Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 23;67(Pt 4):o955. doi: 10.1107/S1600536811009317

1-Cyclo­hexyl-3-{(E)-[1-(pyridin-2-yl)ethyl­idene]amino}­thio­urea

Md Abdus Salam a, Md Abu Affan a,, Fasihuddin B Ahmad a, Seik Weng Ng b, Edward R T Tiekink b,*
PMCID: PMC3099887  PMID: 21754220

Abstract

In the title thio­urea derivative, C14H20N4S, the non-ring non-H atoms are approximately planar, with an r.m.s. deviation of 0.0720 Å. The pyridine ring is twisted out of this plane and makes a dihedral angle of 16.85 (13)° with it. The mean plane passing through the cyclo­hexyl ring is almost normal to the central plane [dihedral angle = 69.23 (8)°]. An intra­molecular N—H⋯N(imine) hydrogen bond occurs. Centrosymmetric dimers are formed in the crystal structure via pairs of N—H⋯S hydrogen bonds, and these are connected into a supra­molecular chain along the a axis via C—H⋯π(pyrid­yl) inter­actions.

Related literature

For related thio­urea structures, see: Tiekink (1989); Lai & Tiekink (2002); Muramulla et al. (2009).graphic file with name e-67-0o955-scheme1.jpg

Experimental

Crystal data

  • C14H20N4S

  • M r = 276.40

  • Triclinic, Inline graphic

  • a = 5.8824 (6) Å

  • b = 10.2410 (9) Å

  • c = 12.3902 (14) Å

  • α = 94.718 (8)°

  • β = 90.427 (9)°

  • γ = 90.979 (8)°

  • V = 743.74 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) T min = 0.842, T max = 1.000

  • 5817 measured reflections

  • 3292 independent reflections

  • 2355 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.151

  • S = 1.04

  • 3292 reflections

  • 181 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009317/hg5008sup1.cif

e-67-0o955-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009317/hg5008Isup2.hkl

e-67-0o955-Isup2.hkl (161.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the pyridyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3 0.87 (2) 2.16 (2) 2.592 (3) 111 (2)
N2—H2⋯S1i 0.88 (2) 2.73 (2) 3.610 (2) 174 (2)
C9—H9bCg1ii 0.96 2.89 3.776 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported financially by the Ministry of Science, Technology and Innovation (MOSTI) under research grant No. 06-01-09-SF0046. The authors thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

In continuation of long-term structural investigations of thiourea derivatives (Tiekink, 1989; Lai & Tiekink, 2002; Muramulla et al., 2009), the title compound, (I), was investigated. The atoms comprising the thiosemicarbazone backbone of the molecules, i.e. S1,N1—N3,C1,C7—C10 are co-planar (r.m.s. = 0.0720 Å). While the pyridine residue is twisted out of this plane as seen in the value of the N3—C8—C10—N4 torsion angle of 164.7 (2) °, the cyclohexyl group is almost normal to the plane; C2—C1—N1—C7 is 87.7 (3) °. The amine-N—H1 and imine-N3 atoms are directed to the same side of the molecule enabling the formation of an intramolecular N—H···N hydrogen bond, Table 1. The pyridine-N atom is directed away from the rest of the molecule and is proximate to the methyl substituent which results in the formation of a C—H···N contact, Table 1.

The crystal packing is dominated by N—H···S hydrogen bonds that lead to centrosymmetric dimers, Table 1. Dimers aligned along the a axis are connected into a supramolecular chain via C—H···π interactions involving methyl-H and the pyridyl ring. There are no specific intermolecular interactions occurring between chains, Fig. 3.

Experimental

Cyclohexyl isothiocyanate (0.706 g, 5 mmol) and hydrazine hydrate (0.250 g, 5 mmol), each dissolved in 10 ml ethanol, were mixed with constant stirring. The stirring was continued for 30 min and the white product, N(4)-cyclohexylthiosemicarbazide formed was washed with ethanol and dried. A solution of the N(4)-cyclohexylthiosemicarbazide (0.51 g, 3 mmol) in 10 ml methanol was refluxed with a methanolic solution of 2-acetylpyridine (0.363 g, 3 mmol) for 5 h after adding 1–2 drops of acetic acid. A white powder separated on cooling the solution which was filtered and washed with methanol. This was recrystallized from methanol and dried in vacuo over silica gel. (M.pt. 453–455 K; Yield 0.682 g, 76%). Elemental analysis: Calc.: C, 60.83; H, 7.29; N, 11.60%. Found: C, 60.72; H, 7.25; N, 11.57%. FT—IR (KBr, cm-1) νmax: 3329 (s, NH), 2931, 2851 (s, cyclohexyl), 1580 (w, C═N—N═C), 980 (m, N—N), 1358, 835 (w, C═ S), 657 (m, pyridine in plane).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular chain aligned along the a axis in (I). The N—H···S hydrogen bonds and C—H···π contacts are shown as orange and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the crystal packing in (I). The N—H···S hydrogen bonds and C—H···π contacts are shown as orange and purple dashed lines, respectively.

Crystal data

C14H20N4S Z = 2
Mr = 276.40 F(000) = 296
Triclinic, P1 Dx = 1.234 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8824 (6) Å Cell parameters from 2234 reflections
b = 10.2410 (9) Å θ = 2.5–29.3°
c = 12.3902 (14) Å µ = 0.21 mm1
α = 94.718 (8)° T = 295 K
β = 90.427 (9)° Block, colourless
γ = 90.979 (8)° 0.25 × 0.20 × 0.15 mm
V = 743.74 (13) Å3

Data collection

Agilent Supernova Dual diffractometer with an Atlas detector 3292 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2355 reflections with I > 2σ(I)
Mirror Rint = 0.027
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scans h = −7→5
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) k = −12→11
Tmin = 0.842, Tmax = 1.000 l = −16→15
5817 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.2389P] where P = (Fo2 + 2Fc2)/3
3292 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.22 e Å3
2 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.98373 (10) 0.38035 (6) 0.62998 (5) 0.0566 (2)
N1 0.6028 (3) 0.4301 (2) 0.73985 (16) 0.0516 (5)
N2 0.6780 (3) 0.56047 (19) 0.60354 (16) 0.0473 (5)
N3 0.4954 (3) 0.63316 (18) 0.63973 (15) 0.0443 (4)
N4 0.2260 (4) 0.9312 (2) 0.61127 (19) 0.0655 (6)
C1 0.6423 (4) 0.3310 (2) 0.81548 (18) 0.0509 (6)
H1A 0.7317 0.2612 0.7785 0.061*
C2 0.7750 (5) 0.3871 (3) 0.9131 (2) 0.0774 (9)
H2A 0.6945 0.4610 0.9476 0.093*
H2B 0.9219 0.4189 0.8903 0.093*
C3 0.8102 (6) 0.2857 (4) 0.9947 (3) 0.1056 (13)
H3A 0.9038 0.2159 0.9627 0.127*
H3B 0.8898 0.3264 1.0579 0.127*
C4 0.5863 (6) 0.2288 (4) 1.0287 (2) 0.0850 (10)
H4A 0.6135 0.1614 1.0776 0.102*
H4B 0.4981 0.2969 1.0668 0.102*
C5 0.4558 (5) 0.1713 (3) 0.9314 (3) 0.0797 (9)
H5A 0.3094 0.1388 0.9542 0.096*
H5B 0.5380 0.0976 0.8977 0.096*
C6 0.4189 (5) 0.2718 (3) 0.8486 (2) 0.0746 (8)
H6A 0.3421 0.2296 0.7851 0.090*
H6B 0.3222 0.3407 0.8796 0.090*
C7 0.7428 (4) 0.4599 (2) 0.66113 (17) 0.0436 (5)
C8 0.4457 (4) 0.7360 (2) 0.59286 (18) 0.0433 (5)
C9 0.5690 (4) 0.7871 (2) 0.4999 (2) 0.0575 (6)
H9A 0.5857 0.7177 0.4437 0.086*
H9B 0.7165 0.8197 0.5238 0.086*
H9C 0.4842 0.8567 0.4725 0.086*
C10 0.2493 (4) 0.8097 (2) 0.64002 (17) 0.0438 (5)
C11 0.1000 (4) 0.7543 (2) 0.70977 (19) 0.0516 (6)
H11 0.1192 0.6689 0.7279 0.062*
C12 −0.0774 (4) 0.8277 (3) 0.7519 (2) 0.0627 (7)
H12 −0.1794 0.7929 0.7993 0.075*
C13 −0.1011 (5) 0.9530 (3) 0.7227 (2) 0.0702 (8)
H13 −0.2191 1.0048 0.7500 0.084*
C14 0.0518 (5) 1.0001 (3) 0.6527 (3) 0.0768 (9)
H14 0.0339 1.0850 0.6327 0.092*
H1 0.478 (3) 0.474 (2) 0.743 (2) 0.065 (8)*
H2 0.768 (4) 0.579 (3) 0.5503 (14) 0.065 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0544 (4) 0.0507 (4) 0.0685 (4) 0.0198 (3) 0.0197 (3) 0.0228 (3)
N1 0.0532 (11) 0.0492 (12) 0.0560 (11) 0.0178 (9) 0.0174 (9) 0.0209 (9)
N2 0.0480 (10) 0.0408 (11) 0.0557 (11) 0.0121 (8) 0.0150 (9) 0.0165 (9)
N3 0.0448 (9) 0.0368 (10) 0.0527 (11) 0.0086 (7) 0.0091 (8) 0.0101 (8)
N4 0.0693 (13) 0.0387 (12) 0.0918 (16) 0.0159 (10) 0.0248 (12) 0.0197 (11)
C1 0.0587 (13) 0.0454 (13) 0.0517 (13) 0.0179 (10) 0.0168 (11) 0.0172 (11)
C2 0.0801 (19) 0.084 (2) 0.0717 (18) −0.0111 (16) 0.0005 (15) 0.0302 (16)
C3 0.101 (3) 0.137 (3) 0.087 (2) −0.018 (2) −0.0175 (19) 0.062 (2)
C4 0.103 (2) 0.090 (2) 0.0679 (19) 0.0107 (19) 0.0187 (17) 0.0400 (17)
C5 0.088 (2) 0.067 (2) 0.089 (2) −0.0019 (16) 0.0221 (17) 0.0356 (17)
C6 0.0723 (18) 0.078 (2) 0.0778 (19) −0.0094 (15) 0.0030 (15) 0.0351 (16)
C7 0.0480 (12) 0.0358 (12) 0.0479 (12) 0.0066 (9) 0.0061 (10) 0.0085 (9)
C8 0.0479 (12) 0.0338 (11) 0.0495 (12) 0.0041 (9) 0.0055 (9) 0.0101 (9)
C9 0.0650 (15) 0.0477 (14) 0.0633 (15) 0.0124 (11) 0.0193 (12) 0.0206 (12)
C10 0.0480 (11) 0.0365 (12) 0.0479 (12) 0.0061 (9) 0.0031 (10) 0.0080 (10)
C11 0.0543 (13) 0.0455 (14) 0.0568 (14) 0.0105 (10) 0.0090 (11) 0.0120 (11)
C12 0.0603 (15) 0.0694 (19) 0.0594 (15) 0.0102 (13) 0.0161 (12) 0.0079 (13)
C13 0.0689 (17) 0.0608 (18) 0.0806 (19) 0.0243 (14) 0.0174 (15) −0.0027 (15)
C14 0.0823 (19) 0.0418 (15) 0.109 (2) 0.0219 (13) 0.0256 (18) 0.0138 (15)

Geometric parameters (Å, °)

S1—C7 1.678 (2) C4—H4A 0.9700
N1—C7 1.332 (3) C4—H4B 0.9700
N1—C1 1.457 (3) C5—C6 1.529 (4)
N1—H1 0.870 (10) C5—H5A 0.9700
N2—C7 1.359 (3) C5—H5B 0.9700
N2—N3 1.374 (2) C6—H6A 0.9700
N2—H2 0.878 (10) C6—H6B 0.9700
N3—C8 1.281 (3) C8—C10 1.488 (3)
N4—C10 1.331 (3) C8—C9 1.491 (3)
N4—C14 1.336 (3) C9—H9A 0.9600
C1—C2 1.503 (4) C9—H9B 0.9600
C1—C6 1.512 (3) C9—H9C 0.9600
C1—H1A 0.9800 C10—C11 1.384 (3)
C2—C3 1.523 (4) C11—C12 1.377 (3)
C2—H2A 0.9700 C11—H11 0.9300
C2—H2B 0.9700 C12—C13 1.370 (4)
C3—C4 1.508 (5) C12—H12 0.9300
C3—H3A 0.9700 C13—C14 1.364 (4)
C3—H3B 0.9700 C13—H13 0.9300
C4—C5 1.498 (5) C14—H14 0.9300
C7—N1—C1 125.56 (19) C6—C5—H5B 109.2
C7—N1—H1 114.1 (18) H5A—C5—H5B 107.9
C1—N1—H1 120.3 (18) C1—C6—C5 111.2 (2)
C7—N2—N3 118.18 (18) C1—C6—H6A 109.4
C7—N2—H2 115.9 (18) C5—C6—H6A 109.4
N3—N2—H2 125.6 (18) C1—C6—H6B 109.4
C8—N3—N2 119.02 (18) C5—C6—H6B 109.4
C10—N4—C14 117.7 (2) H6A—C6—H6B 108.0
N1—C1—C2 111.2 (2) N1—C7—N2 115.73 (19)
N1—C1—C6 110.3 (2) N1—C7—S1 124.18 (17)
C2—C1—C6 110.8 (2) N2—C7—S1 120.08 (16)
N1—C1—H1A 108.1 N3—C8—C10 114.81 (19)
C2—C1—H1A 108.1 N3—C8—C9 126.0 (2)
C6—C1—H1A 108.1 C10—C8—C9 119.19 (19)
C1—C2—C3 111.7 (3) C8—C9—H9A 109.5
C1—C2—H2A 109.3 C8—C9—H9B 109.5
C3—C2—H2A 109.3 H9A—C9—H9B 109.5
C1—C2—H2B 109.3 C8—C9—H9C 109.5
C3—C2—H2B 109.3 H9A—C9—H9C 109.5
H2A—C2—H2B 107.9 H9B—C9—H9C 109.5
C4—C3—C2 111.2 (3) N4—C10—C11 122.2 (2)
C4—C3—H3A 109.4 N4—C10—C8 116.23 (19)
C2—C3—H3A 109.4 C11—C10—C8 121.5 (2)
C4—C3—H3B 109.4 C12—C11—C10 119.0 (2)
C2—C3—H3B 109.4 C12—C11—H11 120.5
H3A—C3—H3B 108.0 C10—C11—H11 120.5
C5—C4—C3 110.2 (3) C13—C12—C11 118.8 (2)
C5—C4—H4A 109.6 C13—C12—H12 120.6
C3—C4—H4A 109.6 C11—C12—H12 120.6
C5—C4—H4B 109.6 C12—C13—C14 118.7 (3)
C3—C4—H4B 109.6 C12—C13—H13 120.7
H4A—C4—H4B 108.1 C14—C13—H13 120.7
C4—C5—C6 111.9 (3) N4—C14—C13 123.6 (3)
C4—C5—H5A 109.2 N4—C14—H14 118.2
C6—C5—H5A 109.2 C13—C14—H14 118.2
C4—C5—H5B 109.2
C7—N2—N3—C8 173.2 (2) N2—N3—C8—C10 −178.40 (18)
C7—N1—C1—C2 87.7 (3) N2—N3—C8—C9 0.0 (3)
C7—N1—C1—C6 −149.0 (2) C14—N4—C10—C11 0.3 (4)
N1—C1—C2—C3 178.0 (3) C14—N4—C10—C8 −179.7 (2)
C6—C1—C2—C3 54.9 (3) N3—C8—C10—N4 164.7 (2)
C1—C2—C3—C4 −56.3 (4) C9—C8—C10—N4 −13.9 (3)
C2—C3—C4—C5 56.3 (4) N3—C8—C10—C11 −15.3 (3)
C3—C4—C5—C6 −56.3 (4) C9—C8—C10—C11 166.1 (2)
N1—C1—C6—C5 −177.8 (2) N4—C10—C11—C12 −0.7 (4)
C2—C1—C6—C5 −54.2 (3) C8—C10—C11—C12 179.3 (2)
C4—C5—C6—C1 55.7 (4) C10—C11—C12—C13 0.4 (4)
C1—N1—C7—N2 −176.6 (2) C11—C12—C13—C14 0.2 (4)
C1—N1—C7—S1 4.3 (3) C10—N4—C14—C13 0.3 (5)
N3—N2—C7—N1 8.8 (3) C12—C13—C14—N4 −0.6 (5)
N3—N2—C7—S1 −172.17 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyridyl ring [ok as edited?]
D—H···A D—H H···A D···A D—H···A
N1—H1···N3 0.87 (2) 2.16 (2) 2.592 (3) 111 (2)
C9—H9C···N4 0.96 2.39 2.822 (3) 107
N2—H2···S1i 0.88 (2) 2.73 (2) 3.610 (2) 174 (2)
C9—H9B···Cg1ii 0.96 2.89 3.776 (3) 155

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5008).

References

  1. Agilent Technologies (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Lai, C. S. & Tiekink, E. R. T. (2002). Acta Cryst. E58, o538–o539.
  5. Muramulla, S., Arman, H. D., Zhao, C.-G. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3070. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tiekink, E. R. T. (1989). Z. Kristallogr. 187, 79–84.
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009317/hg5008sup1.cif

e-67-0o955-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009317/hg5008Isup2.hkl

e-67-0o955-Isup2.hkl (161.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES