Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 15;67(Pt 4):o887. doi: 10.1107/S1600536811009184

2-Ethyl-2,3-dihydro-1,2-benzothia­zole-1,1,3-trione

Muneeb Hayat Khan a, Islam Ullah Khan a,*, Muhammad Nadeem Arshad a, Mehmet Akkurt b,*
PMCID: PMC3099867  PMID: 21754163

Abstract

In the title mol­ecule, C9H9NO3S, the bond lengths and angles fall within normal ranges. All nine ring atoms almost lie in a common plane (r.m.s. deviation 0.021 Å). In the crystal, symmetry-related mol­ecules are linked via C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related literature on benzisothia­zolone-1,1-dioxide derivatives, see: Hu et al. (2004); Kap-Sun & Nicholas (1998); Liang et al. (2006); Masashi et al. (1999); Nagasawa et al. (1995). For related structures, see: Hu et al. (2006); Xu et al. (2005); Wen et al. (2006).graphic file with name e-67-0o887-scheme1.jpg

Experimental

Crystal data

  • C9H9NO3S

  • M r = 211.24

  • Monoclinic, Inline graphic

  • a = 10.4559 (5) Å

  • b = 7.5484 (5) Å

  • c = 12.9408 (7) Å

  • β = 105.863 (2)°

  • V = 982.46 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.19 × 0.18 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 9319 measured reflections

  • 2429 independent reflections

  • 1822 reflections with I > 2σ(I)

  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.144

  • S = 1.08

  • 2429 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009184/bt5490sup1.cif

e-67-0o887-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009184/bt5490Isup2.hkl

e-67-0o887-Isup2.hkl (119.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.37 3.265 (2) 162
C3—H3⋯O2ii 0.93 2.53 3.295 (3) 140
C8—H8A⋯O3iii 0.97 2.45 3.139 (3) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

supplementary crystallographic information

Comment

Benzisothiazolone-1,1-dioxide is part of a class of heterocycles which has been investigated in pharmaceutical research (Kap-Sun & Nicholas, 1998). 1,2-Benzisothiazole-3-one 1,1-dioxide (saccharin) has been widely incorporated into a variety of biologically active compounds. It has been identified as an important molecular component in various classes of 5-Htla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). In particular, N-substituted derivatives, e.g with N-hydroxy and N-alkyl substituents, have shown important biological activity (Nagasawa et al., 1995). Among N-alkyl derivatives, various synthetic routes have been reported for the synthesis of the title compound involving ionic liquids and free radical mechanisms (Hu et al., 2004; Masashi et al., 1999).

In the molecule of the title compound (Fig. 1), all the bond lengths and bond angles agree with the corresponding values in similar structures containing benzisothiazole group (Hu et al., 2006; Xu et al., 2005; Wen et al., 2006).

Atoms C1–C7, S1, O1 and N1 of the title molecule are essentially coplanar, with a maximum deviation of 0.020 (1) Å for S1. The packing of the molecules is stabilized by intermolecular C—H···O intermolecular hydrogen bonds (Table 1, Fig. 2).

Experimental

Sodium sacharrin (0.5 g, 2.439 mmol) was taken in round bottom flask and 20 ml DMF was added to it. It was kept for stirring at room temperature for 5 minutes then ethyl iodide (0.195 ml, 2.439 mmol) was added to the solution. Then reaction mixture was kept under reflux for 3 h at 333 K and after 3 h the TLC confirmed the completion of reaction. The product was obtained in ice-water, filtered and dried. Dried precipitates were dissolved in methanol for crystallization (yield: 93%).

Refinement

In the last cycles of the refinement, 3 reflections (1 0 1), (-1 0 1) and (-2 2 2) were eliminated due to being poorly measured in the vicinity of the beam stop. All H atoms were positioned geometrically with C—H = 0.93 - 0.97 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title molecule with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the packing and hydrogen bonding interactions of the title compound down the b axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C9H9NO3S F(000) = 440
Mr = 211.24 Dx = 1.428 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3812 reflections
a = 10.4559 (5) Å θ = 2.7–28.3°
b = 7.5484 (5) Å µ = 0.31 mm1
c = 12.9408 (7) Å T = 296 K
β = 105.863 (2)° Plate, colourless
V = 982.46 (10) Å3 0.19 × 0.18 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1822 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.081
graphite θmax = 28.3°, θmin = 3.2°
φ and ω scans h = −13→13
9319 measured reflections k = −10→10
2429 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.0563P] where P = (Fo2 + 2Fc2)/3
2429 reflections (Δ/σ)max < 0.001
129 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.45672 (5) 0.21780 (7) 0.19351 (3) 0.0544 (2)
O1 0.27985 (14) 0.1334 (2) −0.09326 (10) 0.0684 (5)
O2 0.50046 (15) 0.0632 (2) 0.25648 (10) 0.0770 (6)
O3 0.42257 (17) 0.3675 (2) 0.24709 (11) 0.0771 (6)
N1 0.33045 (15) 0.1647 (2) 0.08810 (12) 0.0540 (5)
C1 0.55956 (17) 0.2745 (2) 0.11296 (13) 0.0442 (5)
C2 0.68739 (19) 0.3429 (3) 0.14490 (15) 0.0568 (6)
C3 0.74791 (19) 0.3782 (3) 0.06576 (17) 0.0620 (6)
C4 0.68513 (19) 0.3479 (3) −0.04052 (16) 0.0591 (7)
C5 0.55651 (19) 0.2815 (2) −0.07236 (14) 0.0515 (6)
C6 0.49424 (17) 0.2447 (2) 0.00599 (13) 0.0417 (5)
C7 0.35743 (17) 0.1749 (2) −0.00979 (13) 0.0473 (5)
C8 0.2068 (2) 0.0906 (3) 0.10313 (19) 0.0704 (8)
C9 0.0967 (3) 0.2234 (3) 0.0851 (3) 0.0977 (13)
H2 0.73010 0.36390 0.21690 0.0680*
H3 0.83380 0.42380 0.08450 0.0740*
H4 0.72950 0.37220 −0.09210 0.0710*
H5 0.51370 0.26240 −0.14450 0.0620*
H8A 0.22420 0.04450 0.17560 0.0840*
H8B 0.17840 −0.00750 0.05380 0.0840*
H9A 0.12320 0.31940 0.13500 0.1470*
H9B 0.01870 0.16790 0.09560 0.1470*
H9C 0.07780 0.26810 0.01300 0.1470*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0641 (3) 0.0629 (4) 0.0381 (3) 0.0102 (2) 0.0174 (2) 0.0029 (2)
O1 0.0600 (8) 0.0833 (10) 0.0532 (8) −0.0087 (7) 0.0010 (6) −0.0090 (7)
O2 0.0932 (11) 0.0822 (10) 0.0543 (8) 0.0116 (9) 0.0179 (7) 0.0255 (7)
O3 0.0937 (11) 0.0869 (10) 0.0586 (8) 0.0168 (9) 0.0343 (8) −0.0156 (8)
N1 0.0505 (8) 0.0625 (9) 0.0515 (8) 0.0006 (7) 0.0181 (7) 0.0040 (7)
C1 0.0481 (9) 0.0458 (9) 0.0371 (8) 0.0107 (7) 0.0092 (7) −0.0022 (6)
C2 0.0524 (10) 0.0596 (11) 0.0503 (10) 0.0075 (8) 0.0001 (8) −0.0070 (8)
C3 0.0456 (9) 0.0604 (11) 0.0789 (13) 0.0027 (8) 0.0150 (9) −0.0019 (10)
C4 0.0577 (11) 0.0601 (11) 0.0665 (12) 0.0051 (9) 0.0287 (9) 0.0037 (9)
C5 0.0611 (11) 0.0547 (10) 0.0406 (8) 0.0067 (8) 0.0172 (8) −0.0013 (7)
C6 0.0464 (8) 0.0406 (8) 0.0372 (8) 0.0068 (7) 0.0098 (6) −0.0015 (6)
C7 0.0484 (9) 0.0475 (9) 0.0439 (9) 0.0047 (7) 0.0092 (7) −0.0008 (7)
C8 0.0610 (12) 0.0704 (14) 0.0886 (14) −0.0035 (10) 0.0356 (11) 0.0074 (11)
C9 0.0638 (14) 0.0892 (18) 0.149 (3) 0.0057 (13) 0.0440 (17) 0.0024 (17)

Geometric parameters (Å, °)

S1—O2 1.4252 (15) C5—C6 1.375 (3)
S1—O3 1.4214 (16) C6—C7 1.485 (3)
S1—N1 1.6673 (16) C8—C9 1.496 (4)
S1—C1 1.7432 (18) C2—H2 0.9300
O1—C7 1.202 (2) C3—H3 0.9300
N1—C7 1.373 (2) C4—H4 0.9300
N1—C8 1.470 (3) C5—H5 0.9300
C1—C2 1.386 (3) C8—H8A 0.9700
C1—C6 1.384 (2) C8—H8B 0.9700
C2—C3 1.369 (3) C9—H9A 0.9600
C3—C4 1.372 (3) C9—H9B 0.9600
C4—C5 1.388 (3) C9—H9C 0.9600
O2—S1—O3 117.14 (8) N1—C7—C6 109.03 (14)
O2—S1—N1 109.24 (8) N1—C8—C9 113.06 (19)
O2—S1—C1 112.89 (9) C1—C2—H2 121.00
O3—S1—N1 109.99 (9) C3—C2—H2 122.00
O3—S1—C1 112.01 (9) C2—C3—H3 119.00
N1—S1—C1 92.85 (8) C4—C3—H3 119.00
S1—N1—C7 115.14 (13) C3—C4—H4 119.00
S1—N1—C8 120.78 (13) C5—C4—H4 119.00
C7—N1—C8 123.60 (16) C4—C5—H5 121.00
S1—C1—C2 127.97 (13) C6—C5—H5 121.00
S1—C1—C6 109.98 (13) N1—C8—H8A 109.00
C2—C1—C6 122.05 (16) N1—C8—H8B 109.00
C1—C2—C3 117.03 (17) C9—C8—H8A 109.00
C2—C3—C4 121.7 (2) C9—C8—H8B 109.00
C3—C4—C5 121.14 (19) H8A—C8—H8B 108.00
C4—C5—C6 118.02 (17) C8—C9—H9A 109.00
C1—C6—C5 120.07 (17) C8—C9—H9B 109.00
C1—C6—C7 112.86 (15) C8—C9—H9C 109.00
C5—C6—C7 127.07 (15) H9A—C9—H9B 110.00
O1—C7—N1 123.80 (17) H9A—C9—H9C 109.00
O1—C7—C6 127.17 (16) H9B—C9—H9C 110.00
O2—S1—N1—C7 −111.89 (13) C7—N1—C8—C9 −85.9 (3)
O2—S1—N1—C8 60.49 (17) C2—C1—C6—C7 −178.70 (16)
O3—S1—N1—C7 118.24 (13) S1—C1—C6—C5 179.56 (13)
O3—S1—N1—C8 −69.38 (17) S1—C1—C2—C3 −179.53 (16)
C1—S1—N1—C7 3.57 (13) C6—C1—C2—C3 −0.8 (3)
C1—S1—N1—C8 175.95 (15) S1—C1—C6—C7 0.24 (17)
O2—S1—C1—C2 −70.93 (19) C2—C1—C6—C5 0.6 (3)
O2—S1—C1—C6 110.22 (13) C1—C2—C3—C4 0.2 (3)
O3—S1—C1—C2 63.88 (19) C2—C3—C4—C5 0.7 (3)
O3—S1—C1—C6 −114.97 (13) C3—C4—C5—C6 −0.8 (3)
N1—S1—C1—C2 176.79 (18) C4—C5—C6—C7 179.41 (17)
N1—S1—C1—C6 −2.06 (13) C4—C5—C6—C1 0.2 (2)
S1—N1—C7—O1 176.40 (14) C5—C6—C7—N1 −177.04 (16)
C8—N1—C7—O1 4.3 (3) C1—C6—C7—O1 −178.07 (17)
S1—N1—C7—C6 −3.89 (17) C1—C6—C7—N1 2.23 (19)
C8—N1—C7—C6 −176.03 (16) C5—C6—C7—O1 2.7 (3)
S1—N1—C8—C9 102.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.37 3.265 (2) 162
C3—H3···O2ii 0.93 2.53 3.295 (3) 140
C8—H8A···O3iii 0.97 2.45 3.139 (3) 128

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5490).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Hu, Y., Chen, Z. C., Le, Z. G. & Zheng, Q. G. (2004). J. Chem. Res. 4, 276–278.
  5. Hu, Z.-Q., Si, G.-D., Zhou, K., Yu, G.-P. & Xu, L.-Z. (2006). Acta Cryst. E62, o427–o428.
  6. Kap-Sun, Y. & Nicholas, A. M. (1998). Tetrahedron Lett. 39, 5309–5312.
  7. Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.
  8. Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.
  9. Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem. 38, 1865–1871. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wen, H.-L., Zuo, J.-H., Ding, L., Lai, B.-W. & Liu, C.-B. (2006). Acta Cryst. E62, o5061–o5062.
  13. Xu, L.-Z., Huang, Y.-W., Yu, G.-P., Zhang, P.-Y. & Yang, Y.-X. (2005). Acta Cryst. E61, o2123–o2124.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009184/bt5490sup1.cif

e-67-0o887-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009184/bt5490Isup2.hkl

e-67-0o887-Isup2.hkl (119.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES