Espallargas et al. (2006). For Br⋯Br inter­actions, see: Fujiwara et al. (2006); Reddy et al. (1996). For the use of inter­molecular inter­actions in supra­molecular synthesis, see: Brammer (2004); Desiraju (1995, 2001).graphic file with name e-67-0m514-scheme1.jpg

Experimental

Crystal data

  • [Mo2(C13H9N2Br2)4]·C4H8O

  • M r = 1604.05

  • Monoclinic, Inline graphic

  • a = 21.795 (4) Å

  • b = 10.077 (2) Å

  • c = 29.967 (6) Å

  • β = 110.67 (3)°

  • V = 6158 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.64 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.10 mm

Data collection

  • BRUKER SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.429, T max = 0.569

  • 25098 measured reflections

  • 5995 independent reflections

  • 3563 reflections with I > 2σ(I)

  • R int = 0.119

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.151

  • S = 1.01

  • 5995 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −1.11 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011202/ff2002sup1.cif

e-67-0m514-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011202/ff2002Isup2.hkl

e-67-0m514-Isup2.hkl (293.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mo1—Mo1i 2.1263 (13)
Mo1—N3 2.192 (5)
Mo1—N4i 2.195 (5)
Mo1—N1i 2.198 (5)
Mo1—N2 2.218 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (No.20741004/B010303).

supplementary crystallographic information

Comment

One of the main interests of crystal engineering is the study of intermolecular interactions and their utilization in supramolecular synthesis (Desiraju 1995; Desiraju 2001; Brammer 2004). These interactions range from strong forces, e.g., classical hydrogen bonds, to weaker ones, e.g., halogen···halogen interactions. The nature of the halogen···halogen interactions has been studied both through extensive crystallographic investigation and using ab initio calculations(Domercq et al.,2001; Espallargas et al., 2006). Here we report intermolecular Br···Br interactions in the crystal structure Mo2(C13H9N2Br2)4.THF.

The molecular structure of the title compound is shown in Fig.1. The molecule of Mo2(C13H9N2Br2)4 (I) occupies a special position on an inversion center, and the Mo—Mo distance is 2.1263 (13) Å, which is in the range of dimolybdenum quadruple bonds. Bromine atoms participate in short contacts (3.7049 (10) Å) linking the molecules of (I) into planes. This value is significantly shorter than van der Waals contact distance (3.90 Å) (Reddy et al., 1996; Fujiwara et al., 2006).

Experimental

A mixture yellow Mo2(OOCCH3)4 (0.128 g, 0.300 mmol) and N,N'-bis(4-bromophenyl)formamidinate (0.425 g, 1.20 mmol) was suspended in 20 ml of THF. While stirring, 2.4 ml NaOCH2CH3 solution (0.5 M in ethanol) was added slowly. The colour turned first to red and then to dark red. The reaction was stirred for 5 h at room temperature, and then the volume of the solvent was reduced to about 3 ml under reduced pressure. The residue was washed with distilled water(3×10 ml) and ethanol (8 ml) and dried under vacuum. The yellow solid was dissolved in THF (15 ml) and the solution was layered with hexanes. Yellow block-shaped crystals formed after several days. Yield: 0.342 g (71%). 1HNMR(CDCl3, p.p.m.): 8.41(s, 4H, –NCHN–), 7.10(d, 16H, aromatic), 6.06(d, 16H, aromatic). Anal. Calcd. C52H36Mo2N8Br8: C, 38.94; H, 2.26; N, 6.99; Found: C, 38.78; H, 2.17; N, 7.08.

Refinement

H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene, and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

A search for solvent-accessible voids in the crystal structure using PLATON (Spek, 2009) showed a potential solvent volume of 829.4 Å3 and subsequent application of SQUEEZE procedures showed four relevant voids each with a solvent-accessible volume of 207 Å3 . The SQUEEZE procedure was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed in the final refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound drawn with displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for clarity. Atoms with suffix A are generated by the symmetry operation(-x + 1/2, -y + 1/2, -z).

Fig. 2.

Fig. 2.

Part of a two-dimensional plane of the title compound. Br···Br interactions are drawn with blue dashed lines.

Crystal data

[Mo2(C13H9N2Br2)4]·C4H8O F(000) = 3072
Mr = 1604.05 Dx = 1.730 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3824 reflections
a = 21.795 (4) Å θ = 2.6–27.4°
b = 10.077 (2) Å µ = 5.64 mm1
c = 29.967 (6) Å T = 293 K
β = 110.67 (3)° Block, yellow
V = 6158 (2) Å3 0.15 × 0.13 × 0.10 mm
Z = 4

Data collection

BRUKER SMART 1000 diffractometer 5995 independent reflections
Radiation source: fine-focus sealed tube 3563 reflections with I > 2σ(I)
graphite Rint = 0.119
ω–scan θmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −26→26
Tmin = 0.429, Tmax = 0.569 k = −11→12
25098 measured reflections l = −36→36

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0563P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
5995 reflections Δρmax = 1.09 e Å3
317 parameters Δρmin = −1.11 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00036 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.28396 (3) 0.20871 (5) 0.031782 (19) 0.0376 (2)
N1 0.2149 (3) 0.1089 (5) −0.07230 (18) 0.0397 (13)
N2 0.2911 (3) 0.0167 (4) −0.00225 (18) 0.0385 (13)
N3 0.3695 (3) 0.2759 (5) 0.01561 (19) 0.0404 (13)
N4 0.2950 (3) 0.3690 (5) −0.05383 (18) 0.0405 (13)
Br1 0.05852 (5) 0.01976 (10) −0.28619 (3) 0.0768 (3)
Br2 0.49853 (4) −0.41859 (7) 0.08672 (3) 0.0659 (3)
Br3 0.64761 (5) 0.06765 (10) 0.13147 (4) 0.0836 (3)
Br4 0.23690 (6) 0.65632 (11) −0.24584 (3) 0.0954 (4)
C1 0.2551 (4) 0.0100 (6) −0.0494 (2) 0.0425 (16)
H1A 0.2583 −0.0652 −0.0664 0.051*
C2 0.3574 (4) 0.3392 (6) −0.0260 (2) 0.0438 (16)
H2A 0.3919 0.3628 −0.0357 0.053*
C11 0.1773 (3) 0.0879 (6) −0.1214 (2) 0.0380 (15)
C12 0.1655 (4) 0.1926 (7) −0.1543 (2) 0.0535 (19)
H12A 0.1805 0.2772 −0.1434 0.064*
C13 0.1316 (4) 0.1730 (7) −0.2030 (3) 0.061 (2)
H13A 0.1260 0.2429 −0.2243 0.073*
C14 0.1062 (4) 0.0477 (8) −0.2194 (3) 0.057 (2)
C15 0.1144 (4) −0.0577 (7) −0.1874 (3) 0.058 (2)
H15A 0.0977 −0.1413 −0.1983 0.070*
C16 0.1481 (4) −0.0353 (7) −0.1390 (3) 0.0530 (19)
H16A 0.1515 −0.1041 −0.1176 0.064*
C21 0.3353 (3) −0.0897 (5) 0.0191 (2) 0.0360 (14)
C22 0.3289 (4) −0.2199 (6) −0.0001 (2) 0.0482 (18)
H22A 0.2927 −0.2411 −0.0268 0.058*
C23 0.3763 (4) −0.3170 (6) 0.0208 (3) 0.0543 (19)
H23A 0.3713 −0.4021 0.0080 0.065*
C24 0.4313 (4) −0.2864 (6) 0.0608 (3) 0.0467 (17)
C25 0.4366 (3) −0.1634 (6) 0.0815 (2) 0.0451 (17)
H25A 0.4722 −0.1442 0.1089 0.054*
C26 0.3889 (4) −0.0670 (6) 0.0615 (2) 0.0472 (18)
H26A 0.3925 0.0147 0.0767 0.057*
C31 0.4360 (3) 0.2377 (6) 0.0422 (2) 0.0401 (15)
C32 0.4763 (4) 0.1811 (6) 0.0178 (2) 0.0462 (17)
H32A 0.4607 0.1762 −0.0153 0.055*
C33 0.5399 (4) 0.1330 (7) 0.0446 (3) 0.0512 (18)
H33A 0.5662 0.0970 0.0291 0.061*
C34 0.5629 (4) 0.1401 (7) 0.0945 (3) 0.0513 (18)
C35 0.5243 (4) 0.1974 (6) 0.1187 (3) 0.0514 (19)
H35A 0.5403 0.2040 0.1518 0.062*
C36 0.4613 (4) 0.2443 (6) 0.0918 (2) 0.0490 (18)
H36A 0.4357 0.2810 0.1077 0.059*
C41 0.2845 (3) 0.4385 (6) −0.0982 (2) 0.0406 (16)
C42 0.2423 (4) 0.5467 (6) −0.1095 (2) 0.0527 (19)
H42A 0.2231 0.5759 −0.0881 0.063*
C43 0.2285 (4) 0.6121 (7) −0.1536 (3) 0.064 (2)
H43A 0.2004 0.6848 −0.1612 0.077*
C44 0.2570 (4) 0.5676 (7) −0.1857 (3) 0.060 (2)
C45 0.2992 (4) 0.4573 (7) −0.1745 (3) 0.060 (2)
H45A 0.3176 0.4271 −0.1963 0.072*
C46 0.3135 (4) 0.3926 (7) −0.1302 (2) 0.0509 (18)
H46A 0.3419 0.3204 −0.1224 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.0420 (4) 0.0429 (3) 0.0298 (3) 0.0039 (2) 0.0151 (3) −0.0015 (2)
N1 0.042 (4) 0.046 (3) 0.034 (3) 0.001 (2) 0.016 (3) −0.004 (2)
N2 0.042 (4) 0.039 (3) 0.037 (3) 0.003 (2) 0.016 (3) −0.002 (2)
N3 0.035 (3) 0.049 (3) 0.039 (3) 0.004 (2) 0.015 (3) −0.001 (2)
N4 0.045 (4) 0.046 (3) 0.031 (3) 0.006 (2) 0.014 (3) 0.006 (2)
Br1 0.0584 (6) 0.1298 (8) 0.0361 (5) −0.0046 (5) 0.0089 (4) −0.0152 (4)
Br2 0.0648 (6) 0.0618 (5) 0.0715 (6) 0.0196 (4) 0.0245 (5) 0.0237 (4)
Br3 0.0522 (6) 0.1145 (8) 0.0780 (7) 0.0227 (5) 0.0152 (5) 0.0185 (5)
Br4 0.1135 (10) 0.1272 (8) 0.0507 (6) 0.0062 (7) 0.0352 (6) 0.0316 (5)
C1 0.051 (5) 0.040 (3) 0.038 (4) −0.001 (3) 0.017 (3) −0.011 (3)
C2 0.052 (5) 0.045 (3) 0.035 (4) 0.005 (3) 0.017 (4) 0.000 (3)
C11 0.037 (4) 0.052 (4) 0.028 (3) 0.000 (3) 0.014 (3) −0.009 (3)
C12 0.060 (5) 0.049 (4) 0.044 (4) −0.008 (3) 0.010 (4) 0.000 (3)
C13 0.069 (6) 0.065 (5) 0.045 (4) −0.011 (4) 0.017 (4) 0.006 (4)
C14 0.042 (5) 0.095 (6) 0.033 (4) 0.003 (4) 0.011 (4) −0.005 (4)
C15 0.056 (6) 0.057 (4) 0.052 (5) 0.002 (4) 0.006 (4) −0.012 (4)
C16 0.051 (5) 0.059 (4) 0.044 (4) 0.002 (3) 0.011 (4) 0.001 (3)
C21 0.035 (4) 0.042 (3) 0.033 (3) 0.003 (3) 0.015 (3) 0.000 (3)
C22 0.046 (5) 0.044 (4) 0.048 (4) 0.000 (3) 0.008 (4) −0.003 (3)
C23 0.053 (5) 0.045 (4) 0.066 (5) 0.002 (3) 0.023 (4) −0.005 (4)
C24 0.049 (5) 0.044 (4) 0.050 (4) −0.003 (3) 0.022 (4) 0.010 (3)
C25 0.041 (5) 0.046 (4) 0.039 (4) −0.004 (3) 0.003 (3) −0.001 (3)
C26 0.057 (5) 0.038 (3) 0.044 (4) −0.001 (3) 0.015 (4) −0.004 (3)
C31 0.037 (4) 0.049 (4) 0.041 (4) 0.001 (3) 0.022 (3) −0.001 (3)
C32 0.045 (5) 0.056 (4) 0.038 (4) 0.004 (3) 0.014 (4) −0.002 (3)
C33 0.055 (5) 0.057 (4) 0.048 (4) −0.005 (3) 0.026 (4) 0.000 (3)
C34 0.040 (5) 0.059 (4) 0.060 (5) −0.002 (3) 0.023 (4) 0.002 (4)
C35 0.057 (5) 0.051 (4) 0.043 (4) 0.001 (3) 0.013 (4) 0.000 (3)
C36 0.052 (5) 0.050 (4) 0.048 (4) 0.004 (3) 0.021 (4) −0.010 (3)
C41 0.040 (4) 0.052 (4) 0.033 (4) −0.004 (3) 0.016 (3) 0.005 (3)
C42 0.065 (6) 0.058 (4) 0.041 (4) 0.006 (4) 0.028 (4) 0.002 (3)
C43 0.078 (7) 0.056 (4) 0.053 (5) 0.006 (4) 0.018 (5) 0.008 (4)
C44 0.071 (6) 0.064 (5) 0.042 (4) −0.012 (4) 0.015 (4) 0.001 (4)
C45 0.072 (6) 0.073 (5) 0.049 (5) −0.008 (4) 0.039 (5) −0.009 (4)
C46 0.054 (5) 0.064 (4) 0.041 (4) 0.008 (4) 0.025 (4) 0.005 (3)

Geometric parameters (Å, °)

Mo1—Mo1i 2.1263 (13) C21—C26 1.410 (9)
Mo1—N3 2.192 (5) C21—C22 1.419 (8)
Mo1—N4i 2.195 (5) C22—C23 1.400 (9)
Mo1—N1i 2.198 (5) C22—H22A 0.9300
Mo1—N2 2.218 (5) C23—C24 1.398 (10)
N1—C1 1.345 (8) C23—H23A 0.9300
N1—C11 1.424 (7) C24—C25 1.372 (9)
N1—Mo1i 2.198 (5) C25—C26 1.395 (9)
N2—C1 1.353 (8) C25—H25A 0.9300
N2—C21 1.432 (7) C26—H26A 0.9300
N3—C2 1.341 (8) C31—C36 1.393 (9)
N3—C31 1.439 (8) C31—C32 1.444 (9)
N4—C2 1.353 (8) C32—C33 1.419 (9)
N4—C41 1.448 (7) C32—H32A 0.9300
N4—Mo1i 2.195 (5) C33—C34 1.401 (9)
Br1—C14 1.924 (7) C33—H33A 0.9300
Br2—C24 1.929 (7) C34—C35 1.413 (10)
Br3—C34 1.930 (7) C35—C36 1.406 (9)
Br4—C44 1.919 (7) C35—H35A 0.9300
C1—H1A 0.9300 C36—H36A 0.9300
C2—H2A 0.9300 C41—C42 1.389 (9)
C11—C12 1.404 (8) C41—C46 1.402 (8)
C11—C16 1.410 (9) C42—C43 1.411 (9)
C12—C13 1.398 (9) C42—H42A 0.9300
C12—H12A 0.9300 C43—C44 1.390 (10)
C13—C14 1.396 (10) C43—H43A 0.9300
C13—H13A 0.9300 C44—C45 1.405 (11)
C14—C15 1.399 (10) C45—C46 1.412 (9)
C15—C16 1.393 (9) C45—H45A 0.9300
C15—H15A 0.9300 C46—H46A 0.9300
C16—H16A 0.9300
Mo1i—Mo1—N3 93.36 (14) C23—C22—H22A 119.5
Mo1i—Mo1—N4i 92.14 (14) C21—C22—H22A 119.5
N3—Mo1—N4i 174.47 (19) C24—C23—C22 120.2 (6)
Mo1i—Mo1—N1i 92.07 (14) C24—C23—H23A 119.9
N3—Mo1—N1i 91.09 (19) C22—C23—H23A 119.9
N4i—Mo1—N1i 89.39 (19) C25—C24—C23 119.8 (6)
Mo1i—Mo1—N2 93.96 (14) C25—C24—Br2 120.7 (5)
N3—Mo1—N2 87.97 (18) C23—C24—Br2 119.5 (5)
N4i—Mo1—N2 90.97 (18) C24—C25—C26 120.3 (6)
N1i—Mo1—N2 173.9 (2) C24—C25—H25A 119.9
C1—N1—C11 116.9 (5) C26—C25—H25A 119.9
C1—N1—Mo1i 117.3 (4) C25—C26—C21 121.9 (6)
C11—N1—Mo1i 125.8 (4) C25—C26—H26A 119.0
C1—N2—C21 118.6 (5) C21—C26—H26A 119.0
C1—N2—Mo1 114.5 (4) C36—C31—N3 121.4 (6)
C21—N2—Mo1 126.4 (4) C36—C31—C32 118.4 (6)
C2—N3—C31 118.2 (6) N3—C31—C32 120.0 (6)
C2—N3—Mo1 116.6 (5) C33—C32—C31 119.7 (6)
C31—N3—Mo1 124.4 (4) C33—C32—H32A 120.1
C2—N4—C41 118.2 (6) C31—C32—H32A 120.1
C2—N4—Mo1i 117.3 (4) C34—C33—C32 119.7 (7)
C41—N4—Mo1i 124.2 (4) C34—C33—H33A 120.1
N1—C1—N2 122.0 (5) C32—C33—H33A 120.1
N1—C1—H1A 119.0 C33—C34—C35 121.0 (7)
N2—C1—H1A 119.0 C33—C34—Br3 120.1 (6)
N3—C2—N4 120.3 (6) C35—C34—Br3 118.8 (6)
N3—C2—H2A 119.9 C36—C35—C34 118.7 (7)
N4—C2—H2A 119.9 C36—C35—H35A 120.6
C12—C11—C16 116.8 (6) C34—C35—H35A 120.6
C12—C11—N1 120.7 (6) C31—C36—C35 122.3 (7)
C16—C11—N1 122.5 (6) C31—C36—H36A 118.9
C13—C12—C11 121.7 (6) C35—C36—H36A 118.9
C13—C12—H12A 119.2 C42—C41—C46 120.8 (6)
C11—C12—H12A 119.2 C42—C41—N4 118.7 (6)
C14—C13—C12 119.5 (7) C46—C41—N4 120.3 (6)
C14—C13—H13A 120.2 C41—C42—C43 119.9 (6)
C12—C13—H13A 120.2 C41—C42—H42A 120.0
C13—C14—C15 120.5 (7) C43—C42—H42A 120.0
C13—C14—Br1 120.0 (6) C44—C43—C42 119.8 (7)
C15—C14—Br1 119.5 (6) C44—C43—H43A 120.1
C16—C15—C14 118.8 (7) C42—C43—H43A 120.1
C16—C15—H15A 120.6 C43—C44—C45 120.4 (7)
C14—C15—H15A 120.6 C43—C44—Br4 119.3 (6)
C15—C16—C11 122.4 (7) C45—C44—Br4 120.3 (6)
C15—C16—H16A 118.8 C44—C45—C46 119.9 (7)
C11—C16—H16A 118.8 C44—C45—H45A 120.1
C26—C21—C22 116.5 (6) C46—C45—H45A 120.1
C26—C21—N2 119.6 (5) C41—C46—C45 119.2 (6)
C22—C21—N2 123.9 (6) C41—C46—H46A 120.4
C23—C22—C21 120.9 (7) C45—C46—H46A 120.4

Symmetry codes: (i) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2002).

References

  1. Brammer, L. (2004). Chem. Soc. Rev. 33, 476–489.
  2. Bruker. (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker. (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.
  5. Desiraju, G. R. (2001). Nature, 412, 397–400. [DOI] [PubMed]
  6. Domercq, B., Devic, T., Fourmigué, M., Auban-Senzier, P. & Canadell, E. (2001). J. Mater. Chem. 11, 1570–1575.
  7. Espallargas, G. M., Brammer, L. & Sherwood, P. (2006). Angew. Chem. Int. Ed. 45, 435–440. [DOI] [PubMed]
  8. Fujiwara, H., Hayashi, T., Sugimoto, T., Nakazumi, H., Noguchi, S., Li, L., Yokogawa, K., Yasuzuka, S., Murata, K. & Mori, T. (2006). Inorg. Chem. 45, 5712–5714. [DOI] [PubMed]
  9. Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093.
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011202/ff2002sup1.cif

e-67-0m514-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011202/ff2002Isup2.hkl

e-67-0m514-Isup2.hkl (293.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES