Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):m406–m407. doi: 10.1107/S1600536811007446

Poly[[dodeca­aqua­hexa­kis­(μ2-pyridine-2,5-dicarboxyl­ato)tricopper(II)diytterbium(III)] dihydrate]

Fwu Ming Shen a, Shie Fu Lush b,*
PMCID: PMC3099879  PMID: 21753939

Abstract

The asymmetric unit of the title heterometallic coordination polymer, {[Cu3Yb2(C7H3NO4)6(H2O)12]·2H2O}n, contains one YbIII and two CuII atoms. The CuII atom that is located on an inversion center is N,O-chelated by two pyridine-2,5-dicarboxyl­ate (pdc) anions in a square-planar geometry; the Cu atom located on a general position is N,O-chelated by two pdc anions in the basal plane and is further coordinated by a water O atom at the apical position in a distorted square-pyramidal geometry. The Yb(III) atom is eight coordinated in a distorted square-anti­prismatic geometry formed by three carboxyl­ate O atoms from three pdc anions and five water mol­ecules. The pdc anions bridge adjacent Yb(III) and Cu(III) atoms, forming a three-dimensional polymeric structure. The crystal structure contains extensive O—H⋯O hydrogen bonds. π–π stacking is present in the crystal structure, the shortest centroid–centroid distance between parallel pyridine rings of adjacent mol­ecules being 3.646 (3) Å.

Related literature

For general background to the use of pdc as a ligand in rare earth transition metal complexes, see: Huang et al. (2008). For related structures, see: Wei et al. (2005); Wen et al. (2007).graphic file with name e-67-0m406-scheme1.jpg

Experimental

Crystal data

  • [Cu3Yb2(C7H3NO4)6(H2O)12]·2H2O

  • M r = 1815.58

  • Triclinic, Inline graphic

  • a = 7.3486 (4) Å

  • b = 13.5417 (7) Å

  • c = 15.1244 (8) Å

  • α = 72.534 (1)°

  • β = 76.330 (1)°

  • γ = 80.166 (1)°

  • V = 1386.89 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.59 mm−1

  • T = 295 K

  • 0.13 × 0.08 × 0.05 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.739, T max = 0.973

  • 14910 measured reflections

  • 6624 independent reflections

  • 6010 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.083

  • S = 1.23

  • 6624 reflections

  • 421 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.68 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007446/xu5166sup1.cif

e-67-0m406-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007446/xu5166Isup2.hkl

e-67-0m406-Isup2.hkl (324.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Yb1—O2 2.299 (5)
Yb1—O3 2.272 (4)
Yb1—O4 2.411 (4)
Yb1—O5 2.278 (4)
Yb1—O6 2.364 (4)
Yb1—O7 2.447 (3)
Yb1—O13 2.364 (4)
Yb1—O15 2.281 (4)
Cu1—N1 1.975 (4)
Cu1—N2i 1.955 (4)
Cu1—O1 2.372 (4)
Cu1—O8 1.964 (3)
Cu1—O11i 1.943 (3)
Cu2—N3 1.967 (4)
Cu2—O17 1.931 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O17ii 0.82 2.50 3.072 (5) 128
O1—H1A⋯O18ii 0.82 2.06 2.865 (6) 166
O1—H1B⋯O9iii 0.82 2.02 2.840 (6) 173
O2—H2A⋯O10iv 0.82 2.48 2.988 (7) 121
O2—H2B⋯O19 0.82 1.83 2.644 (8) 173
O3—H3A⋯O16 0.82 1.91 2.572 (6) 137
O3—H3B⋯O10iii 0.82 1.91 2.695 (6) 159
O4—H4A⋯O9iii 0.82 1.87 2.670 (6) 165
O4—H4B⋯O14v 0.82 1.98 2.774 (6) 163
O5—H5A⋯O14 0.82 1.85 2.586 (6) 148
O5—H5B⋯O8 0.82 2.06 2.717 (6) 137
O6—H6A⋯O1vi 0.82 2.09 2.826 (6) 149
O6—H6B⋯O4vi 0.82 2.15 2.936 (6) 160
O19—H19A⋯O20vii 0.82 2.06 2.816 (8) 152
O19—H19B⋯O12viii 0.82 2.15 2.965 (7) 171
O20—H20A⋯O13v 0.82 2.55 3.174 (7) 134
O20—H20B⋯O16 0.82 2.15 2.957 (9) 166

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This work was supported financially by Yuanpei University, Taiwan.

supplementary crystallographic information

Comment

Many studies concering the use of pdc as a ligand toward transition metal (Wen et al., 2007) and /or rare earth transition metal (Wei et al., 2005; Huang et al., 2008) have shown that a great variety of polymeric structures can be obtained as a result of the differnet coordination modes of the pdc ligands.

The asymmetric unit of the title heterometallic coordination polymer, [Cu3Yb2(C7H3NO4)6(H2O)12.4H2O]n,contains one YbIII and two CuII atoms, three pyridine-2,5-dicarboxylate (pdc) anions and six water molecules. One CuII atom is located on an located on an inversion center and is N,O-chelated by two pdc anions in the equatorial plane with square-planar geometry; the other Cu atom is N,O-chelated by two pdc anions in the coordination basal plane and coordinated by a carboxyl O atom at the apical position with a distorted square-pyramidal geometry [Cu—O = 2.374 (4) Å in the apical direction]. The Yb atom is eight coordinated with a distorted square-antiprismatic geometry formed by three carboxylate O atoms from three pdc anions and five water molecules (selected bond lengths are given in Table 1). The pdy anions bridge adjacent Yb and Cu atoms to form the three dimensional polymeric structure (Fig. 1).

The crystal structure contains the extensive O—H···O and weak C—H···O hydrogen bonds (Fig. 2 and Table 2). π-π stackings are present in the crystal structure, the shortest centroids distance between parallel pyridine rings is 3.646 (3) Å [Cg6iiv···Cg6 (N1/C1—C5)] [symmetry code: (iiv) -x, 2 - y, -z].

Experimental

A mixture of ytterbium chloride hexahydrate (0.2438 g, 0.25 mmol), copper acetate hydrate (0.050 g, 0.25 mmol), pyridine-2,5-dicarboxylic acid (0.0418 g, 0.25 mmol,) and 10 ml H2O were put in a 23-ml Teflon liner reactor and heated at 418 K in oven for 48 h. The resulting solution was slowly cooled to room temperature. The blue transparent single crystals of the title complex were obtained in 34.26% yield (based on Yb).

Refinement

Water H atoms were placed in calculated positions and refined with the distances constrains of O—H = 0.82, and Uiso(H)= 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity.[Symmetry codes: (i) 2 - x, 1 - y, -z; (ii)1 - x, -y, 1 - z].

Fig. 2.

Fig. 2.

The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu3Yb2(C7H3NO4)6(H2O)12]·2H2O Z = 1
Mr = 1815.58 F(000) = 891
Triclinic, P1 Dx = 2.174 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3486 (4) Å Cell parameters from 7576 reflections
b = 13.5417 (7) Å θ = 2.5–25.0°
c = 15.1244 (8) Å µ = 4.59 mm1
α = 72.534 (1)° T = 295 K
β = 76.330 (1)° Columnar, blue
γ = 80.166 (1)° 0.13 × 0.08 × 0.05 mm
V = 1386.89 (13) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 6624 independent reflections
Radiation source: fine-focus sealed tube 6010 reflections with I > 2σ(I)
graphite Rint = 0.044
Detector resolution: 9 pixels mm-1 θmax = 28.3°, θmin = 1.4°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −18→18
Tmin = 0.739, Tmax = 0.973 l = −20→20
14910 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.019P)2 + 3.1503P] where P = (Fo2 + 2Fc2)/3
6624 reflections (Δ/σ)max = 0.001
421 parameters Δρmax = 1.01 e Å3
0 restraints Δρmin = −1.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Yb1 0.46140 (3) 0.553608 (18) 0.188850 (15) 0.01980 (7)
Cu1 0.55405 (9) 0.88959 (5) −0.15334 (4) 0.02228 (15)
Cu2 0.5000 0.0000 0.5000 0.0251 (2)
O1 0.3238 (6) 0.7999 (3) −0.1743 (3) 0.0346 (10)
H1A 0.2626 0.8487 −0.2052 0.052*
H1B 0.2574 0.7825 −0.1215 0.052*
O2 0.5782 (7) 0.6367 (4) 0.2722 (3) 0.0489 (12)
H2A 0.6913 0.6273 0.2718 0.073*
H2B 0.5274 0.6672 0.3126 0.073*
O3 0.1694 (6) 0.6205 (3) 0.2490 (3) 0.0416 (12)
H3A 0.1014 0.6001 0.3008 0.062*
H3B 0.1087 0.6689 0.2174 0.062*
O4 0.2936 (5) 0.5798 (3) 0.0631 (3) 0.0280 (9)
H4A 0.2306 0.6367 0.0528 0.042*
H4B 0.2172 0.5369 0.0803 0.042*
O5 0.6992 (5) 0.5902 (3) 0.0603 (3) 0.0322 (10)
H5A 0.8033 0.5564 0.0583 0.048*
H5B 0.7171 0.6486 0.0256 0.048*
O6 0.4981 (6) 0.4061 (3) 0.1308 (3) 0.0329 (9)
H6A 0.5319 0.3489 0.1639 0.049*
H6B 0.5320 0.4054 0.0754 0.049*
O7 0.4094 (5) 0.7414 (3) 0.1179 (2) 0.0276 (9)
O8 0.5572 (5) 0.7817 (3) −0.0331 (2) 0.0249 (8)
O9 −0.0731 (6) 1.2456 (3) −0.0036 (3) 0.0334 (10)
O10 0.0874 (6) 1.2581 (3) −0.1509 (3) 0.0387 (11)
O15 0.3506 (6) 0.4262 (3) 0.3191 (3) 0.0395 (11)
O16 0.0621 (7) 0.4704 (4) 0.3939 (3) 0.0575 (15)
O19 0.3979 (9) 0.7458 (4) 0.3914 (4) 0.0710 (18)
H19A 0.3762 0.7083 0.4458 0.107*
H19B 0.3669 0.8059 0.3945 0.107*
O20 −0.3399 (9) 0.4351 (5) 0.4577 (4) 0.085 (2)
H20A −0.3755 0.4648 0.4079 0.128*
H20B −0.2285 0.4429 0.4499 0.128*
N1 0.3689 (6) 0.9653 (3) −0.0721 (3) 0.0181 (9)
N3 0.3478 (6) 0.1321 (3) 0.5096 (3) 0.0227 (9)
C1 0.2791 (7) 1.0610 (4) −0.0974 (4) 0.0222 (11)
H1C 0.2999 1.0985 −0.1608 0.027*
C2 0.1559 (7) 1.1059 (4) −0.0317 (4) 0.0197 (10)
C3 0.1278 (7) 1.0499 (4) 0.0627 (4) 0.0233 (11)
H3C 0.0490 1.0791 0.1083 0.028*
C4 0.2181 (7) 0.9499 (4) 0.0887 (3) 0.0218 (11)
H4C 0.1987 0.9106 0.1515 0.026*
C5 0.3377 (7) 0.9099 (4) 0.0192 (3) 0.0177 (10)
C6 0.4413 (7) 0.8016 (4) 0.0383 (3) 0.0186 (10)
C7 0.0495 (7) 1.2123 (4) −0.0651 (4) 0.0249 (12)
C15 0.3497 (8) 0.2265 (4) 0.4463 (4) 0.0238 (11)
H15A 0.4393 0.2362 0.3904 0.029*
C16 0.2210 (8) 0.3089 (4) 0.4630 (4) 0.0272 (12)
C17 0.0938 (9) 0.2969 (5) 0.5474 (4) 0.0359 (15)
H17A 0.0073 0.3523 0.5596 0.043*
C18 0.0968 (9) 0.2009 (5) 0.6140 (4) 0.0349 (14)
H18A 0.0148 0.1912 0.6723 0.042*
C19 0.2225 (8) 0.1209 (4) 0.5924 (4) 0.0256 (12)
C20 0.2115 (8) 0.4112 (4) 0.3869 (4) 0.0306 (13)
C21 0.2323 (8) 0.0112 (4) 0.6572 (4) 0.0254 (12)
O17 0.3522 (6) −0.0560 (3) 0.6238 (2) 0.0290 (9)
O18 0.1287 (6) −0.0081 (3) 0.7352 (3) 0.0364 (10)
O13 0.7259 (5) 0.4452 (3) 0.2402 (3) 0.0305 (9)
C14 0.8891 (8) 0.4189 (4) 0.2009 (4) 0.0257 (12)
O14 0.9801 (6) 0.4704 (3) 0.1242 (3) 0.0385 (11)
C9 0.9846 (7) 0.3138 (4) 0.2468 (4) 0.0226 (11)
C8 1.1424 (8) 0.2750 (4) 0.1928 (4) 0.0255 (12)
H8A 1.1890 0.3162 0.1329 0.031*
C10 0.9196 (8) 0.2533 (5) 0.3365 (4) 0.0281 (12)
H10A 0.8130 0.2777 0.3744 0.034*
N2 1.2312 (6) 0.1808 (3) 0.2233 (3) 0.0234 (10)
C11 1.0135 (8) 0.1559 (4) 0.3702 (4) 0.0259 (12)
H11A 0.9733 0.1152 0.4312 0.031*
C12 1.1666 (7) 0.1212 (4) 0.3115 (3) 0.0212 (11)
C13 1.2777 (8) 0.0148 (4) 0.3346 (4) 0.0255 (12)
O11 1.4056 (5) −0.0058 (3) 0.2658 (2) 0.0277 (9)
O12 1.2456 (6) −0.0441 (3) 0.4144 (3) 0.0398 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Yb1 0.01978 (12) 0.01595 (11) 0.01753 (11) 0.00351 (8) −0.00040 (8) −0.00100 (8)
Cu1 0.0237 (3) 0.0165 (3) 0.0195 (3) 0.0044 (3) 0.0007 (2) −0.0018 (2)
Cu2 0.0298 (5) 0.0168 (4) 0.0217 (4) 0.0030 (4) −0.0021 (4) −0.0002 (4)
O1 0.038 (2) 0.026 (2) 0.038 (2) 0.0019 (18) −0.0167 (19) −0.0017 (18)
O2 0.046 (3) 0.059 (3) 0.051 (3) 0.016 (2) −0.021 (2) −0.033 (2)
O3 0.033 (2) 0.033 (2) 0.033 (2) 0.0115 (19) 0.0083 (18) 0.0084 (18)
O4 0.029 (2) 0.0157 (18) 0.037 (2) 0.0018 (16) −0.0095 (17) −0.0048 (16)
O5 0.026 (2) 0.024 (2) 0.031 (2) 0.0091 (17) 0.0019 (16) 0.0034 (17)
O6 0.044 (3) 0.020 (2) 0.031 (2) 0.0068 (18) −0.0084 (18) −0.0072 (17)
O7 0.033 (2) 0.0200 (19) 0.0212 (18) 0.0013 (16) −0.0008 (16) 0.0003 (15)
O8 0.028 (2) 0.0149 (18) 0.0239 (18) 0.0081 (15) −0.0009 (15) −0.0035 (15)
O9 0.035 (2) 0.023 (2) 0.035 (2) 0.0063 (18) −0.0026 (18) −0.0064 (17)
O10 0.039 (3) 0.029 (2) 0.033 (2) 0.0116 (19) −0.0024 (19) 0.0016 (18)
O15 0.033 (2) 0.024 (2) 0.037 (2) 0.0072 (18) 0.0082 (19) 0.0093 (18)
O16 0.048 (3) 0.035 (3) 0.053 (3) 0.018 (2) 0.016 (2) 0.011 (2)
O19 0.100 (5) 0.042 (3) 0.059 (3) 0.010 (3) 0.002 (3) −0.021 (3)
O20 0.080 (5) 0.083 (5) 0.069 (4) 0.009 (4) −0.001 (3) −0.005 (3)
N1 0.017 (2) 0.014 (2) 0.022 (2) 0.0012 (17) −0.0024 (16) −0.0055 (16)
N3 0.024 (2) 0.020 (2) 0.022 (2) 0.0002 (19) −0.0041 (18) −0.0038 (18)
C1 0.023 (3) 0.019 (3) 0.020 (2) −0.001 (2) −0.004 (2) 0.000 (2)
C2 0.015 (2) 0.017 (2) 0.029 (3) 0.000 (2) −0.008 (2) −0.007 (2)
C3 0.018 (3) 0.026 (3) 0.027 (3) 0.001 (2) −0.002 (2) −0.012 (2)
C4 0.021 (3) 0.025 (3) 0.018 (2) −0.003 (2) −0.002 (2) −0.005 (2)
C5 0.016 (2) 0.016 (2) 0.021 (2) −0.0014 (19) −0.0055 (19) −0.0034 (19)
C6 0.018 (3) 0.016 (2) 0.023 (2) −0.001 (2) −0.009 (2) −0.0022 (19)
C7 0.020 (3) 0.021 (3) 0.033 (3) −0.004 (2) −0.006 (2) −0.004 (2)
C15 0.026 (3) 0.022 (3) 0.018 (2) −0.002 (2) −0.002 (2) 0.001 (2)
C16 0.034 (3) 0.017 (3) 0.024 (3) −0.003 (2) 0.000 (2) −0.002 (2)
C17 0.042 (4) 0.023 (3) 0.030 (3) 0.008 (3) 0.004 (3) −0.005 (2)
C18 0.039 (4) 0.030 (3) 0.023 (3) 0.001 (3) 0.009 (2) −0.002 (2)
C19 0.032 (3) 0.021 (3) 0.018 (2) −0.002 (2) −0.001 (2) −0.001 (2)
C20 0.031 (3) 0.021 (3) 0.029 (3) 0.004 (2) 0.001 (2) 0.001 (2)
C21 0.031 (3) 0.020 (3) 0.022 (3) −0.003 (2) −0.006 (2) 0.000 (2)
O17 0.037 (2) 0.0181 (19) 0.0229 (19) 0.0017 (17) −0.0011 (16) 0.0010 (15)
O18 0.045 (3) 0.029 (2) 0.023 (2) −0.0034 (19) 0.0053 (18) 0.0012 (17)
O13 0.022 (2) 0.034 (2) 0.027 (2) 0.0098 (17) −0.0028 (16) −0.0050 (17)
C14 0.026 (3) 0.022 (3) 0.029 (3) 0.003 (2) −0.005 (2) −0.009 (2)
O14 0.025 (2) 0.030 (2) 0.039 (2) 0.0053 (18) 0.0023 (18) 0.0106 (18)
C9 0.020 (3) 0.019 (3) 0.030 (3) 0.000 (2) −0.006 (2) −0.008 (2)
C8 0.024 (3) 0.024 (3) 0.021 (3) 0.000 (2) 0.002 (2) −0.002 (2)
C10 0.022 (3) 0.035 (3) 0.024 (3) 0.004 (2) 0.001 (2) −0.011 (2)
N2 0.023 (2) 0.019 (2) 0.023 (2) 0.0028 (18) −0.0005 (18) −0.0028 (18)
C11 0.026 (3) 0.028 (3) 0.021 (3) −0.003 (2) −0.002 (2) −0.006 (2)
C12 0.024 (3) 0.021 (3) 0.017 (2) −0.001 (2) −0.004 (2) −0.001 (2)
C13 0.027 (3) 0.020 (3) 0.025 (3) 0.002 (2) −0.006 (2) −0.002 (2)
O11 0.031 (2) 0.0202 (19) 0.0208 (18) 0.0051 (16) 0.0036 (16) −0.0004 (15)
O12 0.044 (3) 0.035 (2) 0.023 (2) 0.007 (2) 0.0023 (18) 0.0049 (18)

Geometric parameters (Å, °)

Yb1—O2 2.299 (5) N1—C5 1.345 (6)
Yb1—O3 2.272 (4) N3—C15 1.347 (6)
Yb1—O4 2.411 (4) N3—C19 1.351 (7)
Yb1—O5 2.278 (4) C1—C2 1.388 (7)
Yb1—O6 2.364 (4) C1—H1C 0.9300
Yb1—O7 2.447 (3) C2—C3 1.386 (7)
Yb1—O13 2.364 (4) C2—C7 1.518 (7)
Yb1—O15 2.281 (4) C3—C4 1.388 (7)
Cu1—N1 1.975 (4) C3—H3C 0.9300
Cu1—N2i 1.955 (4) C4—C5 1.384 (7)
Cu1—O1 2.372 (4) C4—H4C 0.9300
Cu1—O8 1.964 (3) C5—C6 1.510 (7)
Cu1—O11i 1.943 (3) C15—C16 1.379 (7)
Cu2—N3ii 1.967 (4) C15—H15A 0.9300
Cu2—N3 1.967 (4) C16—C17 1.376 (7)
Cu2—O17 1.931 (4) C16—C20 1.515 (7)
Cu2—O17ii 1.931 (4) C17—C18 1.386 (8)
O1—H1A 0.8187 C17—H17A 0.9300
O1—H1B 0.8198 C18—C19 1.365 (8)
O2—H2A 0.8178 C18—H18A 0.9300
O2—H2B 0.8205 C19—C21 1.516 (7)
O3—H3A 0.8205 C21—O18 1.224 (6)
O3—H3B 0.8178 C21—O17 1.285 (6)
O4—H4A 0.8202 O13—C14 1.250 (6)
O4—H4B 0.8200 C14—O14 1.259 (6)
O5—H5A 0.8202 C14—C9 1.516 (7)
O5—H5B 0.8202 C9—C8 1.374 (7)
O6—H6A 0.8201 C9—C10 1.378 (7)
O6—H6B 0.8196 C8—N2 1.331 (7)
O7—C6 1.230 (6) C8—H8A 0.9300
O8—C6 1.275 (6) C10—C11 1.388 (8)
O9—C7 1.264 (6) C10—H10A 0.9300
O10—C7 1.245 (6) N2—C12 1.356 (6)
O15—C20 1.260 (6) N2—Cu1i 1.955 (4)
O16—C20 1.247 (7) C11—C12 1.369 (7)
O19—H19A 0.8211 C11—H11A 0.9300
O19—H19B 0.8196 C12—C13 1.514 (7)
O20—H20A 0.8200 C13—O12 1.225 (6)
O20—H20B 0.8196 C13—O11 1.291 (6)
N1—C1 1.338 (6) O11—Cu1i 1.943 (3)
O3—Yb1—O5 140.82 (13) C15—N3—Cu2 129.5 (4)
O3—Yb1—O15 74.65 (14) C19—N3—Cu2 111.9 (3)
O5—Yb1—O15 143.99 (14) N1—C1—C2 121.8 (5)
O3—Yb1—O2 87.37 (17) N1—C1—H1C 119.1
O5—Yb1—O2 93.59 (17) C2—C1—H1C 119.1
O15—Yb1—O2 94.33 (18) C3—C2—C1 118.6 (5)
O3—Yb1—O6 120.10 (16) C3—C2—C7 121.8 (5)
O5—Yb1—O6 77.53 (15) C1—C2—C7 119.6 (4)
O15—Yb1—O6 76.43 (15) C2—C3—C4 119.6 (5)
O2—Yb1—O6 146.13 (15) C2—C3—H3C 120.2
O3—Yb1—O13 140.12 (13) C4—C3—H3C 120.2
O5—Yb1—O13 76.19 (13) C5—C4—C3 118.6 (5)
O15—Yb1—O13 72.76 (14) C5—C4—H4C 120.7
O2—Yb1—O13 72.90 (15) C3—C4—H4C 120.7
O6—Yb1—O13 73.24 (14) N1—C5—C4 121.8 (4)
O3—Yb1—O4 77.38 (15) N1—C5—C6 114.6 (4)
O5—Yb1—O4 79.41 (14) C4—C5—C6 123.5 (4)
O15—Yb1—O4 111.93 (15) O7—C6—O8 125.8 (5)
O2—Yb1—O4 144.31 (15) O7—C6—C5 119.7 (5)
O6—Yb1—O4 66.81 (13) O8—C6—C5 114.5 (4)
O13—Yb1—O4 136.66 (13) O10—C7—O9 125.6 (5)
O3—Yb1—O7 68.67 (13) O10—C7—C2 117.4 (5)
O5—Yb1—O7 74.46 (13) O9—C7—C2 117.0 (5)
O15—Yb1—O7 141.10 (13) N3—C15—C16 121.1 (5)
O2—Yb1—O7 71.91 (15) N3—C15—H15A 119.5
O6—Yb1—O7 133.87 (13) C16—C15—H15A 119.5
O13—Yb1—O7 131.94 (14) C17—C16—C15 120.0 (5)
O4—Yb1—O7 72.50 (13) C17—C16—C20 119.6 (5)
O11i—Cu1—N2i 83.59 (16) C15—C16—C20 120.4 (5)
O11i—Cu1—O8 168.02 (17) C16—C17—C18 118.8 (5)
N2i—Cu1—O8 94.15 (16) C16—C17—H17A 120.6
O11i—Cu1—N1 97.55 (16) C18—C17—H17A 120.6
N2i—Cu1—N1 170.26 (18) C19—C18—C17 118.7 (5)
O8—Cu1—N1 82.73 (15) C19—C18—H18A 120.6
O11i—Cu1—O1 105.91 (15) C17—C18—H18A 120.6
N2i—Cu1—O1 95.56 (17) N3—C19—C18 122.7 (5)
O8—Cu1—O1 86.00 (15) N3—C19—C21 113.7 (5)
N1—Cu1—O1 93.43 (16) C18—C19—C21 123.6 (5)
O17—Cu2—O17ii 180.0 O16—C20—O15 125.6 (5)
O17—Cu2—N3ii 95.81 (16) O16—C20—C16 117.0 (5)
O17ii—Cu2—N3ii 84.19 (16) O15—C20—C16 117.2 (5)
O17—Cu2—N3 84.19 (16) O18—C21—O17 124.7 (5)
O17ii—Cu2—N3 95.81 (16) O18—C21—C19 119.8 (5)
N3ii—Cu2—N3 180.0 (3) O17—C21—C19 115.5 (4)
Cu1—O1—H1A 100.1 C21—O17—Cu2 114.7 (3)
Cu1—O1—H1B 104.2 C14—O13—Yb1 135.2 (3)
H1A—O1—H1B 106.2 O13—C14—O14 125.9 (5)
Yb1—O2—H2A 118.6 O13—C14—C9 117.7 (5)
Yb1—O2—H2B 132.6 O14—C14—C9 116.4 (5)
H2A—O2—H2B 107.7 C8—C9—C10 118.3 (5)
Yb1—O3—H3A 129.8 C8—C9—C14 117.0 (5)
Yb1—O3—H3B 122.7 C10—C9—C14 124.6 (5)
H3A—O3—H3B 107.3 N2—C8—C9 122.4 (5)
Yb1—O4—H4A 112.3 N2—C8—H8A 118.8
Yb1—O4—H4B 108.2 C9—C8—H8A 118.8
H4A—O4—H4B 105.2 C9—C10—C11 119.9 (5)
Yb1—O5—H5A 122.2 C9—C10—H10A 120.0
Yb1—O5—H5B 125.1 C11—C10—H10A 120.0
H5A—O5—H5B 105.8 C8—N2—C12 119.2 (4)
Yb1—O6—H6A 119.0 C8—N2—Cu1i 127.6 (4)
Yb1—O6—H6B 126.0 C12—N2—Cu1i 113.1 (3)
H6A—O6—H6B 108.2 C12—C11—C10 118.5 (5)
C6—O7—Yb1 136.8 (3) C12—C11—H11A 120.8
C6—O8—Cu1 115.5 (3) C10—C11—H11A 120.8
C20—O15—Yb1 140.2 (4) N2—C12—C11 121.6 (5)
H19A—O19—H19B 106.7 N2—C12—C13 113.0 (4)
H20A—O20—H20B 108.0 C11—C12—C13 125.3 (5)
C1—N1—C5 119.6 (4) O12—C13—O11 124.6 (5)
C1—N1—Cu1 128.1 (3) O12—C13—C12 120.2 (5)
C5—N1—Cu1 112.3 (3) O11—C13—C12 115.2 (4)
C15—N3—C19 118.6 (5) C13—O11—Cu1i 114.7 (3)
O2—Yb1—O7—C6 128.6 (5) C5—N1—C1—C2 1.0 (8)
O3—Yb1—O7—C6 −137.1 (5) Cu1—N1—C5—C4 177.6 (4)
O4—Yb1—O7—C6 −54.1 (5) Cu1—N1—C5—C6 −3.1 (6)
O5—Yb1—O7—C6 29.4 (5) C1—N1—C5—C4 −1.5 (8)
O6—Yb1—O7—C6 −25.3 (6) C1—N1—C5—C6 177.7 (5)
O13—Yb1—O7—C6 83.7 (5) C12—N2—C8—C9 −1.3 (8)
O15—Yb1—O7—C6 −157.6 (5) Cu1i—N2—C8—C9 175.7 (4)
O2—Yb1—O13—C14 −109.4 (5) C8—N2—C12—C11 −0.6 (8)
O3—Yb1—O13—C14 −173.1 (5) C8—N2—C12—C13 177.9 (5)
O4—Yb1—O13—C14 46.4 (6) Cu1i—N2—C12—C11 −178.0 (4)
O5—Yb1—O13—C14 −11.1 (5) Cu1i—N2—C12—C13 0.5 (6)
O6—Yb1—O13—C14 69.8 (5) Cu2—N3—C15—C16 174.8 (4)
O7—Yb1—O13—C14 −64.9 (6) C19—N3—C15—C16 −3.2 (8)
O15—Yb1—O13—C14 150.4 (6) Cu2—N3—C19—C18 −177.7 (5)
O2—Yb1—O15—C20 80.6 (6) Cu2—N3—C19—C21 1.0 (6)
O3—Yb1—O15—C20 −5.5 (6) C15—N3—C19—C18 0.7 (9)
O4—Yb1—O15—C20 −74.7 (6) C15—N3—C19—C21 179.4 (5)
O5—Yb1—O15—C20 −177.2 (5) N1—C1—C2—C3 0.8 (8)
O6—Yb1—O15—C20 −132.4 (6) N1—C1—C2—C7 −176.6 (5)
O7—Yb1—O15—C20 14.3 (7) C1—C2—C3—C4 −2.0 (8)
O13—Yb1—O15—C20 151.2 (6) C7—C2—C3—C4 175.3 (5)
O1—Cu1—O8—C6 −90.2 (4) C1—C2—C7—O9 173.9 (5)
N1—Cu1—O8—C6 3.8 (4) C1—C2—C7—O10 −4.5 (8)
N2i—Cu1—O8—C6 174.6 (4) C3—C2—C7—O9 −3.4 (8)
O1—Cu1—N1—C1 −95.5 (5) C3—C2—C7—O10 178.2 (5)
O1—Cu1—N1—C5 85.5 (4) C2—C3—C4—C5 1.5 (8)
O8—Cu1—N1—C1 179.0 (5) C3—C4—C5—N1 0.3 (8)
O8—Cu1—N1—C5 −0.1 (4) C3—C4—C5—C6 −178.9 (5)
O11i—Cu1—N1—C1 11.1 (5) N1—C5—C6—O7 −173.5 (5)
O11i—Cu1—N1—C5 −168.0 (4) N1—C5—C6—O8 6.4 (7)
O1—Cu1—O11i—C13i −88.6 (4) C4—C5—C6—O7 5.7 (8)
N1—Cu1—O11i—C13i 175.6 (4) C4—C5—C6—O8 −174.4 (5)
O1—Cu1—N2i—C8i −79.9 (5) N2—C8—C9—C10 1.5 (9)
O1—Cu1—N2i—C12i 103.0 (4) N2—C8—C9—C14 −175.7 (5)
O8—Cu1—N2i—C8i 6.6 (5) C8—C9—C10—C11 0.1 (9)
O8—Cu1—N2i—C12i −170.6 (4) C14—C9—C10—C11 177.1 (6)
N3—Cu2—O17—C21 −1.5 (4) C8—C9—C14—O13 165.0 (5)
O12iii—Cu2—O17—C21 −92.1 (4) C8—C9—C14—O14 −12.6 (8)
N3ii—Cu2—O17—C21 178.5 (4) C10—C9—C14—O13 −12.0 (9)
O12iv—Cu2—O17—C21 88.0 (4) C10—C9—C14—O14 170.4 (6)
O17—Cu2—N3—C15 −178.0 (5) C9—C10—C11—C12 −1.9 (9)
O17—Cu2—N3—C19 0.2 (4) C10—C11—C12—N2 2.2 (8)
O12iii—Cu2—N3—C15 −86.7 (5) C10—C11—C12—C13 −176.1 (5)
O12iii—Cu2—N3—C19 91.5 (4) N2—C12—C13—O11 −4.9 (7)
O17ii—Cu2—N3—C15 2.0 (5) N2—C12—C13—O12 173.9 (5)
O17ii—Cu2—N3—C19 −179.8 (4) C11—C12—C13—O11 173.5 (5)
O12iv—Cu2—N3—C15 93.3 (5) C11—C12—C13—O12 −7.7 (9)
O12iv—Cu2—N3—C19 −88.6 (4) N3—C15—C16—C17 3.2 (9)
Yb1—O7—C6—O8 −17.4 (9) N3—C15—C16—C20 −173.5 (5)
Yb1—O7—C6—C5 162.5 (4) C15—C16—C17—C18 −0.7 (9)
Cu1—O8—C6—O7 173.5 (4) C20—C16—C17—C18 176.1 (6)
Cu1—O8—C6—C5 −6.4 (6) C15—C16—C20—O15 −16.8 (8)
Cu1i—O11—C13—O12 −171.8 (5) C15—C16—C20—O16 159.0 (6)
Cu1i—O11—C13—C12 7.0 (6) C17—C16—C20—O15 166.5 (6)
Cu2v—O12—C13—O11 85.5 (6) C17—C16—C20—O16 −17.7 (9)
Cu2v—O12—C13—C12 −93.1 (5) C16—C17—C18—C19 −1.8 (10)
Yb1—O13—C14—O14 25.3 (9) C17—C18—C19—N3 1.8 (10)
Yb1—O13—C14—C9 −152.0 (4) C17—C18—C19—C21 −176.7 (6)
Yb1—O15—C20—O16 11.1 (10) N3—C19—C21—O17 −2.2 (8)
Yb1—O15—C20—C16 −173.6 (4) N3—C19—C21—O18 178.3 (5)
Cu2—O17—C21—O18 −178.2 (5) C18—C19—C21—O17 176.4 (6)
Cu2—O17—C21—C19 2.4 (6) C18—C19—C21—O18 −3.1 (9)
Cu1—N1—C1—C2 −178.0 (4)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) −x+2, −y, −z+1; (v) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O17vi 0.82 2.50 3.072 (5) 128
O1—H1A···O18vi 0.82 2.06 2.865 (6) 166
O1—H1B···O9vii 0.82 2.02 2.840 (6) 173
O2—H2A···O10viii 0.82 2.48 2.988 (7) 121
O2—H2B···O19 0.82 1.83 2.644 (8) 173
O3—H3A···O16 0.82 1.91 2.572 (6) 137
O3—H3B···O10vii 0.82 1.91 2.695 (6) 159
O4—H4A···O9vii 0.82 1.87 2.670 (6) 165
O4—H4B···O14iii 0.82 1.98 2.774 (6) 163
O5—H5A···O14 0.82 1.85 2.586 (6) 148
O5—H5B···O8 0.82 2.06 2.717 (6) 137
O6—H6A···O1ix 0.82 2.09 2.826 (6) 149
O6—H6B···O4ix 0.82 2.15 2.936 (6) 160
O19—H19A···O20x 0.82 2.06 2.816 (8) 152
O19—H19B···O12xi 0.82 2.15 2.965 (7) 171
O20—H20A···O13iii 0.82 2.55 3.174 (7) 134
O20—H20B···O16 0.82 2.15 2.957 (9) 166
C3—H3C···O18x 0.93 2.42 3.134 (7) 134
C11—H11A···O12iv 0.93 2.52 3.409 (7) 159

Symmetry codes: (vi) x, y+1, z−1; (vii) −x, −y+2, −z; (viii) −x+1, −y+2, −z; (iii) x−1, y, z; (ix) −x+1, −y+1, −z; (x) −x, −y+1, −z+1; (xi) x−1, y+1, z; (iv) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5166).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Huang, Y., Song, Y. S., Yan, B. & Shao, M. (2008). J. Solid State Chem. 181, 1731–1737.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Wei, Y.-L., Hou, H.-W., Li, H.-K., Fan, Y.-T. & Zhu, Y. (2005). Cryst. Growth Des. 5, 1405–1413.
  7. Wen, L.-L., Lu, Z.-D., Lin, J.-G., Tian, Z.-F., Zhu, H.-Z. & Meng, Q.-J. (2007). Cryst. Growth Des. 7, 93–99.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007446/xu5166sup1.cif

e-67-0m406-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007446/xu5166Isup2.hkl

e-67-0m406-Isup2.hkl (324.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES