Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):m418. doi: 10.1107/S1600536811008142

(4,5-Diaza­fluoren-9-one-κ2 N,N′)bis­(thio­cyanato-κS)mercury(II)

Behrouz Notash a, Nasser Safari a,*, Vahid Amani a
PMCID: PMC3099883  PMID: 21753948

Abstract

In the title compound, [Hg(NCS)2(C11H6N2O)], the HgII atom, lying on a twofold rotation axis, is four-coordinated in a distorted tetra­hedral geometry by an N,N′-bidentate diaza­fluoren-9-one ligand and two thio­cyanate anions. In the crystal, inter­molecular C—H⋯N and C—H⋯O hydrogen bonds are effective in the stabilization of the structure.

Related literature

For general background to metal complexes with diaza­fluoren-9-one ligands, see: Biju & Rajasekharan (2008); Kulkarni et al. (2002); Menon & Rajasekharan (1998); Shi et al. (1995); Wu & Xu (2004); Zhang et al. (2004). For related structures, see: Ravikumar & Lakshmi (1994); Safari et al. (2009). For the synthesis of the ligand, see: Henderson et al. (1984).graphic file with name e-67-0m418-scheme1.jpg

Experimental

Crystal data

  • [Hg(NCS)2(C11H6N2O)]

  • M r = 498.95

  • Monoclinic, Inline graphic

  • a = 10.570 (2) Å

  • b = 16.112 (3) Å

  • c = 8.3390 (17) Å

  • β = 94.35 (3)°

  • V = 1416.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.17 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.25 mm

Data collection

  • Stoe IPDS-2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) T min = 0.023, T max = 0.059

  • 4787 measured reflections

  • 1903 independent reflections

  • 1737 reflections with I > 2σ(I)

  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.118

  • S = 1.09

  • 1903 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 4.61 e Å−3

  • Δρmin = −1.82 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008142/hy2412sup1.cif

e-67-0m418-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008142/hy2412Isup2.hkl

e-67-0m418-Isup2.hkl (93.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Hg1—S1 2.4098 (17)
Hg1—N1 2.483 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.93 2.56 3.276 (10) 134
C4—H4⋯O1ii 0.93 2.59 3.366 (8) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Graduate Study Councils of Shahid Beheshti University for financial support.

supplementary crystallographic information

Comment

Henderson et al. (1984) first reported the synthesis of diazafluoren-9-one (dafone) and Ravikumar & Lakshmi (1994) determined the structure of this compound. Dafone is a bidentate ligand and numerous complexes with dafone have been prepared, such as that of cobalt (Shi et al., 1995), copper (Kulkarni et al., 2002; Menon & Rajasekharan, 1998), zinc (Zhang et al., 2004), manganese (Wu & Xu, 2004) and silver (Biju & Rajasekharan, 2008). For further investigation of the dafone complexes, we synthesized the title compound.

The asymmetric unit of the title compound (Fig. 1) contains a half molecule. The HgII atom, lying on a twofold rotation axis, is four-coordinated in a distorted tetrahedral geometry by an N,N'-bidentate dafone ligand and two thiocyanate anions. The Hg—N and Hg—S bond lengths (Table 1) and angles are within normal range as observed in [Hg(SCN)2(dm4bt)] (dm4bt = 2,2'-dimethyl-4,4'-bi-1,3-thiazole) (Safari et al., 2009). In the crystal, intermolecular C—H···O and C—H···N hydrogen bonds stabilize the structure (Table 2, Fig. 2).

Experimental

For the preparation of the title compound, a solution of dafone (0.13 g, 0.71 mmol) in methanol (20 ml) was added to a solution of Hg(SCN)2 (0.23 g, 0.71 mmol) in methanol (20 ml) at room temperature and the yellow powder was formed. Crystals suitable for X-ray diffraction were obtained by methanol vapor diffusion into a DMSO solution of the complex. The crystals were isolated after one week (yield: 0.28 g, 79%).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density was found at 0.90 Å from Hg1 atom and the deepest hole at 0.84 Å from Hg1 atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) -x+1, y, -z+1/2.]

Fig. 2.

Fig. 2.

The packing diagram of the title compound. Intermolecular C—H···O and C—H···N hydrogen bonds are shown as blue dashed lines.

Crystal data

[Hg(NCS)2(C11H6N2O)] F(000) = 928
Mr = 498.95 Dx = 2.340 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1903 reflections
a = 10.570 (2) Å θ = 2.3–29.1°
b = 16.112 (3) Å µ = 11.17 mm1
c = 8.3390 (17) Å T = 298 K
β = 94.35 (3)° Block, yellow
V = 1416.1 (5) Å3 0.45 × 0.30 × 0.25 mm
Z = 4

Data collection

Stoe IPDS-2T diffractometer 1903 independent reflections
Radiation source: fine-focus sealed tube 1737 reflections with I > 2σ(I)
graphite Rint = 0.098
ω scans θmax = 29.1°, θmin = 2.3°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) h = −14→14
Tmin = 0.023, Tmax = 0.059 k = −19→22
4787 measured reflections l = −11→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0771P)2] where P = (Fo2 + 2Fc2)/3
1903 reflections (Δ/σ)max < 0.001
97 parameters Δρmax = 4.61 e Å3
0 restraints Δρmin = −1.81 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C7 0.7118 (6) 0.0950 (5) 0.0048 (8) 0.0493 (13)
Hg1 0.5000 0.072315 (18) 0.2500 0.04567 (15)
N1 0.4449 (4) 0.1960 (3) 0.0815 (6) 0.0365 (9)
C1 0.4721 (4) 0.2635 (3) 0.1663 (6) 0.0320 (9)
C2 0.3956 (5) 0.2094 (4) −0.0707 (7) 0.0422 (11)
H2 0.3735 0.1637 −0.1350 0.051*
C5 0.4558 (5) 0.3449 (3) 0.1142 (7) 0.0377 (10)
C3 0.3766 (6) 0.2879 (4) −0.1349 (7) 0.0453 (12)
H3 0.3438 0.2937 −0.2409 0.054*
C4 0.4063 (5) 0.3591 (4) −0.0419 (8) 0.0456 (12)
H4 0.3935 0.4124 −0.0827 0.055*
S1 0.68555 (17) 0.01847 (11) 0.1348 (2) 0.0576 (4)
O1 0.5000 0.4758 (4) 0.2500 0.0586 (17)
C6 0.5000 0.4016 (6) 0.2500 0.0432 (17)
N2 0.7356 (8) 0.1448 (6) −0.0831 (10) 0.083 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7 0.049 (3) 0.058 (4) 0.041 (3) 0.004 (3) 0.005 (2) −0.002 (3)
Hg1 0.0541 (2) 0.03049 (19) 0.0543 (2) 0.000 0.01618 (14) 0.000
N1 0.0374 (19) 0.029 (2) 0.043 (2) 0.0004 (16) 0.0032 (16) 0.0006 (17)
C1 0.0334 (19) 0.022 (2) 0.040 (3) 0.0006 (16) 0.0044 (17) 0.0012 (16)
C2 0.046 (3) 0.040 (3) 0.040 (3) 0.004 (2) 0.002 (2) 0.001 (2)
C5 0.035 (2) 0.028 (2) 0.050 (3) 0.0014 (18) 0.0046 (19) 0.005 (2)
C3 0.046 (3) 0.047 (3) 0.043 (3) 0.007 (2) 0.005 (2) 0.007 (2)
C4 0.046 (3) 0.035 (3) 0.056 (3) 0.005 (2) 0.006 (2) 0.015 (2)
S1 0.0623 (9) 0.0412 (8) 0.0715 (11) 0.0171 (7) 0.0201 (8) 0.0072 (7)
O1 0.072 (4) 0.023 (3) 0.081 (5) 0.000 0.007 (4) 0.000
C6 0.038 (3) 0.033 (4) 0.060 (5) 0.000 0.011 (3) 0.000
N2 0.077 (4) 0.104 (7) 0.070 (5) 0.003 (4) 0.021 (3) 0.025 (4)

Geometric parameters (Å, °)

C7—N2 1.128 (11) C2—H2 0.9300
C7—S1 1.679 (8) C5—C4 1.385 (8)
Hg1—S1 2.4098 (17) C5—C6 1.502 (8)
Hg1—N1 2.483 (5) C3—C4 1.407 (9)
N1—C1 1.316 (7) C3—H3 0.9300
N1—C2 1.352 (7) C4—H4 0.9300
C1—C5 1.388 (6) O1—C6 1.195 (12)
C1—C1i 1.473 (10) C6—C5i 1.502 (8)
C2—C3 1.382 (8)
N2—C7—S1 176.4 (8) C3—C2—H2 118.5
S1i—Hg1—S1 137.80 (9) C4—C5—C1 118.7 (5)
S1i—Hg1—N1i 103.08 (11) C4—C5—C6 132.9 (5)
S1—Hg1—N1i 110.60 (12) C1—C5—C6 108.4 (5)
S1i—Hg1—N1 110.60 (12) C2—C3—C4 120.9 (5)
S1—Hg1—N1 103.08 (11) C2—C3—H3 119.6
N1i—Hg1—N1 73.2 (2) C4—C3—H3 119.6
C1—N1—C2 115.2 (5) C5—C4—C3 115.8 (5)
C1—N1—Hg1 109.0 (3) C5—C4—H4 122.1
C2—N1—Hg1 135.7 (4) C3—C4—H4 122.1
N1—C1—C5 126.5 (5) C7—S1—Hg1 99.9 (2)
N1—C1—C1i 124.4 (3) O1—C6—C5i 127.5 (4)
C5—C1—C1i 109.1 (3) O1—C6—C5 127.5 (4)
N1—C2—C3 122.9 (6) C5i—C6—C5 105.0 (7)
N1—C2—H2 118.5
S1i—Hg1—N1—C1 97.7 (3) N1—C1—C5—C6 −179.7 (4)
S1—Hg1—N1—C1 −108.1 (3) C1i—C1—C5—C6 −0.8 (6)
N1i—Hg1—N1—C1 −0.3 (2) N1—C2—C3—C4 −1.1 (9)
S1i—Hg1—N1—C2 −82.2 (5) C1—C5—C4—C3 0.0 (8)
S1—Hg1—N1—C2 71.9 (5) C6—C5—C4—C3 179.5 (5)
N1i—Hg1—N1—C2 179.8 (6) C2—C3—C4—C5 0.6 (9)
C2—N1—C1—C5 −0.5 (8) S1i—Hg1—S1—C7 150.1 (3)
Hg1—N1—C1—C5 179.5 (4) N1i—Hg1—S1—C7 −69.2 (3)
C2—N1—C1—C1i −179.2 (6) N1—Hg1—S1—C7 7.5 (3)
Hg1—N1—C1—C1i 0.8 (7) C4—C5—C6—O1 0.7 (7)
C1—N1—C2—C3 1.1 (8) C1—C5—C6—O1 −179.7 (3)
Hg1—N1—C2—C3 −179.0 (4) C4—C5—C6—C5i −179.3 (7)
N1—C1—C5—C4 0.0 (8) C1—C5—C6—C5i 0.3 (3)
C1i—C1—C5—C4 178.9 (5)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···N2ii 0.93 2.56 3.276 (10) 134
C4—H4···O1iii 0.93 2.59 3.366 (8) 142

Symmetry codes: (ii) −x+1, y, −z−1/2; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2412).

References

  1. Biju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065–2068.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Henderson, L. J. Jr, Fronczek, F. R. & Cherry, W. R. (1984). J. Am. Chem. Soc. 106, 5876–5879.
  5. Kulkarni, P., Padhye, S., Sinn, E., Anson, C. E. & Powell, A. K. (2002). Inorg. Chim. Acta, 332, 167–175.
  6. Menon, S. & Rajasekharan, M. V. (1998). Polyhedron, 17, 2463–2476.
  7. Ravikumar, K. & Lakshmi, N. V. (1994). Z. Kristallogr. 209, 56–57.
  8. Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shi, X.-H., You, X.-Z., Li, C. & Xiong, R.-G. (1995). Transition Met. Chem. 20, 191–195.
  11. Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32 Stoe & Cie, Darmstadt, Germany.
  12. Wu, Z.-Y. & Xu, D.-J. (2004). Acta Cryst. E60, m839–m841.
  13. Zhang, R.-L., Zhao, J.-S., Yang, S.-Y. & Ng, S. W. (2004). Acta Cryst. E60, m262–m263.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008142/hy2412sup1.cif

e-67-0m418-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008142/hy2412Isup2.hkl

e-67-0m418-Isup2.hkl (93.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES