Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):o760–o761. doi: 10.1107/S1600536811006994

3,5-Bis(4-chloro­benzyl­idene)-1-methyl­piperidin-4-one

Volodymyr V Nesterov a,*, Sergey S Sarkisov b, Vladimir Shulaev c,*, Vladimir N Nesterov d
PMCID: PMC3099892  PMID: 21754057

Abstract

In the title mol­ecule, C20H17Cl2NO, the central heterocyclic ring adopts a flattened boat conformation. The dihedral angles between the planar part of this central heterocyclic ring [maximum deviation = 0.004 (1) Å] and the two almost planar side-chain fragments [maximum deviations = 0.015 (1) and 0.019 (1) Å], that include the aromatic ring and bridging atoms, are 18.1 (1) and 18.0 (1)°. In the crystal, pairs of weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into inversion dimers that form stacks along the a axis. The structure is further stabilized by weak inter­molecular C—H⋯π inter­actions involving the benzene rings.

Related literature

For non-linear optical organic compounds with two-photon absorption properties and potential biophotonic materials, see: Nesterov et al. (2003); Nesterov (2004); Sarkisov et al. (2005). For the biological importance of 4-piperidone, see: Jia et al. (1988, 1989); Dimmock et al. (2001). For the synthesis of the title compound, see: Dimmock et al. (2001). For related structures, see: Nesterov (2004); Nesterov et al. (2003, 2007a ,b ,c , 2008). For weak hydrogen bonds, see: Desiraju & Steiner (1999). For the van der Waals radius of the H atom, see: Rowland & Taylor (1996).graphic file with name e-67-0o760-scheme1.jpg

Experimental

Crystal data

  • C20H17Cl2NO

  • M r = 358.25

  • Monoclinic, Inline graphic

  • a = 5.4568 (11) Å

  • b = 13.916 (3) Å

  • c = 22.289 (4) Å

  • β = 90.847 (3)°

  • V = 1692.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100 K

  • 0.23 × 0.18 × 0.08 mm

Data collection

  • Bruker SMART APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.916, T max = 0.970

  • 14890 measured reflections

  • 3461 independent reflections

  • 2830 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.080

  • S = 1.03

  • 3461 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006994/su2255sup1.cif

e-67-0o760-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006994/su2255Isup2.hkl

e-67-0o760-Isup2.hkl (169.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.95 2.47 3.210 (2) 135
C12—H12ACg1ii 0.95 2.72 3.439 (2) 133
C19—H19ACg2iii 0.95 2.73 3.432 (2) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We appreciate financial support from DoD Grant W911NF-05–1–0456, and in part by the NIH (National Institutes of Health) NCI (National Cancer Institute) grant R01CA120170.

supplementary crystallographic information

Comment

Continuing our work on the synthesis and structural investigations of nonlinear optical organic compounds with two-photon absorption properties and potential biophotonic materials (Nesterov et al., 2003; Nesterov, 2004; Nesterov et al., 2007a-c; Nesterov et al., 2008; Sarkisov et al., 2005), we investigated the crystal structure of the title compound. This compound belongs to a group that has shown anticancer activity (Jia et al., 1988; Jia et al., 1989; Dimmock et al., 2001). It may also find application as an agent for locating cancer cells with two photon excited fluorescence and as potential agent for a photodynamic treatment of cancer (Nesterov et al., 2003; Sarkisov et al., 2005).

The molecular structure of the title molecule is illustrated in Fig. 1. The central heterocycle adopts a flattened boat conformation: atoms N1 and C4 lie -0.723 (1) and -0.205 (1) Å, respectively, out of the central C4 plane [planar within 0.004 (1) Å]. Dihedral angles between the flat part of the heterocycle (atoms C2,C3,C5,C6) and the two almost planar fragments that include the Ph-ring and the bridging atoms are 18.1 (1) and 18.0 (1)° for (C7-C13) and (C14-C20), respectively. Such nonplanarity might partly be caused by the presence of short intramolecular contacts H2B···H13A and H6A···H20A with distances 2.16 and 2.15 Å, that are somewhat shorter than the doubled van der Waals radii of the H atom (Rowland & Taylor, 1996). Atom N1 in the piperidone ring has a pyramidal coordination with the sum of bond angles equal to 329.8 (1)°, while the methyl substituent connected to it occupies an equatorial position.

In the crystal there are weak intermolecular C—H···O (H9A···O1 2.47 Å) contacts (Table 1) that could be considered as weak hydrogen bonds (Desiraju & Steiner, 1999). Such H-bonds link the molecules into dimers, centered about an inversion center, that form stacks along the a-axis (Fig. 2). The structure of the molecule is further stabilized by weak intermolecular C-H···π-interactions involving the benzene rings (Table 1).

Experimental

The title compound was obtained according to the literature procedure (Dimmock et al., 2001) by the reaction of p-chlorobenzaldehyde with 1-methyl-4-piperidone. The precipitate obtained was isolated and recrystallized from ethanol/acetonitrile [v/v = 50/50]; Mp. 442 K, yield 87%). The title compound was characterized by 1H and 13C NMR spectroscopy.

Refinement

All C-bound H atoms were placed in idealized positions and allowed to ride on their parent atom: C—H = 0.95, 0.98 and 0.99 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title molecule, with thermal ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Projection of the crystal packing of the title compound along the a-axis. Dashed lines denote weak intermolecular C—H···O hydrogen bonds.

Crystal data

C20H17Cl2NO F(000) = 744
Mr = 358.25 Dx = 1.406 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2327 reflections
a = 5.4568 (11) Å θ = 2.4–25.2°
b = 13.916 (3) Å µ = 0.39 mm1
c = 22.289 (4) Å T = 100 K
β = 90.847 (3)° Plate, yellow
V = 1692.4 (6) Å3 0.23 × 0.18 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX II CCD diffractometer 3461 independent reflections
Radiation source: fine-focus sealed tube 2830 reflections with I > 2σ(I)
graphite Rint = 0.042
ω scans θmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −6→6
Tmin = 0.916, Tmax = 0.970 k = −17→17
14890 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.030P)2 + 0.850P] where P = (Fo2 + 2Fc2)/3
3461 reflections (Δ/σ)max = 0.001
218 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.64148 (8) 0.85150 (3) 0.742372 (19) 0.02375 (12)
Cl2 0.64623 (9) 0.87411 (3) 0.01133 (2) 0.02727 (13)
O1 0.1157 (2) 0.92396 (9) 0.37523 (5) 0.0245 (3)
N1 0.5768 (3) 0.71047 (10) 0.37453 (6) 0.0191 (3)
C1 0.7423 (4) 0.62787 (13) 0.37437 (8) 0.0245 (4)
H1A 0.7070 0.5863 0.4087 0.037*
H1B 0.9123 0.6503 0.3773 0.037*
H1C 0.7187 0.5916 0.3370 0.037*
C2 0.6145 (3) 0.76651 (12) 0.42936 (8) 0.0187 (4)
H2A 0.7803 0.7953 0.4295 0.022*
H2B 0.6023 0.7239 0.4648 0.022*
C3 0.4243 (3) 0.84484 (12) 0.43294 (8) 0.0172 (4)
C4 0.3040 (3) 0.87585 (12) 0.37573 (8) 0.0188 (4)
C5 0.4283 (3) 0.84936 (12) 0.31884 (8) 0.0170 (4)
C6 0.6202 (3) 0.77144 (12) 0.32221 (8) 0.0183 (4)
H6A 0.6132 0.7321 0.2852 0.022*
H6B 0.7852 0.8007 0.3255 0.022*
C7 0.3539 (3) 0.89000 (12) 0.48316 (8) 0.0181 (4)
H7A 0.2281 0.9364 0.4772 0.022*
C8 0.4384 (3) 0.87971 (12) 0.54539 (8) 0.0176 (4)
C9 0.2897 (3) 0.91907 (12) 0.59029 (8) 0.0190 (4)
H9A 0.1438 0.9519 0.5788 0.023*
C10 0.3496 (3) 0.91133 (13) 0.65039 (8) 0.0201 (4)
H10A 0.2454 0.9374 0.6800 0.024*
C11 0.5648 (3) 0.86468 (12) 0.66671 (8) 0.0187 (4)
C12 0.7215 (3) 0.82827 (12) 0.62392 (8) 0.0194 (4)
H12A 0.8710 0.7983 0.6358 0.023*
C13 0.6586 (3) 0.83584 (12) 0.56397 (8) 0.0191 (4)
H13A 0.7662 0.8109 0.5347 0.023*
C14 0.3592 (3) 0.89801 (12) 0.26932 (8) 0.0176 (4)
H14A 0.2328 0.9438 0.2755 0.021*
C15 0.4450 (3) 0.89257 (12) 0.20763 (8) 0.0174 (4)
C16 0.2956 (3) 0.93346 (13) 0.16272 (8) 0.0204 (4)
H16A 0.1495 0.9655 0.1739 0.024*
C17 0.3543 (3) 0.92871 (13) 0.10259 (8) 0.0206 (4)
H17A 0.2491 0.9560 0.0728 0.025*
C18 0.5693 (3) 0.88342 (12) 0.08676 (8) 0.0192 (4)
C19 0.7270 (3) 0.84500 (12) 0.12966 (8) 0.0199 (4)
H19A 0.8760 0.8155 0.1181 0.024*
C20 0.6655 (3) 0.84995 (12) 0.18978 (8) 0.0191 (4)
H20A 0.7742 0.8241 0.2193 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0283 (3) 0.0252 (2) 0.0177 (2) 0.00033 (19) 0.00000 (17) −0.00001 (17)
Cl2 0.0321 (3) 0.0321 (3) 0.0177 (2) 0.0028 (2) 0.00405 (18) 0.00208 (18)
O1 0.0208 (7) 0.0300 (7) 0.0229 (7) 0.0082 (6) 0.0024 (5) 0.0004 (6)
N1 0.0227 (8) 0.0170 (7) 0.0175 (7) 0.0018 (6) 0.0019 (6) 0.0001 (6)
C1 0.0325 (11) 0.0186 (9) 0.0226 (10) 0.0051 (8) 0.0020 (8) 0.0000 (7)
C2 0.0185 (9) 0.0194 (9) 0.0181 (9) 0.0016 (7) 0.0020 (7) 0.0010 (7)
C3 0.0154 (8) 0.0177 (9) 0.0187 (9) −0.0027 (7) 0.0025 (7) 0.0016 (7)
C4 0.0177 (9) 0.0164 (9) 0.0224 (9) −0.0014 (7) 0.0021 (7) −0.0005 (7)
C5 0.0151 (8) 0.0172 (8) 0.0187 (9) −0.0016 (7) −0.0007 (7) −0.0023 (7)
C6 0.0180 (9) 0.0196 (9) 0.0173 (9) 0.0020 (7) 0.0017 (7) −0.0005 (7)
C7 0.0161 (8) 0.0173 (8) 0.0209 (9) 0.0005 (7) 0.0016 (7) 0.0022 (7)
C8 0.0190 (9) 0.0154 (8) 0.0186 (9) −0.0025 (7) 0.0028 (7) 0.0002 (7)
C9 0.0158 (9) 0.0175 (9) 0.0237 (9) 0.0014 (7) 0.0015 (7) −0.0002 (7)
C10 0.0198 (9) 0.0211 (9) 0.0197 (9) −0.0013 (7) 0.0049 (7) −0.0030 (7)
C11 0.0214 (9) 0.0175 (9) 0.0172 (9) −0.0038 (7) 0.0008 (7) −0.0005 (7)
C12 0.0161 (9) 0.0191 (9) 0.0229 (9) 0.0004 (7) −0.0001 (7) 0.0009 (7)
C13 0.0185 (9) 0.0198 (9) 0.0193 (9) 0.0005 (7) 0.0056 (7) −0.0025 (7)
C14 0.0153 (8) 0.0160 (8) 0.0215 (9) −0.0001 (7) 0.0001 (7) −0.0021 (7)
C15 0.0181 (9) 0.0154 (8) 0.0188 (9) −0.0028 (7) 0.0007 (7) −0.0010 (7)
C16 0.0189 (9) 0.0195 (9) 0.0229 (9) 0.0014 (7) 0.0011 (7) 0.0008 (7)
C17 0.0204 (9) 0.0213 (9) 0.0199 (9) −0.0006 (7) −0.0033 (7) 0.0035 (7)
C18 0.0229 (9) 0.0173 (9) 0.0176 (9) −0.0046 (7) 0.0027 (7) 0.0009 (7)
C19 0.0175 (9) 0.0192 (9) 0.0230 (9) −0.0017 (7) 0.0019 (7) −0.0004 (7)
C20 0.0177 (9) 0.0193 (9) 0.0202 (9) −0.0005 (7) −0.0015 (7) 0.0013 (7)

Geometric parameters (Å, °)

Cl1—C11 1.7412 (18) C8—C9 1.408 (2)
Cl2—C18 1.7437 (18) C9—C10 1.378 (2)
O1—C4 1.226 (2) C9—H9A 0.9500
N1—C2 1.462 (2) C10—C11 1.386 (2)
N1—C1 1.462 (2) C10—H10A 0.9500
N1—C6 1.464 (2) C11—C12 1.386 (2)
C1—H1A 0.9800 C12—C13 1.379 (2)
C1—H1B 0.9800 C12—H12A 0.9500
C1—H1C 0.9800 C13—H13A 0.9500
C2—C3 1.508 (2) C14—C15 1.461 (2)
C2—H2A 0.9900 C14—H14A 0.9500
C2—H2B 0.9900 C15—C16 1.402 (2)
C3—C7 1.345 (2) C15—C20 1.404 (2)
C3—C4 1.489 (2) C16—C17 1.384 (2)
C4—C5 1.493 (2) C16—H16A 0.9500
C5—C14 1.344 (2) C17—C18 1.382 (2)
C5—C6 1.509 (2) C17—H17A 0.9500
C6—H6A 0.9900 C18—C19 1.385 (2)
C6—H6B 0.9900 C19—C20 1.388 (2)
C7—C8 1.462 (2) C19—H19A 0.9500
C7—H7A 0.9500 C20—H20A 0.9500
C8—C13 1.405 (2)
C2—N1—C1 110.01 (14) C10—C9—C8 121.96 (16)
C2—N1—C6 109.53 (14) C10—C9—H9A 119.0
C1—N1—C6 110.27 (13) C8—C9—H9A 119.0
N1—C1—H1A 109.5 C9—C10—C11 118.66 (16)
N1—C1—H1B 109.5 C9—C10—H10A 120.7
H1A—C1—H1B 109.5 C11—C10—H10A 120.7
N1—C1—H1C 109.5 C10—C11—C12 121.30 (16)
H1A—C1—H1C 109.5 C10—C11—Cl1 119.61 (13)
H1B—C1—H1C 109.5 C12—C11—Cl1 119.09 (14)
N1—C2—C3 109.96 (14) C13—C12—C11 119.45 (16)
N1—C2—H2A 109.7 C13—C12—H12A 120.3
C3—C2—H2A 109.7 C11—C12—H12A 120.3
N1—C2—H2B 109.7 C12—C13—C8 121.23 (16)
C3—C2—H2B 109.7 C12—C13—H13A 119.4
H2A—C2—H2B 108.2 C8—C13—H13A 119.4
C7—C3—C4 116.71 (16) C5—C14—C15 131.05 (16)
C7—C3—C2 125.96 (16) C5—C14—H14A 114.5
C4—C3—C2 117.33 (15) C15—C14—H14A 114.5
O1—C4—C3 121.64 (16) C16—C15—C20 117.43 (16)
O1—C4—C5 121.21 (16) C16—C15—C14 117.37 (15)
C3—C4—C5 117.10 (15) C20—C15—C14 125.19 (16)
C14—C5—C4 116.58 (15) C17—C16—C15 122.11 (17)
C14—C5—C6 126.10 (16) C17—C16—H16A 118.9
C4—C5—C6 117.31 (15) C15—C16—H16A 118.9
N1—C6—C5 109.62 (14) C18—C17—C16 118.58 (16)
N1—C6—H6A 109.7 C18—C17—H17A 120.7
C5—C6—H6A 109.7 C16—C17—H17A 120.7
N1—C6—H6B 109.7 C17—C18—C19 121.41 (16)
C5—C6—H6B 109.7 C17—C18—Cl2 119.84 (14)
H6A—C6—H6B 108.2 C19—C18—Cl2 118.75 (14)
C3—C7—C8 130.82 (17) C18—C19—C20 119.40 (16)
C3—C7—H7A 114.6 C18—C19—H19A 120.3
C8—C7—H7A 114.6 C20—C19—H19A 120.3
C13—C8—C9 117.31 (16) C19—C20—C15 120.99 (16)
C13—C8—C7 125.35 (16) C19—C20—H20A 119.5
C9—C8—C7 117.31 (16) C15—C20—H20A 119.5

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C15–C20 and C8–C13 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C9—H9A···O1i 0.95 2.47 3.210 (2) 135
C12—H12A···Cg1ii 0.95 2.72 3.439 (2) 133
C19—H19A···Cg2iii 0.95 2.73 3.432 (2) 131

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2255).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.
  4. Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zell, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593. [DOI] [PubMed]
  5. Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1988). Acta Cryst. C44, 2114–2117.
  6. Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.
  7. Nesterov, V. N. (2004). Acta Cryst. C60, o806–o809. [DOI] [PubMed]
  8. Nesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007a). Acta Cryst. E63, o1785–o1787.
  9. Nesterov, V. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2007b). Acta Cryst. E63, o3043–o3044.
  10. Nesterov, V. N., Sarkisov, S. S., Curley, M. J., Urbas, A. & Ruiz, T. (2007c). Acta Cryst. E63, o4784.
  11. Nesterov, V. N., Timofeeva, T. V., Sarkisov, S. S., Leyderman, A., Lee, C. Y.-C. & Antipin, M. Yu. (2003). Acta Cryst. C59, o605–o608. [DOI] [PubMed]
  12. Nesterov, V. N., Zakharov, L. N., Sarkisov, S. S., Curley, M. J. & Urbas, A. (2008). Acta Cryst. C64, o73–o75. [DOI] [PubMed]
  13. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  14. Sarkisov, S. S., Peterson, B. H., Curley, M. J., Nesterov, V. N., Timofeeva, T., Antipin, M., Radovanova, E. I., Leyderman, A. & Fleitz, P. (2005). Two-photon absorption and fluorescence of new derivatives of cyclohexanone and piperidone. Nonlinear Optical Physics and Materials (JNOPM), Vol. 14, pp. 21–40. Singapore: World Scientific Publishing Company.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006994/su2255sup1.cif

e-67-0o760-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006994/su2255Isup2.hkl

e-67-0o760-Isup2.hkl (169.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES