Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o811. doi: 10.1107/S1600536811007963

2-[(Dodecylsulfanyl)carbonothioyl­sulfanyl]­propanoic acid

Shude Xiao a, Paul A Charpentier a,*
PMCID: PMC3099875  PMID: 21754097

Abstract

In the title compound, C16H30O2S3, the decyl chain adopts an extended zigzag conformation. Two mol­ecules are disposed about a center of inversion, forming an O—H⋯O hydrogen-bonded dimer.

Related literature

For use in polymerization of acrylic acid and acrylates, see: Alb et al. (2008, 2009); Konkolewicz et al. (2009). Various vinyl monomers can be polymerized via the RAFT (addition-fragmentation chain-transfer) mechanism by varying the substitutes of the trithio­carbonates, see: Moad et al. (2005, 2008). For related structures, see: Xiao & Charpentier (2010, 2011).graphic file with name e-67-0o811-scheme1.jpg

Experimental

Crystal data

  • C16H30O2S3

  • M r = 350.58

  • Triclinic, Inline graphic

  • a = 6.5632 (4) Å

  • b = 7.0872 (4) Å

  • c = 22.0276 (14) Å

  • α = 85.819 (2)°

  • β = 86.873 (2)°

  • γ = 68.313 (2)°

  • V = 949.13 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 150 K

  • 0.14 × 0.08 × 0.06 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.949, T max = 0.977

  • 40281 measured reflections

  • 4522 independent reflections

  • 3696 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.098

  • S = 1.08

  • 4522 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007963/ng5117sup1.cif

e-67-0o811-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007963/ng5117Isup2.hkl

e-67-0o811-Isup2.hkl (221.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.79 2.6292 (15) 175

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Canadian Natural Sciences and Engineering Research Council (NSERC) Idea to Innovation (I2I) Program. The authors are grateful to Dr Guerman Popov in the Department of Chemistry, the University of Western Ontario, for the data acquisition and inter­pretation.

supplementary crystallographic information

Comment

Trithiocarbonates are a type of chain transfer agents (CTA) that are used in addition-fragmentation chain-transfer (RAFT) polymerization. Various vinyl monomers can be polymerized via the RAFT mechanism by varying the substitutes of the trithiocarbonates (Moad et al., 2005, 2008). 2-(Dodecylthiocarbonothioylthio)propanoic acid was synthesized as the RAFT-CTA mainly for polymerization of acrylic acid and acrylates, but a few other vinyl monomers were also successfully polymerized, such as acrylonitrile / 1,3-butadiene and N-isopropylacrylamide. From solution or emulsion RAFT polymerization, diblock and triblock copolymers were prepared from acrylates/acrylic acid and other vinyl monomers. Via its carboxylic acid group, 2-(dodecylthiocarbonothioylthio)propanoic acid was immobilized onto nanoparticles, such as SiO2 and carbon black, followed by RAFT polymerization yielding hybrid nanocomposites.

Experimental

1-Dodecanethiol 20 g (0.1 mol), triethylamine 12 g (0.12 mol) were mixed in THF 30 ml, and then carbon disulfide 11 g was added into the mixture dropwise at room temperature. The mixture was kept stirred for 1 day, and 2- bromopropionic acid 15.3 g (0.1 mol) / THF 5 ml were charged into it. The reaction lasted for 2 days at room temperature. Excess ethyl ether was used to precipitate the salts, and the solvents were evaporated. The crude product was treated with hydrobromic acid followed by extraction with ethyl ether. When the solvents were being removed, toluene was added to get rid of the residual water. Yellow crystals of 2-(dodecylthiocarbonothioylthio)propanoic acid were obtained from recrystalization in hexane/cyclohexane (10:1). m.p.: 77.21°C (DSC).

Refinement

Hydrogen atom positions were calculated geometrically and were included as riding on their respective carbon/oxygen atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound (50% probability displacement ellipsoids).

Fig. 2.

Fig. 2.

Packing diagram of the structure with H-bonds.

Crystal data

C16H30O2S3 Z = 2
Mr = 350.58 F(000) = 380
Triclinic, P1 Dx = 1.227 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.5632 (4) Å Cell parameters from 8106 reflections
b = 7.0872 (4) Å θ = 3.1–28.2°
c = 22.0276 (14) Å µ = 0.39 mm1
α = 85.819 (2)° T = 150 K
β = 86.873 (2)° Block, yellow
γ = 68.313 (2)° 0.14 × 0.08 × 0.06 mm
V = 949.13 (10) Å3

Data collection

Bruker APEXII diffractometer 4522 independent reflections
Radiation source: fine-focus sealed tube 3696 reflections with I > 2σ(I)
graphite Rint = 0.050
φ and ω scans θmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→8
Tmin = 0.949, Tmax = 0.977 k = −9→9
40281 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.166P] where P = (Fo2 + 2Fc2)/3
4522 reflections (Δ/σ)max = 0.002
193 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.09326 (7) 0.13333 (7) 0.295324 (18) 0.02645 (12)
S2 −0.35456 (6) −0.07612 (6) 0.347313 (17) 0.02119 (11)
S3 −0.15639 (7) 0.12153 (6) 0.432049 (18) 0.02365 (11)
O1 −0.27164 (17) −0.31220 (17) 0.51448 (5) 0.0248 (3)
H1 −0.1628 −0.3995 0.5317 0.037*
O2 −0.05484 (17) −0.39868 (16) 0.43093 (5) 0.0217 (2)
C1 1.3203 (3) 1.3296 (3) 0.02501 (9) 0.0390 (5)
H1A 1.4290 1.2072 0.0081 0.059*
H1B 1.3941 1.4182 0.0369 0.059*
H1C 1.2121 1.4022 −0.0058 0.059*
C2 1.2050 (3) 1.2690 (3) 0.08064 (8) 0.0287 (4)
H2A 1.3149 1.2010 0.1121 0.034*
H2B 1.0971 1.3938 0.0976 0.034*
C3 1.0870 (3) 1.1280 (3) 0.06765 (7) 0.0250 (4)
H3A 1.1945 1.0026 0.0509 0.030*
H3B 0.9766 1.1956 0.0363 0.030*
C4 0.9730 (3) 1.0703 (2) 0.12409 (7) 0.0239 (3)
H4A 0.8645 1.1960 0.1404 0.029*
H4B 1.0835 1.0055 0.1556 0.029*
C5 0.8561 (3) 0.9263 (2) 0.11290 (7) 0.0236 (3)
H5A 0.9641 0.7998 0.0969 0.028*
H5B 0.7451 0.9906 0.0815 0.028*
C6 0.7434 (3) 0.8722 (2) 0.17038 (7) 0.0227 (3)
H6A 0.8554 0.8058 0.2014 0.027*
H6B 0.6385 0.9994 0.1869 0.027*
C7 0.6207 (3) 0.7320 (2) 0.16040 (7) 0.0230 (3)
H7A 0.5085 0.7980 0.1294 0.028*
H7B 0.7254 0.6042 0.1442 0.028*
C8 0.5090 (3) 0.6809 (2) 0.21833 (7) 0.0226 (3)
H8A 0.6212 0.6164 0.2494 0.027*
H8B 0.4036 0.8088 0.2343 0.027*
C9 0.3876 (3) 0.5393 (2) 0.20916 (7) 0.0221 (3)
H9A 0.4929 0.4109 0.1935 0.027*
H9B 0.2755 0.6034 0.1780 0.027*
C10 0.2757 (3) 0.4903 (2) 0.26735 (7) 0.0218 (3)
H10A 0.1689 0.6182 0.2829 0.026*
H10B 0.3871 0.4267 0.2987 0.026*
C11 0.1569 (3) 0.3471 (2) 0.25700 (7) 0.0218 (3)
H11A 0.2634 0.2199 0.2410 0.026*
H11B 0.0444 0.4114 0.2260 0.026*
C12 0.0468 (3) 0.2959 (2) 0.31527 (7) 0.0210 (3)
H12A −0.0591 0.4217 0.3323 0.025*
H12B 0.1579 0.2249 0.3461 0.025*
C13 −0.1976 (2) 0.0663 (2) 0.36428 (7) 0.0183 (3)
C14 −0.4285 (2) −0.1630 (2) 0.42127 (7) 0.0183 (3)
H14 −0.5124 −0.0434 0.4456 0.022*
C15 −0.2289 (2) −0.3009 (2) 0.45571 (7) 0.0174 (3)
C16 −0.5746 (3) −0.2836 (3) 0.41072 (8) 0.0262 (4)
H16A −0.4925 −0.3999 0.3865 0.039*
H16B −0.7051 −0.1953 0.3889 0.039*
H16C −0.6195 −0.3323 0.4501 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0348 (2) 0.0340 (2) 0.0210 (2) −0.0251 (2) 0.00321 (17) −0.00228 (16)
S2 0.0230 (2) 0.0240 (2) 0.02111 (19) −0.01424 (17) −0.00368 (15) 0.00279 (15)
S3 0.0282 (2) 0.0258 (2) 0.0219 (2) −0.01563 (17) 0.00128 (16) −0.00304 (15)
O1 0.0193 (6) 0.0284 (6) 0.0204 (5) −0.0024 (5) 0.0014 (4) 0.0034 (5)
O2 0.0189 (6) 0.0198 (5) 0.0231 (5) −0.0038 (5) 0.0022 (4) −0.0004 (4)
C1 0.0373 (11) 0.0417 (11) 0.0447 (11) −0.0248 (9) 0.0076 (9) 0.0050 (9)
C2 0.0302 (9) 0.0303 (9) 0.0310 (9) −0.0182 (8) 0.0051 (7) −0.0013 (7)
C3 0.0268 (9) 0.0269 (8) 0.0253 (8) −0.0152 (7) 0.0034 (7) 0.0000 (7)
C4 0.0260 (8) 0.0225 (8) 0.0266 (8) −0.0134 (7) 0.0046 (7) −0.0021 (6)
C5 0.0249 (8) 0.0253 (8) 0.0246 (8) −0.0147 (7) 0.0012 (6) 0.0013 (6)
C6 0.0230 (8) 0.0231 (8) 0.0253 (8) −0.0129 (7) 0.0016 (6) 0.0003 (6)
C7 0.0226 (8) 0.0242 (8) 0.0261 (8) −0.0136 (7) 0.0015 (6) −0.0010 (6)
C8 0.0220 (8) 0.0241 (8) 0.0253 (8) −0.0132 (7) 0.0006 (6) 0.0005 (6)
C9 0.0220 (8) 0.0227 (8) 0.0254 (8) −0.0131 (7) 0.0020 (6) −0.0006 (6)
C10 0.0216 (8) 0.0229 (8) 0.0240 (8) −0.0122 (7) 0.0007 (6) −0.0010 (6)
C11 0.0236 (8) 0.0215 (8) 0.0236 (8) −0.0125 (7) 0.0035 (6) −0.0017 (6)
C12 0.0217 (8) 0.0238 (8) 0.0222 (7) −0.0142 (7) 0.0028 (6) −0.0020 (6)
C13 0.0144 (7) 0.0151 (7) 0.0241 (7) −0.0042 (6) 0.0001 (6) 0.0010 (6)
C14 0.0153 (7) 0.0178 (7) 0.0218 (7) −0.0065 (6) −0.0004 (6) 0.0006 (6)
C15 0.0167 (7) 0.0150 (7) 0.0233 (7) −0.0092 (6) −0.0003 (6) −0.0005 (6)
C16 0.0216 (8) 0.0287 (9) 0.0327 (9) −0.0147 (7) −0.0010 (7) 0.0007 (7)

Geometric parameters (Å, °)

S1—C13 1.7388 (15) C6—H6A 0.9900
S1—C12 1.8073 (15) C6—H6B 0.9900
S2—C13 1.7565 (15) C7—C8 1.525 (2)
S2—C14 1.8047 (15) C7—H7A 0.9900
S3—C13 1.6316 (16) C7—H7B 0.9900
O1—C15 1.3126 (18) C8—C9 1.523 (2)
O1—H1 0.8400 C8—H8A 0.9900
O2—C15 1.2189 (18) C8—H8B 0.9900
C1—C2 1.523 (2) C9—C10 1.524 (2)
C1—H1A 0.9800 C9—H9A 0.9900
C1—H1B 0.9800 C9—H9B 0.9900
C1—H1C 0.9800 C10—C11 1.525 (2)
C2—C3 1.523 (2) C10—H10A 0.9900
C2—H2A 0.9900 C10—H10B 0.9900
C2—H2B 0.9900 C11—C12 1.525 (2)
C3—C4 1.524 (2) C11—H11A 0.9900
C3—H3A 0.9900 C11—H11B 0.9900
C3—H3B 0.9900 C12—H12A 0.9900
C4—C5 1.525 (2) C12—H12B 0.9900
C4—H4A 0.9900 C14—C15 1.516 (2)
C4—H4B 0.9900 C14—C16 1.537 (2)
C5—C6 1.528 (2) C14—H14 1.0000
C5—H5A 0.9900 C16—H16A 0.9800
C5—H5B 0.9900 C16—H16B 0.9800
C6—C7 1.525 (2) C16—H16C 0.9800
C13—S1—C12 104.56 (7) C7—C8—H8A 108.8
C13—S2—C14 103.56 (7) C9—C8—H8B 108.8
C15—O1—H1 109.5 C7—C8—H8B 108.8
C2—C1—H1A 109.5 H8A—C8—H8B 107.7
C2—C1—H1B 109.5 C8—C9—C10 113.18 (13)
H1A—C1—H1B 109.5 C8—C9—H9A 108.9
C2—C1—H1C 109.5 C10—C9—H9A 108.9
H1A—C1—H1C 109.5 C8—C9—H9B 108.9
H1B—C1—H1C 109.5 C10—C9—H9B 108.9
C3—C2—C1 114.08 (15) H9A—C9—H9B 107.8
C3—C2—H2A 108.7 C9—C10—C11 112.08 (13)
C1—C2—H2A 108.7 C9—C10—H10A 109.2
C3—C2—H2B 108.7 C11—C10—H10A 109.2
C1—C2—H2B 108.7 C9—C10—H10B 109.2
H2A—C2—H2B 107.6 C11—C10—H10B 109.2
C2—C3—C4 112.89 (14) H10A—C10—H10B 107.9
C2—C3—H3A 109.0 C10—C11—C12 112.22 (13)
C4—C3—H3A 109.0 C10—C11—H11A 109.2
C2—C3—H3B 109.0 C12—C11—H11A 109.2
C4—C3—H3B 109.0 C10—C11—H11B 109.2
H3A—C3—H3B 107.8 C12—C11—H11B 109.2
C3—C4—C5 114.28 (13) H11A—C11—H11B 107.9
C3—C4—H4A 108.7 C11—C12—S1 107.01 (10)
C5—C4—H4A 108.7 C11—C12—H12A 110.3
C3—C4—H4B 108.7 S1—C12—H12A 110.3
C5—C4—H4B 108.7 C11—C12—H12B 110.3
H4A—C4—H4B 107.6 S1—C12—H12B 110.3
C4—C5—C6 112.82 (13) H12A—C12—H12B 108.6
C4—C5—H5A 109.0 S3—C13—S1 127.02 (9)
C6—C5—H5A 109.0 S3—C13—S2 126.17 (9)
C4—C5—H5B 109.0 S1—C13—S2 106.81 (8)
C6—C5—H5B 109.0 C15—C14—C16 108.83 (12)
H5A—C5—H5B 107.8 C15—C14—S2 112.00 (10)
C7—C6—C5 114.09 (13) C16—C14—S2 107.08 (11)
C7—C6—H6A 108.7 C15—C14—H14 109.6
C5—C6—H6A 108.7 C16—C14—H14 109.6
C7—C6—H6B 108.7 S2—C14—H14 109.6
C5—C6—H6B 108.7 O2—C15—O1 124.51 (14)
H6A—C6—H6B 107.6 O2—C15—C14 123.51 (14)
C8—C7—C6 113.13 (13) O1—C15—C14 111.83 (12)
C8—C7—H7A 109.0 C14—C16—H16A 109.5
C6—C7—H7A 109.0 C14—C16—H16B 109.5
C8—C7—H7B 109.0 H16A—C16—H16B 109.5
C6—C7—H7B 109.0 C14—C16—H16C 109.5
H7A—C7—H7B 107.8 H16A—C16—H16C 109.5
C9—C8—C7 113.71 (13) H16B—C16—H16C 109.5
C9—C8—H8A 108.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.79 2.6292 (15) 175

Symmetry codes: (i) −x, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5117).

References

  1. Alb, A. M., Drenski, M. F. & Reed, W. F. (2009). J. Appl. Polym. Sci. 113, 190–198.
  2. Alb, A. M., Serelis, A. K. & Reed, W. F. (2008). Macromolecules, 41, 332–338.
  3. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Konkolewicz, D., Siauw, M., Gray-Weale, A., Hawkett, B. S. & Perrier, S. (2009). J. Phys. Chem. B, 113, 7086–7094. [DOI] [PubMed]
  5. Moad, G., Rizzardo, E. & Thang, S. H. (2005). Aust. J. Chem. 58, 379–410.
  6. Moad, G., Rizzardo, E. & Thang, S. H. (2008). Polymer, 49, 1079–1131.
  7. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xiao, S. & Charpentier, P. A. (2010). Acta Cryst. E66, o3103. [DOI] [PMC free article] [PubMed]
  10. Xiao, S. & Charpentier, P. A. (2011). Acta Cryst. E67, o575. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007963/ng5117sup1.cif

e-67-0o811-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007963/ng5117Isup2.hkl

e-67-0o811-Isup2.hkl (221.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES