Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):m419–m420. doi: 10.1107/S1600536811007975

Bis(tetra­ethyl­ammonium) bis­(dimethyl­formamide)­tetra­kis­(μ-N,2-dioxido­benzene-1-carboximidato)penta­copper(II)

Jacob Herring a, Matthias Zeller b, Curtis M Zaleski a,*
PMCID: PMC3099866  PMID: 21753949

Abstract

The title compound, (C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2], abbreviated as (TEA)2[CuII(12-MCCuII N(shi)-4](DMF)2 [where TEA is tetra­ethyl­ammonium, shi3− is salicyl­hydroximate (or N,2-dioxidobenzene-1-carboximidate) and DMF is N,N-dimethyl­formamide], contains five CuII ions. Four of the CuII ions are members of a metallacrown ring (MC), while the fifth CuII is bound in a central cavity. Two of the ring CuII ions are five-coordinate with distorted square-pyramidal geometry. The coordination sphere is composed of two shi3− ligands and one DMF mol­ecule. The other two ring CuII ions and the central CuII ion are four-coordinate with square-planar geometry. The coordination spheres of these ions are only composed of shi3− ligands. The charge of the [CuII(12-MCCuII N(shi)-4]2− unit is balanced by two uncoordinated TEA+ countercations. The structure shows severe static disorder with the metallacrown, the tetra­ethyl­ammonium cations and the DMF solvent mol­ecule all disordered over each of two mutually exclusive sites, with occupancy rates for the major moieties of 0.6215 (6) for the metallacrown, 0.759 (3) for the tetra­ethyl­ammonium ion and 0.537 (6) for the DMF mol­ecules. The metallacrown unit is located on a crystallographic inversion center and disordered about a non-crystallographic twofold axis. The DMF mol­ecule and the tetra­ethyl­ammonium ion are disordered about a non-crystallographic twofold axis and pseudo-inversion center, respectively.

Related literature

For a general review of metallacrowns, see: Mezei et al. (2007); Pecoraro (1989); Pecoraro et al. (1997). For related [Cu(12-MCCuII N(ligand)-4)]2− structures, see: Gibney et al. (1994). For structure analysis of a two-dimensional chiral solid based on a CuII[12-MCCuII-4)]2+ complex, see: Bodwin & Pecoraro (2000). For single-crystal X-ray structure analysis of related MnII(OAc)2[12-MCMnIII N(shi)-4], where OAc is acetate, see: Lah et al. (1989). For an explanation on how to calculate τ, see: Addison et al. (1984). graphic file with name e-67-0m419-scheme1.jpg

Experimental

Crystal data

  • (C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2]

  • M r = 1325.74

  • Orthorhombic, Inline graphic

  • a = 16.641 (3) Å

  • b = 13.616 (2) Å

  • c = 23.238 (4) Å

  • V = 5265.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 100 K

  • 0.45 × 0.40 × 0.29 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2009) T min = 0.588, T max = 0.746

  • 51635 measured reflections

  • 8316 independent reflections

  • 6387 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.104

  • S = 1.12

  • 8316 reflections

  • 631 parameters

  • 101 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), Mercury Macrae et al. (2006) and Ortep-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007975/jj2076sup1.cif

e-67-0m419-sup1.cif (66KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007975/jj2076Isup2.hkl

e-67-0m419-Isup2.hkl (406.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by the Shippensburg University CFEST Teaching and Research Excellence Program and the Shippensburg University Foundation (grant No. UG 2540-11 to JH and CMZ). The diffractometer was funded by NSF grant No. 0087210, by the Ohio Board of Regents grant No. CAP-491 and by YSU.

supplementary crystallographic information

Comment

Since the identification of metallacrowns (MC) in 1989 (Pecoraro, 1989), these inorganic crown ether analogues have proved to be very diverse molecules (Mezei et al., 2007; Pecoraro et al., 1997). Metallacrowns can behave as single-molecule magnets, have potential use as MRI contrast agents, and can selectively bind cations or anions (Mezei et al., 2007). In addition to being inorganic structural and functional analogues of crown ethers, the naming scheme for the two molecules is very similar. For example, the name 12-MC-4 indicates that there are 12 atoms in the metallacrown ring and there are 4 oxygen atoms in the ring that can potentially bind to a central metal ion. A complete nomenclature description for metallacrowns can be found in Pecoraro et al. (1997).

Copper(II) 12-MC-4 structures are common (Mezei et al., 2007), and the structures tend to be fairly planar. The planar structures are generated by placing the ring CuII ions at 90o relative to each other. This placement is typically achieved by selection of a ligand, such as salicylhydroxamic acid, that can form fused five- and six-membered chelate rings. However, planar structures have been observed for other sized fused chelate rings (Mezei et al., 2007). One planar CuII[12-MCCuII-4]2+ has been used to build a two-dimensional chiral solid (Bodwin & Pecoraro, 2000).

Herein we report the synthesis, IR data, and the single-crystal X-ray structure of the title compound,C28H16Cu5N4O12, 2(C8H20N), 2(C3H7NO) abbreviated as (TEA)2[Cu(12—MCCuIIN(shi)-4](DMF)2, (1), where TEA is tetraethylammonium, shi3- is salicylhydroximate, and DMF is N,N-dimethylformamide. The single-crystal X-ray structure of a related molecule, (TMA)2[Cu(12—MCCuIIN(shi)-4].DMF (2, where TMA is tetramethylammonium), has previously been reported by Gibney et al. (1994), and the synthesis of another related molecule, (TEA)2[Cu(12—MCCuIIN(d2shi)-4)].2DMF.H2O (where d2shi is 3,5-dideuteriosalicylhydroximate), has been described by Gibney et al. (1994).

Compound 1 is fairly planar, which is typical of CuII 12-MC-4 structures (Fig. 1–3; Macrae et al., 2006). The structure consists of a [CuII—N—O] repeat unit around the MC ring, and the MC binds a CuII in the central cavity. Cu1 is located in the central cavity and is four-coordinate with square planar geometry. Cu2, Cu3, Cu2i and Cu3i compose the MC ring (symmetry operator (i): -x + 1, -y + 1, -z + 1). Cu2 is five-coordinate with distorted square pyramidal geometry with τ equal to 0.02 (τ = 0 for square pyramidal geometry and τ = 1 for trigonal bipyramidal geometry (Addison et al., 1984). The basal portion of the geometry is composed of two shi3- ligands that bind with oxygen and nitrogen atoms. The apical position is filled by a DMF molecule which binds with an oxygen atom (O7 and O7b). The Cu2—O7 bond distance is 2.763 (14) Å, and the Cu2—O7b bond distance is 2.696 (17) Å. Cu3 is four-coordinate with square planar geometry, and the coordination is composed of two shi3- ligands that bind with oxygen and nitrogen atoms. An uncoordinated TEA countercation is located in the lattice. In addition, the structure of 1 shows severe static disorder as the metallacrown, TEA, and DMF are disordered over two mutually exclusive sites (Figs. 4–6, Farrugia, 1997).

Compounds 1 and 2 are similar planar 12-MC-4 molecules. Compound 2 also consist of a [CuII—N—O] repeat unit with a CuII ion bound in the central cavity (Gibney et al., 1994). However, in 2 all of the ring CuII ions are four-coordinate with square planar geometry. The geometry about the ring CuII ions in 2 is different compared to 1. In 1 the DMF molecules are bound to two of the ring CuII ions, which gives these CuII ions a distorted square pyramidal geometry (Fig. 2). In 2 the DMF molecule does not bind to any of the CuII ions, but instead the DMF is present only in the lattice (Gibney et al., 1994).

Experimental

Copper(II) acetate monohydrate (99+%) was purchased from Sigma-Aldrich, salicylhydroxamic acid (H3shi, 99%) was purchased from Alfa Aesar, tetraethylammonium acetate (99%) was purchased from Acros Organics, absolute diethyl ether was purchased from EMD Chemicals, and N,N-dimethylformamide (ACS grade) was purchased from Fisher Scientific. All reagents were used as received and without further purification.

Copper(II) acetate monohydrate (0.625 mmol), salicylhydroxamic acid (0.5 mmol), and tetraethylammonium acetate (1.0 mmol) were mixed in 10 mL of DMF. Upon mixing the solution turned a dark green color. After stirring overnight, the solution was gravity filtered. No precipitate was observed, and the filtrate remained a dark green color. X-ray quality crystals were grown via diffusion of diethyl ether at 277 K (4 oC). The product was a dark green diamond-shaped crystal, and after washing the filtered product with cold DMF, the percent yield was 36% (0.0607 g) based on copper(II) acetate monohydrate. Elemental analysis for C50H70Cu5N8O14 [FW = 1325.74 g/mol] found % (calculated); C 45.21 (45.33); H 5.33 (5.33); N 8.37 (8.46).

Refinement

The structure of 1 shows severe static disorder. The anionic metallacrown, the tetraethylammonium and the solvent DMF molecules all show disorder over each two mutually exclusive sites with different occupancy ratios. The refined values are 0.6215 (6) to 0.3785 (6) for the metallacrown, 0.759 (3) to 0.241 (1) for the tetraethylammonium ions and 0.537 (6) to 0.463 (6) for the DMF molecules. The metallacrown is disordered by a non-crystallographic two-fold axis, as is the DMF molecule. The tetraethylammonium is disordered by a pseudo-inversion center. Equivalent bonds in disordered sections of the molecules were restrained to be similar (standard deviation 0.02 Å). The atom O7 and O7b were restrained to be approximately isotropic (standard deviation 0.01 Å2), and the ADPs of the atoms C18b and C22, O7 and O7b, and N4 and N4b were each constrained to be the same. Aromatic benzene rings were constrained to resemble ideal hexagons with C—C distances of 1.39 Ångstroms.

Hydrogen atoms were placed in calculated positions with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methylene) and were refined with Uĩso~(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for methylene and aromatic moieties.

Figures

Fig. 1.

Fig. 1.

Single-crystal X-ray structure (top view) of (TEA)2[Cu(12—MCCuIIN(shi)-4)](DMF)2 (1). The thermal ellipsoid plot of 1 is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. All non-carbon atoms are labeled. Hydrogen atoms and the lattice TEA have been omitted for clarity (symmetry operator (i): -x + 1, -y + 1, -z + 1). Color scheme for all figures: orange - CuII, red - oxygen, blue - nitrogen, and gray - carbon.

Fig. 2.

Fig. 2.

Single-crystal X-ray structure (side view) of 1. The DMF is coordinated to Cu2 with a CuII—O7 distance of 2.763 (14) Å. The thermal ellipsoid plot of 1 is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. Cu2 and O7 are labeled to highlight the DMF molecules bonded to the metallacrown. Hydrogen atoms and the lattice TEA have been omitted for clarity (symmetry operator (i): -x + 1, -y + 1, -z + 1).

Fig. 3.

Fig. 3.

Packing diagram of 1 along the c axis. The thermal ellipsoid plot of 1 is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. Hydrogen atoms have been omitted for clarity.

Fig. 4.

Fig. 4.

Single-crystal X-ray structure (top view) of 1. The thermal ellipsoid plot of 1 is at a 50% probability level. All disordered atoms of the MC are shown. The metallacrown is disordered over two mutually exclusive sites by a non-crystallographic twofold axis. The refined occupancy ratio is 0.6215 (6) to 0.3785 (6). All copper atoms are labeled. Hydrogen atoms, the DMF molecules, and the lattice TEA have been omitted for clarity (symmetry operator (i): -x + 1, -y + 1, -z + 1).

Fig. 5.

Fig. 5.

Single-crystal X-ray structure of the TEA countercation with all disordered atoms shown. The thermal ellipsoid plot is at a 50% probability level. The tetraethylammonium is disordered over two mutually exclusive sites by a pseudo-inversion center. The refined occupancy ratio is 0.759 (3) to 0.241 (1). Hydrogen atoms have been omitted for clarity.

Fig. 6.

Fig. 6.

Single-crystal X-ray structure of the DMF molecule with all disordered atoms shown. The thermal ellipsoid plot is at a 50% probability level. The DMF is disordered over two mutually exclusive sites by a non-crystallographic twofold axis. The refined occupancy ratio is 0.537 (6) to 0.463 (6). Hydrogen atoms have been omitted for clarity.

Crystal data

(C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2] F(000) = 2732
Mr = 1325.74 Dx = 1.672 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 9969 reflections
a = 16.641 (3) Å θ = 2.4–28.2°
b = 13.616 (2) Å µ = 2.06 mm1
c = 23.238 (4) Å T = 100 K
V = 5265.4 (15) Å3 Block, black
Z = 4 0.45 × 0.40 × 0.29 mm

Data collection

Bruker SMART APEX CCD diffractometer 8316 independent reflections
Radiation source: fine-focus sealed tube 6387 reflections with I > 2σ(I)
graphite Rint = 0.055
ω scans θmax = 31.4°, θmin = 2.1°
Absorption correction: multi-scan (APEX2; Bruker, 2009) h = −24→24
Tmin = 0.588, Tmax = 0.746 k = −19→19
51635 measured reflections l = −31→33

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.P)2 + 7.2598P] where P = (Fo2 + 2Fc2)/3
8316 reflections (Δ/σ)max = 0.002
631 parameters Δρmax = 0.47 e Å3
101 restraints Δρmin = −0.35 e Å3
3 constraints

Special details

Experimental. The structure of 1 shows severe static disorder. The anionic metallacrown, the tetraethylammonium, and the solvent DMF molecules all show disorder over each two mutually exclusive sites with different occupancy ratios. The refined values are 0.6215 (6) to 0.3785 (6) for the metallacrown, 0.759 (3) to 0.241 (1) for the tetraethylammonium ions and 0.537 (6) to 0.463 (6) for the DMF molecules. The metallacrown is disordered by a non-crystallographic two fold axis, as is the DMF molecule. The tetraethylammonium is disordered by a pseudo-inversion center. Equivalent bonds in disordered sections of the molecules were restrained to be similar (standard deviation 0.02 Å). The atom O7 and O7b were restrained to be approximately isotropic (standard deviation 0.01 Å2), and the ADPs of the atoms C18b and C22, O7 and O7b, and N4 and N4b were each constrained to be the same. Aromatic benzene rings were constrained to resemble ideal hexagons with C—C distances of 1.39 Å.IR bands (cm-1): 1605(s), 1572(s), 1526(s), 1437(m), 1389(s), 1319(s), 1254(s), 1097(m), 1024(m), 943(m), 742(m), 684(m), 657(m), 582(m), 476(m).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.5000 0.5000 0.5000 0.02182 (9)
Cu2 0.57625 (3) 0.41430 (3) 0.616568 (19) 0.02373 (11) 0.6215 (7)
O1 0.41463 (15) 0.57229 (17) 0.46572 (10) 0.0221 (5) 0.6215 (7)
N1 0.3913 (12) 0.6588 (11) 0.4928 (5) 0.0215 (16) 0.6215 (7)
C1 0.3635 (2) 0.7238 (3) 0.45496 (15) 0.0231 (7) 0.6215 (7)
O2 0.36367 (16) 0.7058 (2) 0.40009 (11) 0.0269 (5) 0.6215 (7)
C2 0.33280 (17) 0.81957 (17) 0.4762 (2) 0.0211 (8) 0.6215 (7)
C3 0.3010 (2) 0.8806 (3) 0.43404 (12) 0.0292 (10) 0.6215 (7)
H3 0.3017 0.8607 0.3949 0.035* 0.6215 (7)
C4 0.2680 (3) 0.9708 (3) 0.44919 (16) 0.0366 (14) 0.6215 (7)
H4 0.2463 1.0125 0.4204 0.044* 0.6215 (7)
C5 0.2669 (3) 0.9999 (2) 0.50651 (19) 0.0390 (15) 0.6215 (7)
H5 0.2444 1.0616 0.5169 0.047* 0.6215 (7)
C6 0.2988 (3) 0.9389 (3) 0.54869 (12) 0.0290 (9) 0.6215 (7)
H6 0.2980 0.9588 0.5879 0.035* 0.6215 (7)
C7 0.33169 (17) 0.8487 (2) 0.53355 (16) 0.0240 (8) 0.6215 (7)
O3 0.35984 (17) 0.7964 (2) 0.57879 (12) 0.0292 (6) 0.6215 (7)
Cu3 0.41466 (3) 0.67697 (3) 0.573321 (18) 0.02160 (11) 0.6215 (7)
O4 0.49116 (17) 0.57526 (19) 0.56729 (11) 0.0294 (6) 0.6215 (7)
N2 0.5163 (9) 0.5344 (12) 0.6212 (5) 0.024 (2) 0.6215 (7)
C8 0.4843 (2) 0.5834 (3) 0.66324 (15) 0.0240 (7) 0.6215 (7)
O5 0.43610 (16) 0.65689 (19) 0.65495 (11) 0.0265 (5) 0.6215 (7)
C9 0.5018 (2) 0.5490 (3) 0.72258 (11) 0.0232 (8) 0.6215 (7)
C10 0.4681 (2) 0.6052 (2) 0.7663 (2) 0.0293 (11) 0.6215 (7)
H10 0.4391 0.6633 0.7572 0.035* 0.6215 (7)
C11 0.4768 (3) 0.5765 (3) 0.82335 (16) 0.0412 (16) 0.6215 (7)
H11 0.4538 0.6149 0.8532 0.049* 0.6215 (7)
C12 0.5193 (3) 0.4915 (4) 0.83670 (10) 0.0396 (17) 0.6215 (7)
H12 0.5252 0.4719 0.8757 0.047* 0.6215 (7)
C13 0.5530 (2) 0.4353 (2) 0.7930 (2) 0.0305 (10) 0.6215 (7)
H13 0.5819 0.3773 0.8021 0.037* 0.6215 (7)
C14 0.54424 (19) 0.4641 (3) 0.73593 (15) 0.0265 (8) 0.6215 (7)
O6 0.58043 (19) 0.4037 (2) 0.69748 (12) 0.0336 (6) 0.6215 (7)
Cu2B 0.39897 (4) 0.64754 (5) 0.42099 (3) 0.02356 (18) 0.3785 (7)
O1B 0.5618 (2) 0.4844 (3) 0.56838 (16) 0.0223 (8) 0.3785 (7)
N1B 0.5321 (13) 0.5252 (18) 0.6190 (8) 0.022 (3) 0.3785 (7)
C1B 0.5508 (3) 0.4708 (4) 0.6645 (2) 0.0225 (11) 0.3785 (7)
O2B 0.5924 (3) 0.3906 (3) 0.6598 (2) 0.0304 (10) 0.3785 (7)
C2B 0.5244 (3) 0.5036 (5) 0.72271 (17) 0.0189 (12) 0.3785 (7)
C3B 0.5475 (4) 0.4426 (3) 0.7677 (3) 0.0265 (16) 0.3785 (7)
H3B 0.5775 0.3847 0.7600 0.032* 0.3785 (7)
C4B 0.5269 (6) 0.4664 (5) 0.8240 (2) 0.037 (3) 0.3785 (7)
H4B 0.5427 0.4247 0.8547 0.045* 0.3785 (7)
C5B 0.4830 (6) 0.5511 (6) 0.83522 (17) 0.038 (3) 0.3785 (7)
H5B 0.4689 0.5673 0.8737 0.045* 0.3785 (7)
C6B 0.4598 (4) 0.6121 (4) 0.7902 (3) 0.0236 (14) 0.3785 (7)
H6B 0.4299 0.6700 0.7979 0.028* 0.3785 (7)
C7B 0.4805 (3) 0.5883 (4) 0.7340 (2) 0.0212 (12) 0.3785 (7)
O3B 0.4532 (3) 0.6525 (3) 0.69378 (19) 0.0265 (9) 0.3785 (7)
Cu3B 0.45480 (4) 0.63044 (5) 0.61447 (3) 0.02077 (18) 0.3785 (7)
O4B 0.4357 (3) 0.5941 (3) 0.53712 (17) 0.0242 (8) 0.3785 (7)
N2B 0.394 (2) 0.6670 (17) 0.5039 (8) 0.021 (3) 0.3785 (7)
C8B 0.3775 (3) 0.7426 (4) 0.5357 (2) 0.0235 (11) 0.3785 (7)
O5B 0.3936 (3) 0.7458 (3) 0.58976 (17) 0.0247 (9) 0.3785 (7)
C9B 0.3388 (3) 0.8271 (3) 0.5066 (3) 0.0192 (12) 0.3785 (7)
C10B 0.3119 (4) 0.9002 (5) 0.54365 (16) 0.0270 (16) 0.3785 (7)
H10B 0.3188 0.8932 0.5840 0.032* 0.3785 (7)
C11B 0.2749 (5) 0.9836 (5) 0.5216 (3) 0.036 (2) 0.3785 (7)
H11B 0.2565 1.0336 0.5469 0.044* 0.3785 (7)
C12B 0.2647 (5) 0.9939 (4) 0.4625 (3) 0.032 (2) 0.3785 (7)
H12B 0.2394 1.0509 0.4474 0.039* 0.3785 (7)
C13B 0.2916 (4) 0.9207 (4) 0.42551 (17) 0.0266 (14) 0.3785 (7)
H13B 0.2847 0.9277 0.3851 0.032* 0.3785 (7)
C14B 0.3286 (3) 0.8373 (3) 0.4476 (3) 0.0206 (12) 0.3785 (7)
O6B 0.3489 (3) 0.7691 (3) 0.40768 (19) 0.0322 (10) 0.3785 (7)
N3 0.80044 (11) 0.22899 (15) 0.27205 (9) 0.0278 (4)
C15 0.85084 (18) 0.2867 (2) 0.31451 (14) 0.0294 (7) 0.759 (3)
H15A 0.8953 0.2444 0.3282 0.035* 0.759 (3)
H15B 0.8751 0.3434 0.2942 0.035* 0.759 (3)
C16 0.8052 (4) 0.3239 (9) 0.3657 (3) 0.0357 (17) 0.759 (3)
H16A 0.7610 0.3660 0.3528 0.054* 0.759 (3)
H16B 0.8414 0.3619 0.3905 0.054* 0.759 (3)
H16C 0.7835 0.2682 0.3874 0.054* 0.759 (3)
C17 0.73347 (18) 0.2923 (2) 0.24704 (16) 0.0324 (8) 0.759 (3)
H17A 0.7047 0.2535 0.2175 0.039* 0.759 (3)
H17B 0.6946 0.3072 0.2781 0.039* 0.759 (3)
C18 0.7599 (3) 0.3870 (4) 0.2205 (2) 0.0417 (12) 0.759 (3)
H18A 0.7867 0.4275 0.2496 0.063* 0.759 (3)
H18B 0.7130 0.4222 0.2055 0.063* 0.759 (3)
H18C 0.7975 0.3735 0.1890 0.063* 0.759 (3)
C19 0.85842 (19) 0.1995 (3) 0.22333 (15) 0.0349 (8) 0.759 (3)
H19A 0.8831 0.2598 0.2074 0.042* 0.759 (3)
H19B 0.9021 0.1591 0.2399 0.042* 0.759 (3)
C20 0.8199 (4) 0.1429 (4) 0.1748 (3) 0.0452 (13) 0.759 (3)
H20A 0.7895 0.0875 0.1905 0.068* 0.759 (3)
H20B 0.8617 0.1183 0.1488 0.068* 0.759 (3)
H20C 0.7835 0.1863 0.1535 0.068* 0.759 (3)
C21 0.7619 (2) 0.1412 (2) 0.29905 (17) 0.0368 (8) 0.759 (3)
H21A 0.7276 0.1084 0.2700 0.044* 0.759 (3)
H21B 0.7266 0.1635 0.3307 0.044* 0.759 (3)
C22 0.8207 (6) 0.0671 (5) 0.3226 (3) 0.0457 (15) 0.759 (3)
H22A 0.8544 0.0421 0.2913 0.069* 0.759 (3)
H22B 0.7912 0.0126 0.3402 0.069* 0.759 (3)
H22C 0.8547 0.0986 0.3517 0.069* 0.759 (3)
C15B 0.7458 (6) 0.1682 (8) 0.2338 (4) 0.030 (2) 0.241 (3)
H15C 0.7221 0.1141 0.2566 0.035* 0.241 (3)
H15D 0.7014 0.2100 0.2195 0.035* 0.241 (3)
C16B 0.7909 (12) 0.1255 (15) 0.1830 (7) 0.042 (4) 0.241 (3)
H16D 0.8144 0.1789 0.1602 0.064* 0.241 (3)
H16E 0.7537 0.0877 0.1589 0.064* 0.241 (3)
H16F 0.8338 0.0823 0.1969 0.064* 0.241 (3)
C17B 0.8620 (6) 0.1601 (8) 0.3017 (5) 0.032 (2) 0.241 (3)
H17C 0.8985 0.1344 0.2717 0.038* 0.241 (3)
H17D 0.8948 0.2005 0.3282 0.038* 0.241 (3)
C18B 0.830 (2) 0.0743 (18) 0.3351 (12) 0.0457 (15) 0.241 (3)
H18D 0.7952 0.0979 0.3660 0.069* 0.241 (3)
H18E 0.8753 0.0376 0.3518 0.069* 0.241 (3)
H18F 0.7997 0.0312 0.3094 0.069* 0.241 (3)
C19B 0.7420 (6) 0.2669 (7) 0.3214 (4) 0.029 (2) 0.241 (3)
H19C 0.7018 0.3114 0.3040 0.035* 0.241 (3)
H19D 0.7126 0.2098 0.3374 0.035* 0.241 (3)
C20B 0.7826 (14) 0.320 (3) 0.3702 (11) 0.036 (5) 0.241 (3)
H20D 0.8125 0.2728 0.3938 0.055* 0.241 (3)
H20E 0.7421 0.3528 0.3939 0.055* 0.241 (3)
H20F 0.8199 0.3690 0.3546 0.055* 0.241 (3)
C21B 0.8441 (6) 0.3090 (8) 0.2448 (5) 0.036 (2) 0.241 (3)
H21C 0.8844 0.2807 0.2182 0.043* 0.241 (3)
H21D 0.8736 0.3457 0.2749 0.043* 0.241 (3)
C22B 0.7923 (9) 0.3799 (13) 0.2118 (8) 0.043 (4) 0.241 (3)
H22D 0.7521 0.3434 0.1896 0.064* 0.241 (3)
H22E 0.8259 0.4185 0.1856 0.064* 0.241 (3)
H22F 0.7650 0.4241 0.2388 0.064* 0.241 (3)
O7 0.4383 (10) 0.3329 (7) 0.5707 (5) 0.046 (2) 0.537 (7)
C23 0.4581 (3) 0.2485 (4) 0.5501 (2) 0.0402 (15) 0.537 (7)
H23 0.4947 0.2087 0.5711 0.048* 0.537 (7)
N4 0.4289 (7) 0.2151 (9) 0.5002 (5) 0.0320 (13) 0.537 (7)
C24 0.3656 (4) 0.2678 (5) 0.4701 (4) 0.0466 (16) 0.537 (7)
H24A 0.3179 0.2259 0.4672 0.070* 0.537 (7)
H24B 0.3842 0.2852 0.4314 0.070* 0.537 (7)
H24C 0.3522 0.3277 0.4914 0.070* 0.537 (7)
C25 0.4551 (4) 0.1234 (4) 0.4765 (4) 0.0528 (19) 0.537 (7)
H25A 0.4099 0.0772 0.4756 0.079* 0.537 (7)
H25B 0.4983 0.0963 0.5003 0.079* 0.537 (7)
H25C 0.4749 0.1339 0.4372 0.079* 0.537 (7)
O7B 0.4483 (11) 0.3087 (10) 0.5815 (6) 0.046 (2) 0.463 (7)
C23B 0.4126 (4) 0.3086 (5) 0.5331 (4) 0.052 (2) 0.463 (7)
H23B 0.3855 0.3664 0.5210 0.062* 0.463 (7)
N4B 0.4120 (9) 0.2298 (11) 0.4988 (6) 0.0320 (13) 0.463 (7)
C24B 0.4578 (4) 0.1433 (6) 0.5139 (4) 0.0451 (18) 0.463 (7)
H24D 0.4937 0.1260 0.4820 0.068* 0.463 (7)
H24E 0.4211 0.0886 0.5215 0.068* 0.463 (7)
H24F 0.4898 0.1568 0.5484 0.068* 0.463 (7)
C25B 0.3773 (6) 0.2329 (10) 0.4413 (4) 0.069 (3) 0.463 (7)
H25D 0.3255 0.1988 0.4414 0.104* 0.463 (7)
H25E 0.4138 0.2007 0.4141 0.104* 0.463 (7)
H25F 0.3693 0.3015 0.4297 0.104* 0.463 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02558 (18) 0.02169 (17) 0.01818 (17) 0.00622 (14) −0.00229 (14) −0.00452 (14)
Cu2 0.0274 (2) 0.0264 (2) 0.0174 (2) 0.00638 (17) −0.00076 (17) −0.00123 (16)
O1 0.0262 (12) 0.0207 (11) 0.0193 (12) 0.0034 (9) 0.0006 (10) −0.0032 (9)
N1 0.024 (2) 0.020 (3) 0.021 (4) 0.003 (2) 0.005 (3) −0.005 (3)
C1 0.0205 (15) 0.0266 (17) 0.0222 (17) 0.0000 (13) −0.0007 (13) 0.0018 (13)
O2 0.0312 (13) 0.0285 (14) 0.0210 (13) 0.0084 (11) −0.0037 (10) 0.0003 (11)
C2 0.0214 (17) 0.0212 (17) 0.021 (2) 0.0031 (13) 0.0021 (19) −0.003 (2)
C3 0.027 (2) 0.030 (3) 0.030 (2) 0.008 (2) −0.0025 (17) 0.0045 (19)
C4 0.035 (3) 0.034 (3) 0.041 (3) 0.008 (2) 0.002 (2) 0.014 (3)
C5 0.034 (3) 0.024 (2) 0.059 (4) 0.0123 (19) 0.004 (3) −0.003 (3)
C6 0.033 (2) 0.024 (2) 0.030 (2) 0.008 (2) 0.0035 (18) −0.002 (2)
C7 0.0216 (18) 0.022 (2) 0.029 (3) 0.0071 (15) 0.0063 (16) −0.0052 (16)
O3 0.0387 (15) 0.0248 (13) 0.0243 (14) 0.0118 (12) −0.0002 (11) −0.0041 (11)
Cu3 0.0256 (2) 0.0206 (2) 0.0186 (2) 0.00376 (16) 0.00108 (16) −0.00308 (16)
O4 0.0437 (16) 0.0300 (13) 0.0145 (12) 0.0152 (12) −0.0006 (11) −0.0010 (10)
N2 0.030 (6) 0.030 (2) 0.012 (2) 0.008 (3) 0.000 (2) −0.0020 (19)
C8 0.0219 (16) 0.0274 (17) 0.0227 (17) −0.0002 (13) 0.0011 (13) −0.0028 (14)
O5 0.0326 (14) 0.0301 (13) 0.0168 (13) 0.0083 (11) 0.0012 (10) −0.0073 (10)
C9 0.019 (2) 0.034 (3) 0.0162 (18) 0.0028 (16) 0.0008 (15) −0.0052 (19)
C10 0.0193 (19) 0.040 (2) 0.028 (3) −0.0006 (16) 0.004 (2) −0.007 (2)
C11 0.027 (3) 0.066 (4) 0.031 (3) −0.001 (3) 0.008 (2) −0.018 (3)
C12 0.026 (3) 0.074 (5) 0.019 (2) −0.006 (3) −0.0004 (18) 0.003 (3)
C13 0.022 (2) 0.048 (3) 0.022 (2) 0.0043 (17) −0.001 (2) 0.001 (2)
C14 0.0218 (19) 0.041 (3) 0.017 (2) −0.0017 (18) −0.0054 (16) 0.0034 (17)
O6 0.0455 (17) 0.0390 (16) 0.0162 (14) 0.0137 (13) −0.0015 (12) −0.0011 (11)
Cu2B 0.0292 (4) 0.0255 (3) 0.0160 (3) 0.0097 (3) −0.0015 (3) −0.0015 (3)
O1B 0.027 (2) 0.026 (2) 0.0142 (18) 0.0063 (16) 0.0035 (15) −0.0003 (15)
N1B 0.018 (7) 0.031 (7) 0.017 (4) −0.002 (4) 0.006 (3) −0.009 (3)
C1B 0.022 (3) 0.028 (3) 0.018 (3) 0.002 (2) −0.003 (2) −0.003 (2)
O2B 0.038 (3) 0.030 (2) 0.023 (2) 0.0163 (19) −0.0105 (19) −0.0007 (18)
C2B 0.022 (3) 0.028 (4) 0.006 (3) 0.004 (3) −0.002 (2) 0.003 (3)
C3B 0.025 (3) 0.032 (3) 0.023 (4) 0.008 (2) −0.016 (4) 0.003 (4)
C4B 0.040 (5) 0.042 (5) 0.030 (5) −0.004 (4) −0.014 (4) 0.015 (5)
C5B 0.026 (5) 0.076 (7) 0.011 (3) −0.014 (5) 0.005 (3) −0.012 (4)
C6B 0.017 (3) 0.034 (3) 0.019 (4) 0.003 (2) 0.000 (3) 0.000 (3)
C7B 0.016 (3) 0.033 (4) 0.015 (4) 0.003 (2) 0.001 (2) −0.009 (3)
O3B 0.033 (2) 0.025 (2) 0.022 (2) 0.0069 (17) 0.0005 (18) −0.0056 (17)
Cu3B 0.0239 (3) 0.0214 (3) 0.0170 (3) 0.0056 (3) −0.0010 (3) −0.0019 (3)
O4B 0.032 (2) 0.0220 (19) 0.019 (2) 0.0105 (16) −0.0009 (16) 0.0014 (16)
N2B 0.030 (5) 0.016 (5) 0.017 (6) 0.011 (4) 0.004 (5) 0.000 (4)
C8B 0.025 (3) 0.024 (3) 0.022 (3) 0.004 (2) −0.001 (2) 0.004 (2)
O5B 0.033 (2) 0.022 (2) 0.019 (2) 0.0075 (18) 0.0000 (17) −0.0046 (16)
C9B 0.024 (3) 0.016 (3) 0.018 (3) 0.009 (2) 0.004 (3) −0.006 (3)
C10B 0.036 (4) 0.027 (4) 0.018 (3) 0.012 (3) 0.004 (3) −0.010 (3)
C11B 0.047 (6) 0.032 (5) 0.030 (4) 0.005 (4) 0.006 (4) −0.016 (4)
C12B 0.030 (4) 0.016 (3) 0.050 (6) 0.013 (3) −0.007 (4) 0.002 (4)
C13B 0.032 (4) 0.023 (4) 0.025 (3) 0.008 (3) 0.001 (3) −0.003 (3)
C14B 0.022 (3) 0.026 (3) 0.014 (3) 0.005 (2) −0.003 (3) 0.002 (2)
O6B 0.047 (3) 0.028 (2) 0.021 (2) 0.015 (2) −0.0022 (19) −0.0002 (18)
N3 0.0189 (8) 0.0309 (10) 0.0337 (11) 0.0012 (7) −0.0027 (8) −0.0086 (8)
C15 0.0238 (14) 0.0309 (15) 0.0336 (17) −0.0045 (12) −0.0062 (12) −0.0050 (13)
C16 0.037 (4) 0.036 (3) 0.034 (3) 0.003 (3) −0.003 (3) −0.008 (2)
C17 0.0210 (14) 0.0342 (16) 0.0420 (19) 0.0067 (12) −0.0070 (13) −0.0128 (14)
C18 0.043 (3) 0.040 (2) 0.042 (3) 0.013 (2) −0.005 (2) −0.0051 (18)
C19 0.0244 (15) 0.0441 (19) 0.0361 (19) 0.0099 (13) 0.0027 (13) −0.0090 (15)
C20 0.053 (4) 0.044 (3) 0.038 (3) 0.007 (2) 0.000 (2) −0.014 (2)
C21 0.0337 (17) 0.0285 (16) 0.048 (2) −0.0082 (13) 0.0070 (15) −0.0092 (15)
C22 0.056 (3) 0.0320 (18) 0.050 (4) 0.0023 (16) −0.003 (3) −0.002 (2)
C15B 0.020 (4) 0.035 (5) 0.034 (5) 0.003 (4) −0.009 (4) −0.006 (4)
C16B 0.058 (12) 0.048 (9) 0.021 (6) −0.011 (8) 0.006 (7) −0.008 (5)
C17B 0.024 (5) 0.037 (5) 0.035 (6) 0.011 (4) −0.001 (4) 0.003 (4)
C18B 0.056 (3) 0.0320 (18) 0.050 (4) 0.0023 (16) −0.003 (3) −0.002 (2)
C19B 0.025 (4) 0.028 (5) 0.034 (5) 0.008 (4) −0.001 (4) −0.006 (4)
C20B 0.042 (13) 0.032 (7) 0.036 (8) −0.014 (12) 0.007 (9) −0.016 (6)
C21B 0.029 (5) 0.042 (6) 0.037 (6) −0.006 (4) −0.009 (4) 0.004 (5)
C22B 0.039 (9) 0.043 (8) 0.045 (9) −0.003 (7) −0.005 (8) 0.012 (7)
O7 0.040 (4) 0.053 (5) 0.046 (4) −0.009 (4) 0.006 (3) −0.013 (3)
C23 0.030 (2) 0.049 (3) 0.041 (3) −0.012 (2) 0.009 (2) 0.007 (2)
N4 0.015 (5) 0.041 (4) 0.0400 (15) 0.004 (2) 0.006 (2) −0.005 (2)
C24 0.033 (3) 0.051 (4) 0.055 (4) −0.007 (2) −0.010 (3) −0.006 (3)
C25 0.037 (3) 0.042 (3) 0.079 (6) 0.000 (2) 0.010 (3) −0.018 (3)
O7B 0.040 (4) 0.053 (5) 0.046 (4) −0.009 (4) 0.006 (3) −0.013 (3)
C23B 0.036 (4) 0.044 (4) 0.075 (6) −0.009 (3) 0.026 (4) 0.005 (4)
N4B 0.015 (5) 0.041 (4) 0.0400 (15) 0.004 (2) 0.006 (2) −0.005 (2)
C24B 0.035 (3) 0.045 (4) 0.056 (5) −0.005 (3) 0.005 (3) 0.002 (3)
C25B 0.059 (5) 0.110 (9) 0.039 (5) −0.014 (5) −0.014 (4) 0.017 (5)

Geometric parameters (Å, °)

Cu1—O4i 1.875 (2) C12B—C13B 1.3900
Cu1—O4 1.875 (2) C12B—H12B 0.9500
Cu1—O4B 1.879 (4) C13B—C14B 1.3900
Cu1—O4Bi 1.879 (4) C13B—H13B 0.9500
Cu1—O1 1.903 (2) C14B—O6B 1.355 (5)
Cu1—O1i 1.903 (2) N3—C21B 1.454 (11)
Cu1—O1B 1.905 (4) N3—C21 1.495 (4)
Cu1—O1Bi 1.905 (4) N3—C15 1.515 (3)
Cu2—O6 1.887 (3) N3—C15B 1.517 (9)
Cu2—N2 1.919 (12) N3—C17 1.524 (4)
Cu2—O1i 1.927 (2) N3—C19 1.541 (4)
Cu2—O2i 1.956 (3) N3—C17B 1.550 (10)
O1—N1 1.390 (12) N3—C19B 1.590 (10)
O1—Cu2i 1.927 (2) C15—C16 1.499 (7)
N1—C1 1.331 (14) C15—H15A 0.9900
N1—Cu3 1.927 (11) C15—H15B 0.9900
C1—O2 1.298 (4) C16—H16A 0.9800
C1—C2 1.485 (4) C16—H16B 0.9800
O2—Cu2i 1.956 (3) C16—H16C 0.9800
C2—C3 1.3900 C17—C18 1.496 (6)
C2—C7 1.3900 C17—H17A 0.9900
C3—C4 1.3900 C17—H17B 0.9900
C3—H3 0.9500 C18—H18A 0.9800
C4—C5 1.3900 C18—H18B 0.9800
C4—H4 0.9500 C18—H18C 0.9800
C5—C6 1.3900 C19—C20 1.509 (6)
C5—H5 0.9500 C19—H19A 0.9900
C6—C7 1.3900 C19—H19B 0.9900
C6—H6 0.9500 C20—H20A 0.9800
C7—O3 1.354 (4) C20—H20B 0.9800
O3—Cu3 1.868 (3) C20—H20C 0.9800
Cu3—O4 1.886 (3) C21—C22 1.508 (9)
Cu3—O5 1.949 (3) C21—H21A 0.9900
O4—N2 1.432 (12) C21—H21B 0.9900
N2—C8 1.298 (12) C22—H22A 0.9800
C8—O5 1.297 (4) C22—H22B 0.9800
C8—C9 1.485 (4) C22—H22C 0.9800
C9—C10 1.3900 C15B—C16B 1.514 (13)
C9—C14 1.3900 C15B—H15C 0.9900
C10—C11 1.3900 C15B—H15D 0.9900
C10—H10 0.9500 C16B—H16D 0.9800
C11—C12 1.3900 C16B—H16E 0.9800
C11—H11 0.9500 C16B—H16F 0.9800
C12—C13 1.3900 C17B—C18B 1.499 (15)
C12—H12 0.9500 C17B—H17C 0.9900
C13—C14 1.3900 C17B—H17D 0.9900
C13—H13 0.9500 C18B—H18D 0.9800
C14—O6 1.355 (4) C18B—H18E 0.9800
Cu2B—O6B 1.879 (4) C18B—H18F 0.9800
Cu2B—O1Bi 1.928 (4) C19B—C20B 1.505 (14)
Cu2B—N2B 1.946 (19) C19B—H19C 0.9900
Cu2B—O2Bi 1.953 (5) C19B—H19D 0.9900
O1B—N1B 1.391 (18) C20B—H20D 0.9800
O1B—Cu2Bi 1.928 (4) C20B—H20E 0.9800
N1B—C1B 1.329 (19) C20B—H20F 0.9800
N1B—Cu3B 1.928 (18) C21B—C22B 1.505 (12)
C1B—O2B 1.297 (7) C21B—H21C 0.9900
C1B—C2B 1.492 (6) C21B—H21D 0.9900
O2B—Cu2Bi 1.953 (5) C22B—H22D 0.9800
C2B—C3B 1.3900 C22B—H22E 0.9800
C2B—C7B 1.3900 C22B—H22F 0.9800
C3B—C4B 1.3900 O7—C23 1.288 (11)
C3B—H3B 0.9500 C23—N4 1.337 (9)
C4B—C5B 1.3900 C23—H23 0.9500
C4B—H4B 0.9500 N4—C25 1.434 (9)
C5B—C6B 1.3900 N4—C24 1.454 (8)
C5B—H5B 0.9500 C24—H24A 0.9800
C6B—C7B 1.3900 C24—H24B 0.9800
C6B—H6B 0.9500 C24—H24C 0.9800
C7B—O3B 1.357 (5) C25—H25A 0.9800
O3B—Cu3B 1.867 (4) C25—H25B 0.9800
Cu3B—O4B 1.891 (4) C25—H25C 0.9800
Cu3B—O5B 1.958 (4) O7B—C23B 1.272 (13)
O4B—N2B 1.434 (19) C23B—N4B 1.338 (11)
N2B—C8B 1.297 (18) C23B—H23B 0.9500
C8B—O5B 1.286 (7) N4B—C24B 1.446 (10)
C8B—C9B 1.481 (6) N4B—C25B 1.455 (11)
C9B—C10B 1.3900 C24B—H24D 0.9800
C9B—C14B 1.3900 C24B—H24E 0.9800
C10B—C11B 1.3900 C24B—H24F 0.9800
C10B—H10B 0.9500 C25B—H25D 0.9800
C11B—C12B 1.3900 C25B—H25E 0.9800
C11B—H11B 0.9500 C25B—H25F 0.9800
O4i—Cu1—O4 179.997 (1) O5B—C8B—C9B 120.7 (5)
O4i—Cu1—O4B 143.14 (14) N2B—C8B—C9B 116.8 (9)
O4—Cu1—O4B 36.86 (14) C8B—O5B—Cu3B 111.6 (3)
O4i—Cu1—O4Bi 36.86 (14) C10B—C9B—C14B 120.0
O4—Cu1—O4Bi 143.14 (14) C10B—C9B—C8B 114.5 (5)
O4B—Cu1—O4Bi 179.998 (1) C14B—C9B—C8B 125.5 (5)
O4i—Cu1—O1 89.55 (11) C11B—C10B—C9B 120.0
O4—Cu1—O1 90.45 (11) C11B—C10B—H10B 120.0
O4B—Cu1—O1 54.15 (14) C9B—C10B—H10B 120.0
O4Bi—Cu1—O1 125.84 (14) C10B—C11B—C12B 120.0
O4i—Cu1—O1i 90.45 (11) C10B—C11B—H11B 120.0
O4—Cu1—O1i 89.55 (11) C12B—C11B—H11B 120.0
O4B—Cu1—O1i 125.84 (14) C13B—C12B—C11B 120.0
O4Bi—Cu1—O1i 54.16 (14) C13B—C12B—H12B 120.0
O1—Cu1—O1i 179.998 (1) C11B—C12B—H12B 120.0
O4i—Cu1—O1B 126.32 (14) C12B—C13B—C14B 120.0
O4—Cu1—O1B 53.67 (14) C12B—C13B—H13B 120.0
O4B—Cu1—O1B 90.03 (17) C14B—C13B—H13B 120.0
O4Bi—Cu1—O1B 89.97 (17) O6B—C14B—C13B 114.7 (5)
O1—Cu1—O1B 144.09 (13) O6B—C14B—C9B 125.2 (5)
O1i—Cu1—O1B 35.91 (13) C13B—C14B—C9B 120.0
O4i—Cu1—O1Bi 53.68 (14) C14B—O6B—Cu2B 127.0 (4)
O4—Cu1—O1Bi 126.33 (14) C21B—N3—C21 174.9 (5)
O4B—Cu1—O1Bi 89.97 (17) C21B—N3—C15 67.5 (5)
O4Bi—Cu1—O1Bi 90.03 (17) C21—N3—C15 112.3 (2)
O1—Cu1—O1Bi 35.91 (13) C21B—N3—C15B 116.9 (6)
O1i—Cu1—O1Bi 144.09 (13) C21—N3—C15B 63.4 (4)
O1B—Cu1—O1Bi 179.999 (1) C15—N3—C15B 175.2 (4)
O6—Cu2—N2 91.7 (3) C21B—N3—C17 77.0 (4)
O6—Cu2—O1i 173.29 (12) C21—N3—C17 107.4 (2)
N2—Cu2—O1i 90.9 (3) C15—N3—C17 111.1 (2)
O6—Cu2—O2i 96.57 (11) C15B—N3—C17 69.3 (4)
N2—Cu2—O2i 171.8 (3) C21B—N3—C19 64.1 (5)
O1i—Cu2—O2i 80.94 (10) C21—N3—C19 111.6 (2)
N1—O1—Cu1 117.2 (6) C15—N3—C19 105.5 (2)
N1—O1—Cu2i 113.0 (6) C15B—N3—C19 78.6 (4)
Cu1—O1—Cu2i 113.93 (12) C17—N3—C19 109.0 (2)
C1—N1—O1 111.1 (8) C21B—N3—C17B 108.5 (6)
C1—N1—Cu3 128.8 (8) C21—N3—C17B 67.2 (4)
O1—N1—Cu3 119.5 (8) C15—N3—C17B 70.0 (4)
O2—C1—N1 121.6 (6) C15B—N3—C17B 109.1 (6)
O2—C1—C2 119.5 (3) C17—N3—C17B 174.1 (4)
N1—C1—C2 118.9 (6) C19—N3—C17B 75.9 (4)
C1—O2—Cu2i 110.7 (2) C21B—N3—C19B 112.1 (6)
C3—C2—C7 120.0 C21—N3—C19B 72.2 (4)
C3—C2—C1 114.9 (3) C15—N3—C19B 72.6 (4)
C7—C2—C1 125.0 (3) C15B—N3—C19B 103.5 (5)
C4—C3—C2 120.0 C17—N3—C19B 69.2 (4)
C4—C3—H3 120.0 C19—N3—C19B 176.2 (4)
C2—C3—H3 120.0 C17B—N3—C19B 106.2 (6)
C3—C4—C5 120.0 C16—C15—N3 114.3 (3)
C3—C4—H4 120.0 C16—C15—H15A 108.7
C5—C4—H4 120.0 N3—C15—H15A 108.7
C6—C5—C4 120.0 C16—C15—H15B 108.7
C6—C5—H5 120.0 N3—C15—H15B 108.7
C4—C5—H5 120.0 H15A—C15—H15B 107.6
C7—C6—C5 120.0 C18—C17—N3 115.4 (3)
C7—C6—H6 120.0 C18—C17—H17A 108.4
C5—C6—H6 120.0 N3—C17—H17A 108.4
O3—C7—C6 113.9 (3) C18—C17—H17B 108.4
O3—C7—C2 126.1 (3) N3—C17—H17B 108.4
C6—C7—C2 120.0 H17A—C17—H17B 107.5
C7—O3—Cu3 125.0 (2) C20—C19—N3 114.6 (3)
O3—Cu3—O4 166.74 (13) C20—C19—H19A 108.6
O3—Cu3—N1 94.6 (4) N3—C19—H19A 108.6
O4—Cu3—N1 88.3 (4) C20—C19—H19B 108.6
O3—Cu3—O5 98.35 (11) N3—C19—H19B 108.6
O4—Cu3—O5 81.13 (11) H19A—C19—H19B 107.6
N1—Cu3—O5 164.5 (5) N3—C21—C22 114.1 (4)
N2—O4—Cu1 119.6 (6) N3—C21—H21A 108.7
N2—O4—Cu3 114.7 (5) C22—C21—H21A 108.7
Cu1—O4—Cu3 121.07 (14) N3—C21—H21B 108.7
C8—N2—O4 109.8 (8) C22—C21—H21B 108.7
C8—N2—Cu2 133.9 (8) H21A—C21—H21B 107.6
O4—N2—Cu2 115.7 (7) C16B—C15B—N3 111.7 (10)
O5—C8—N2 122.6 (6) C16B—C15B—H15C 109.3
O5—C8—C9 120.2 (3) N3—C15B—H15C 109.3
N2—C8—C9 117.2 (6) C16B—C15B—H15D 109.3
C8—O5—Cu3 111.5 (2) N3—C15B—H15D 109.3
C10—C9—C14 120.0 H15C—C15B—H15D 107.9
C10—C9—C8 115.2 (4) C15B—C16B—H16D 109.5
C14—C9—C8 124.7 (4) C15B—C16B—H16E 109.5
C9—C10—C11 120.0 H16D—C16B—H16E 109.5
C9—C10—H10 120.0 C15B—C16B—H16F 109.5
C11—C10—H10 120.0 H16D—C16B—H16F 109.5
C10—C11—C12 120.0 H16E—C16B—H16F 109.5
C10—C11—H11 120.0 C18B—C17B—N3 118.0 (15)
C12—C11—H11 120.0 C18B—C17B—H17C 107.8
C11—C12—C13 120.0 N3—C17B—H17C 107.8
C11—C12—H12 120.0 C18B—C17B—H17D 107.8
C13—C12—H12 120.0 N3—C17B—H17D 107.8
C14—C13—C12 120.0 H17C—C17B—H17D 107.1
C14—C13—H13 120.0 C17B—C18B—H18D 109.5
C12—C13—H13 120.0 C17B—C18B—H18E 109.5
O6—C14—C13 114.3 (4) H18D—C18B—H18E 109.5
O6—C14—C9 125.7 (4) C17B—C18B—H18F 109.5
C13—C14—C9 120.0 H18D—C18B—H18F 109.5
C14—O6—Cu2 126.5 (3) H18E—C18B—H18F 109.5
O6B—Cu2B—O1Bi 173.0 (2) C20B—C19B—N3 115.1 (11)
O6B—Cu2B—N2B 91.4 (6) C20B—C19B—H19C 108.5
O1Bi—Cu2B—N2B 90.8 (6) N3—C19B—H19C 108.5
O6B—Cu2B—O2Bi 96.25 (18) C20B—C19B—H19D 108.5
O1Bi—Cu2B—O2Bi 81.39 (17) N3—C19B—H19D 108.5
N2B—Cu2B—O2Bi 172.1 (6) H19C—C19B—H19D 107.5
N1B—O1B—Cu1 117.9 (8) C19B—C20B—H20D 109.5
N1B—O1B—Cu2Bi 112.6 (9) C19B—C20B—H20E 109.5
Cu1—O1B—Cu2Bi 113.2 (2) H20D—C20B—H20E 109.5
C1B—N1B—O1B 111.5 (13) C19B—C20B—H20F 109.5
C1B—N1B—Cu3B 127.9 (12) H20D—C20B—H20F 109.5
O1B—N1B—Cu3B 119.2 (12) H20E—C20B—H20F 109.5
O2B—C1B—N1B 121.9 (9) N3—C21B—C22B 114.6 (10)
O2B—C1B—C2B 119.1 (5) N3—C21B—H21C 108.6
N1B—C1B—C2B 119.0 (9) C22B—C21B—H21C 108.6
C1B—O2B—Cu2Bi 110.1 (4) N3—C21B—H21D 108.6
C3B—C2B—C7B 120.0 C22B—C21B—H21D 108.6
C3B—C2B—C1B 115.0 (6) H21C—C21B—H21D 107.6
C7B—C2B—C1B 125.0 (6) C21B—C22B—H22D 109.5
C2B—C3B—C4B 120.0 C21B—C22B—H22E 109.5
C2B—C3B—H3B 120.0 H22D—C22B—H22E 109.5
C4B—C3B—H3B 120.0 C21B—C22B—H22F 109.5
C5B—C4B—C3B 120.0 H22D—C22B—H22F 109.5
C5B—C4B—H4B 120.0 H22E—C22B—H22F 109.5
C3B—C4B—H4B 120.0 O7—C23—N4 122.2 (8)
C4B—C5B—C6B 120.0 O7—C23—H23 118.9
C4B—C5B—H5B 120.0 N4—C23—H23 118.9
C6B—C5B—H5B 120.0 C23—N4—C25 121.3 (7)
C7B—C6B—C5B 120.0 C23—N4—C24 120.9 (7)
C7B—C6B—H6B 120.0 C25—N4—C24 117.7 (7)
C5B—C6B—H6B 120.0 O7B—C23B—N4B 122.1 (10)
O3B—C7B—C6B 114.5 (6) O7B—C23B—H23B 118.9
O3B—C7B—C2B 125.5 (6) N4B—C23B—H23B 118.9
C6B—C7B—C2B 120.0 C23B—N4B—C24B 120.3 (9)
C7B—O3B—Cu3B 124.8 (4) C23B—N4B—C25B 121.8 (11)
O3B—Cu3B—O4B 167.9 (2) C24B—N4B—C25B 117.1 (9)
O3B—Cu3B—N1B 94.3 (6) N4B—C24B—H24D 109.5
O4B—Cu3B—N1B 88.2 (6) N4B—C24B—H24E 109.5
O3B—Cu3B—O5B 98.81 (17) H24D—C24B—H24E 109.5
O4B—Cu3B—O5B 80.99 (16) N4B—C24B—H24F 109.5
N1B—Cu3B—O5B 163.5 (6) H24D—C24B—H24F 109.5
N2B—O4B—Cu1 119.9 (9) H24E—C24B—H24F 109.5
N2B—O4B—Cu3B 114.3 (7) N4B—C25B—H25D 109.5
Cu1—O4B—Cu3B 121.3 (2) N4B—C25B—H25E 109.5
C8B—N2B—O4B 110.2 (12) H25D—C25B—H25E 109.5
C8B—N2B—Cu2B 132.9 (14) N4B—C25B—H25F 109.5
O4B—N2B—Cu2B 114.8 (12) H25D—C25B—H25F 109.5
O5B—C8B—N2B 122.6 (9) H25E—C25B—H25F 109.5
O4i—Cu1—O1—N1 −166.7 (10) N1B—C1B—C2B—C7B 0.2 (15)
O4—Cu1—O1—N1 13.3 (10) C7B—C2B—C3B—C4B 0.0
O4B—Cu1—O1—N1 20.2 (10) C1B—C2B—C3B—C4B 179.5 (5)
O4Bi—Cu1—O1—N1 −159.8 (10) C2B—C3B—C4B—C5B 0.0
O1B—Cu1—O1—N1 15.5 (10) C3B—C4B—C5B—C6B 0.0
O1Bi—Cu1—O1—N1 −164.5 (10) C4B—C5B—C6B—C7B 0.0
O4i—Cu1—O1—Cu2i −31.57 (14) C5B—C6B—C7B—O3B 178.8 (5)
O4—Cu1—O1—Cu2i 148.43 (14) C5B—C6B—C7B—C2B 0.0
O4B—Cu1—O1—Cu2i 155.3 (2) C3B—C2B—C7B—O3B −178.7 (5)
O4Bi—Cu1—O1—Cu2i −24.7 (2) C1B—C2B—C7B—O3B 1.9 (6)
O1B—Cu1—O1—Cu2i 150.7 (2) C3B—C2B—C7B—C6B 0.0
O1Bi—Cu1—O1—Cu2i −29.3 (2) C1B—C2B—C7B—C6B −179.4 (6)
Cu1—O1—N1—C1 149.6 (10) C6B—C7B—O3B—Cu3B −168.6 (4)
Cu2i—O1—N1—C1 14.0 (17) C2B—C7B—O3B—Cu3B 10.1 (6)
Cu1—O1—N1—Cu3 −22.5 (17) C7B—O3B—Cu3B—O4B 84.7 (9)
Cu2i—O1—N1—Cu3 −158.0 (9) C7B—O3B—Cu3B—N1B −17.2 (9)
O1—N1—C1—O2 −3(2) C7B—O3B—Cu3B—O5B 172.8 (4)
Cu3—N1—C1—O2 167.9 (11) C1B—N1B—Cu3B—O3B 20 (2)
O1—N1—C1—C2 177.8 (9) O1B—N1B—Cu3B—O3B −174.6 (17)
Cu3—N1—C1—C2 −11 (2) O1B—N1B—Cu3B—O4B 17.3 (18)
N1—C1—O2—Cu2i −8.9 (12) C1B—N1B—Cu3B—O5B 163.0 (9)
C2—C1—O2—Cu2i 170.1 (2) O1B—N1B—Cu3B—O5B −32 (4)
O2—C1—C2—C3 4.3 (4) O1B—Cu1—O4B—Cu3B 0.2 (3)
N1—C1—C2—C3 −176.7 (11) O1Bi—Cu1—O4B—Cu3B −179.8 (3)
O2—C1—C2—C7 −178.0 (3) O3B—Cu3B—O4B—N2B 93.2 (19)
N1—C1—C2—C7 1.1 (12) N1B—Cu3B—O4B—N2B −164.3 (19)
C7—C2—C3—C4 0.0 O5B—Cu3B—O4B—N2B 3.2 (17)
C1—C2—C3—C4 177.9 (3) O3B—Cu3B—O4B—Cu1 −110.7 (8)
C2—C3—C4—C5 0.0 N1B—Cu3B—O4B—Cu1 −8.2 (8)
C3—C4—C5—C6 0.0 O5B—Cu3B—O4B—Cu1 159.3 (3)
C4—C5—C6—C7 0.0 Cu1—O4B—N2B—C8B −157.7 (16)
C5—C6—C7—O3 −179.5 (3) Cu3B—O4B—N2B—C8B −1(3)
C5—C6—C7—C2 0.0 Cu1—O4B—N2B—Cu2B 8(3)
C3—C2—C7—O3 179.4 (3) Cu3B—O4B—N2B—Cu2B 164.5 (12)
C1—C2—C7—O3 1.7 (4) O6B—Cu2B—N2B—C8B −12 (3)
C3—C2—C7—C6 0.0 O1Bi—Cu2B—N2B—C8B 175 (3)
C1—C2—C7—C6 −177.7 (3) O6B—Cu2B—N2B—O4B −173 (2)
C6—C7—O3—Cu3 −175.1 (2) O1Bi—Cu2B—N2B—O4B 14 (2)
C2—C7—O3—Cu3 5.5 (4) O4B—N2B—C8B—O5B −3(3)
C7—O3—Cu3—O4 91.1 (6) Cu2B—N2B—C8B—O5B −165 (2)
C7—O3—Cu3—N1 −10.8 (7) O4B—N2B—C8B—C9B 176.5 (15)
C7—O3—Cu3—O5 177.8 (3) Cu2B—N2B—C8B—C9B 14 (4)
C1—N1—Cu3—O3 14.2 (18) N2B—C8B—O5B—Cu3B 6(2)
O1—N1—Cu3—O3 −175.2 (14) C9B—C8B—O5B—Cu3B −173.9 (4)
C1—N1—Cu3—O4 −152.8 (18) O3B—Cu3B—O5B—C8B −172.4 (4)
O1—N1—Cu3—O4 17.7 (14) O4B—Cu3B—O5B—C8B −4.7 (4)
C1—N1—Cu3—O5 160.7 (7) N1B—Cu3B—O5B—C8B 45 (3)
O1—N1—Cu3—O5 −29 (4) O5B—C8B—C9B—C10B −8.9 (7)
O4B—Cu1—O4—N2 144.6 (8) N2B—C8B—C9B—C10B 171.4 (19)
O4Bi—Cu1—O4—N2 −35.4 (8) O5B—C8B—C9B—C14B 170.7 (4)
O1—Cu1—O4—N2 153.9 (8) N2B—C8B—C9B—C14B −9(2)
O1i—Cu1—O4—N2 −26.1 (8) C14B—C9B—C10B—C11B 0.0
O1B—Cu1—O4—N2 −24.5 (8) C8B—C9B—C10B—C11B 179.6 (5)
O1Bi—Cu1—O4—N2 155.5 (8) C9B—C10B—C11B—C12B 0.0
O4B—Cu1—O4—Cu3 −9.9 (2) C10B—C11B—C12B—C13B 0.0
O4Bi—Cu1—O4—Cu3 170.1 (2) C11B—C12B—C13B—C14B 0.0
O1—Cu1—O4—Cu3 −0.56 (18) C12B—C13B—C14B—O6B 177.0 (5)
O1i—Cu1—O4—Cu3 179.44 (18) C12B—C13B—C14B—C9B 0.0
O1B—Cu1—O4—Cu3 −178.9 (3) C10B—C9B—C14B—O6B −176.7 (6)
O1Bi—Cu1—O4—Cu3 1.1 (3) C8B—C9B—C14B—O6B 3.7 (6)
O3—Cu3—O4—N2 94.1 (10) C10B—C9B—C14B—C13B 0.0
N1—Cu3—O4—N2 −163.4 (11) C8B—C9B—C14B—C13B −179.6 (6)
O5—Cu3—O4—N2 5.3 (8) C13B—C14B—O6B—Cu2B −179.7 (4)
O3—Cu3—O4—Cu1 −110.3 (5) C9B—C14B—O6B—Cu2B −2.8 (7)
N1—Cu3—O4—Cu1 −7.7 (7) N2B—Cu2B—O6B—C14B 4.8 (12)
O5—Cu3—O4—Cu1 160.95 (19) O2Bi—Cu2B—O6B—C14B −176.9 (5)
Cu1—O4—N2—C8 −161.1 (8) C21B—N3—C15—C16 126.6 (8)
Cu3—O4—N2—C8 −5.0 (15) C21—N3—C15—C16 −58.8 (6)
Cu1—O4—N2—Cu2 11.6 (13) C17—N3—C15—C16 61.4 (6)
Cu3—O4—N2—Cu2 167.6 (6) C19—N3—C15—C16 179.4 (6)
O6—Cu2—N2—C8 −6.1 (16) C17B—N3—C15—C16 −112.4 (7)
O1i—Cu2—N2—C8 −179.9 (16) C19B—N3—C15—C16 2.8 (7)
O6—Cu2—N2—O4 −176.5 (10) C21B—N3—C17—C18 −5.5 (6)
O1i—Cu2—N2—O4 9.7 (10) C21—N3—C17—C18 177.0 (3)
O4—N2—C8—O5 1.0 (16) C15—N3—C17—C18 53.9 (4)
Cu2—N2—C8—O5 −169.8 (10) C15B—N3—C17—C18 −131.2 (5)
O4—N2—C8—C9 178.0 (7) C19—N3—C17—C18 −61.9 (4)
Cu2—N2—C8—C9 7.2 (19) C19B—N3—C17—C18 114.6 (5)
N2—C8—O5—Cu3 3.3 (10) C21B—N3—C19—C20 −123.5 (6)
C9—C8—O5—Cu3 −173.6 (2) C21—N3—C19—C20 59.4 (4)
O3—Cu3—O5—C8 −171.2 (2) C15—N3—C19—C20 −178.4 (4)
O4—Cu3—O5—C8 −4.6 (2) C15B—N3—C19—C20 4.2 (5)
N1—Cu3—O5—C8 43 (2) C17—N3—C19—C20 −59.0 (4)
O5—C8—C9—C10 −4.6 (4) C17B—N3—C19—C20 117.4 (6)
N2—C8—C9—C10 178.3 (9) C15—N3—C21—C22 −61.4 (4)
O5—C8—C9—C14 171.6 (3) C15B—N3—C21—C22 120.9 (6)
N2—C8—C9—C14 −5.5 (10) C17—N3—C21—C22 176.2 (4)
C14—C9—C10—C11 0.0 C19—N3—C21—C22 56.8 (5)
C8—C9—C10—C11 176.4 (3) C17B—N3—C21—C22 −6.4 (6)
C9—C10—C11—C12 0.0 C19B—N3—C21—C22 −123.3 (5)
C10—C11—C12—C13 0.0 C21B—N3—C15B—C16B 55.7 (13)
C11—C12—C13—C14 0.0 C21—N3—C15B—C16B −118.6 (12)
C12—C13—C14—O6 179.4 (3) C17—N3—C15B—C16B 118.3 (12)
C12—C13—C14—C9 0.0 C19—N3—C15B—C16B 2.8 (11)
C10—C9—C14—O6 −179.3 (4) C17B—N3—C15B—C16B −67.7 (12)
C8—C9—C14—O6 4.7 (4) C19B—N3—C15B—C16B 179.5 (11)
C10—C9—C14—C13 0.0 C21B—N3—C17B—C18B 177.3 (16)
C8—C9—C14—C13 −176.0 (3) C21—N3—C17B—C18B −5.6 (15)
C13—C14—O6—Cu2 175.9 (2) C15—N3—C17B—C18B 120.6 (16)
C9—C14—O6—Cu2 −4.7 (4) C15B—N3—C17B—C18B −54.4 (17)
N2—Cu2—O6—C14 4.2 (6) C19—N3—C17B—C18B −126.8 (16)
O2i—Cu2—O6—C14 −175.8 (3) C19B—N3—C17B—C18B 56.6 (17)
O4B—Cu1—O1B—N1B 12.4 (13) C21B—N3—C19B—C20B −60 (2)
O4Bi—Cu1—O1B—N1B −167.6 (13) C21—N3—C19B—C20B 117 (2)
O4B—Cu1—O1B—Cu2Bi 146.8 (2) C15—N3—C19B—C20B −4.2 (19)
O4Bi—Cu1—O1B—Cu2Bi −33.2 (2) C15B—N3—C19B—C20B 173 (2)
Cu2Bi—O1B—N1B—C1B 11 (2) C17—N3—C19B—C20B −126 (2)
Cu1—O1B—N1B—Cu3B −22 (2) C17B—N3—C19B—C20B 58 (2)
Cu2Bi—O1B—N1B—Cu3B −156.3 (12) C15—N3—C21B—C22B −124.4 (12)
O1B—N1B—C1B—O2B 1(2) C15B—N3—C21B—C22B 53.7 (13)
Cu3B—N1B—C1B—O2B 166.8 (13) C17—N3—C21B—C22B −4.8 (11)
O1B—N1B—C1B—C2B 179.5 (11) C19—N3—C21B—C22B 114.1 (12)
Cu3B—N1B—C1B—C2B −14 (3) C17B—N3—C21B—C22B 177.5 (11)
N1B—C1B—O2B—Cu2Bi −11.7 (15) C19B—N3—C21B—C22B −65.6 (12)
C2B—C1B—O2B—Cu2Bi 169.3 (4) O7—C23—N4—C25 176.5 (12)
O2B—C1B—C2B—C3B −0.2 (7) O7—C23—N4—C24 −7(2)
N1B—C1B—C2B—C3B −179.2 (14) O7B—C23B—N4B—C24B −5(2)
O2B—C1B—C2B—C7B 179.2 (4) O7B—C23B—N4B—C25B −174.3 (15)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2076).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bodwin, J. J. & Pecoraro, V. L. (2000). Inorg. Chem. 39, 3434–3435. [DOI] [PubMed]
  3. Bruker (2009). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840–4849.
  6. Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003. [DOI] [PubMed]
  9. Pecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171–173.
  10. Pecoraro, V. L., Stemmler, A. J., Gibney, B. R., Bodwin, J. J., Wang, H., Kampf, J. W. & Barwinski, A. (1997). Progress in Inorganic Chemistry, edited by K. D. Karlin, pp. 83–177. New York: Wiley.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007975/jj2076sup1.cif

e-67-0m419-sup1.cif (66KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007975/jj2076Isup2.hkl

e-67-0m419-Isup2.hkl (406.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES