Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 23;67(Pt 4):o953–o954. doi: 10.1107/S1600536811010191

Bis(2-amino-3-carb­oxy­pyridinium) sulfate trihydrate

Fadila Berrah a,*,, Amira Ouakkaf a, Sofiane Bouacida b,, Thierry Roisnel c
PMCID: PMC3099893  PMID: 21754219

Abstract

In the title compound, 2C6H7N2O2 +·SO4 2−·3H2O, there are two independent cations which are connected into N—H⋯O hydrogen-bonded dimers. In the crystal, O—H⋯O hydrogen-bonded sulfate–water sheets run parallel to (001) and are linked into a three-dimensional network via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds through the 2-amino­nicotinium dimers. Further stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds. R 4 3(10) and R 2 2(8) graph-set rings are observed. The crystal studied was an inversion twin with refined components of 0.45 (6) and 0.55 (6).

Related literature

For related compounds, see: Athimoolam & Rajaram (2005); Berrah et al. (2005, 2011a ,b ); Dobson & Gerkin (1997); Giantsidis & Turnbull (2000); Pawlukojc et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990). For background to hydrogen bonding, see: Desiraju (2003).graphic file with name e-67-0o953-scheme1.jpg

Experimental

Crystal data

  • 2C6H7N2O2 +·SO4 2−·3H2O

  • M r = 428.39

  • Orthorhombic, Inline graphic

  • a = 6.5372 (5) Å

  • b = 12.3141 (10) Å

  • c = 23.0274 (19) Å

  • V = 1853.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 150 K

  • 0.58 × 0.13 × 0.04 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.845, T max = 0.970

  • 23588 measured reflections

  • 4229 independent reflections

  • 3669 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.079

  • S = 1.06

  • 4229 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 1790 Friedel pairs

  • Flack parameter: 0.45 (6)

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010191/lh5219sup1.cif

e-67-0o953-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010191/lh5219Isup2.hkl

e-67-0o953-Isup2.hkl (203.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O3Wi 0.84 1.69 2.5152 (18) 167
O1B—H1B⋯O1W 0.84 1.69 2.5138 (18) 168
O1W—H1W⋯O2Wii 0.82 (4) 1.93 (3) 2.754 (2) 177 (4)
O3W—H5W⋯O2W 0.77 (3) 1.98 (3) 2.750 (2) 176 (3)
O1W—H2W⋯O4 0.75 (4) 2.03 (4) 2.752 (2) 164 (3)
O2W—H3W⋯O3iii 0.80 (3) 1.92 (3) 2.7151 (19) 169 (3)
O2W—H4W⋯O4 0.90 (3) 1.87 (3) 2.7675 (19) 175 (3)
O3W—H6W⋯O2iv 0.84 (2) 1.88 (2) 2.720 (2) 171 (3)
N2A—H2A⋯O1 0.88 1.92 2.7681 (18) 163
N2B—H2B⋯O1v 0.88 1.88 2.7419 (19) 167
N1A—H11A⋯O4 0.88 2.05 2.915 (2) 166
N1B—H11B⋯O2v 0.88 1.94 2.817 (2) 173
N1A—H12A⋯O2A 0.88 2.09 2.726 (2) 129
N1A—H12A⋯O2B 0.88 2.27 2.979 (2) 138
N1B—H12B⋯O2A 0.88 2.25 2.963 (2) 138
N1B—H12B⋯O2B 0.88 2.10 2.733 (2) 128
C4A—H4A⋯O3vi 0.95 2.46 3.143 (2) 129
C4B—H4B⋯O3vii 0.95 2.31 3.169 (2) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

We are grateful to the LCATM laboratory, Université Larbi Ben M’Hidi, Oum El Bouaghi, Algeria, for financial support.

supplementary crystallographic information

Comment

Hydrogen bonds are the object of several studies, which aim to elucidate their influence on crystal construction and compounds propreties (Desiraju, 2003). Pyridine and its derivatives well known for their various chemical and biological activities, have proved their aptitude to built new edifices involving original hydrogen-bonding patterns due to their variety of potential hydrogen donors and acceptors (Athimoolam et al., 2005; Dobson & Gerkin, 1997; Giantsidis & Turnbull, 2000). The title compound was obtained from 2-aminonicotinic acid and is a part of our search for new hybrid compounds based on protonated N-heterocyclic compounds and inorganic acids (Berrah et al., 2005;2011a,b).

As shown in figure 1, the asymmetric unit includes two crystallographically independent 2-aminonicotinium cations (A and B), one sulfate anion and three water molecules. The cation geometry is similar to that reported for the structure of 2-aminonicotinic acid (Dobson & Gerkin, 1997; Pawlukojc et al., 2007) except for C—O distances in the carboxylic group. In the 2-aminonicotinic acid structure, the two C—O distances are 1.234 (2) and 1.266 (2)Å since the carboxylic group transfers its proton to the hetero-ring nitrogen atom leading to a zwitterionic molecule.

The crystal packing of the title compound (Fig. 2) results from sulfate-water sheets extending parallel to (001) (Fig. 3) and linked together via 2-aminonicotinium dimers (Fig. 4). In one sheet, sulfate anions and H2O2W molecules alternate, leading to infinite chains running parallel to the a axis. These chains are further connected through H2O1W and H2O3W molecules in a way that R34(10) rings are formed (Fig. 3). The structure is stabilized via N—H···O, O—H···O and C—H···O Hydrogen bonds that link each dimer to its neighbors (Table 1, Fig. 4). R34 (10) and R22(8) graph-set rings are observed (Fig. 4)(Etter et al., 1990; Bernstein et al., 1995).

Experimental

Colorless crystal of the title compound was obtained by slow evaporation of an aqueous solution of 2-amino-pyridine-3-carboxylic acid and sulfuric acid in 2:1 stoichiometric ratio.

Refinement

The H atoms of the water molecules were located in difference Fourier maps and were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

(Farrugia, 1997) The asymmetric unit of the title compound. Displacement are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) A diagram of the three-dimentonal packing of (I) viewed along [010]. Hydrogen bonds are shown as dashed lines

Fig. 3.

Fig. 3.

(Brandenburg & Berndt, 2001) A view of one sulfate-water sheet parallel to (001) and the R34(10) rings. Hydrogen bonds are shown as dashed lines.

Fig. 4.

Fig. 4.

(Brandenburg & Berndt, 2001) Part of crystal packing showing cation dimers and R34(10) and R22(8) rings. Hydrogen bonds are shown as dashed lines.

Crystal data

2C6H7N2O2+·SO42·3H2O Dx = 1.535 Mg m3
Mr = 428.39 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 8735 reflections
a = 6.5372 (5) Å θ = 2.4–27.2°
b = 12.3141 (10) Å µ = 0.24 mm1
c = 23.0274 (19) Å T = 150 K
V = 1853.7 (3) Å3 Needle, colourless
Z = 4 0.58 × 0.13 × 0.04 mm
F(000) = 896

Data collection

Bruker APEXII diffractometer 3669 reflections with I > 2σ(I)
graphite Rint = 0.042
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −8→5
Tmin = 0.845, Tmax = 0.970 k = −15→15
23588 measured reflections l = −29→29
4229 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4264P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
4229 reflections Δρmax = 0.27 e Å3
274 parameters Δρmin = −0.28 e Å3
0 restraints Absolute structure: Flack (1983), 1790 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.45 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.7166 (3) 0.27959 (15) 0.00318 (8) 0.0216 (4)
C1B 0.6471 (3) 0.70977 (15) 0.03679 (8) 0.0200 (4)
C2A 0.7181 (3) 0.23143 (14) 0.06245 (7) 0.0207 (4)
C2B 0.6478 (3) 0.75822 (15) −0.02254 (7) 0.0190 (4)
C3A 0.7116 (3) 0.29935 (14) 0.11251 (7) 0.0201 (3)
C3B 0.6631 (3) 0.68958 (14) −0.07242 (7) 0.0190 (4)
C4A 0.7238 (3) 0.14018 (15) 0.17195 (8) 0.0263 (4)
H4A 0.726 0.1102 0.21 0.032*
C4B 0.6481 (3) 0.84839 (16) −0.13233 (8) 0.0262 (4)
H4B 0.6479 0.8782 −0.1704 0.031*
C5A 0.7264 (3) 0.07309 (16) 0.12519 (8) 0.0312 (5)
H5A 0.728 −0.0036 0.1297 0.037*
C5B 0.6322 (3) 0.91558 (16) −0.08559 (8) 0.0282 (4)
H5B 0.6211 0.992 −0.0904 0.034*
C6A 0.7268 (3) 0.12083 (16) 0.07029 (9) 0.0279 (4)
H6A 0.7333 0.0752 0.0371 0.034*
C6B 0.6326 (3) 0.86880 (16) −0.03039 (8) 0.0247 (4)
H6B 0.6222 0.9145 0.0027 0.03*
N1A 0.7020 (3) 0.40640 (12) 0.11129 (7) 0.0278 (3)
H11A 0.7 0.4434 0.144 0.033*
H12A 0.6976 0.4407 0.0778 0.033*
N1B 0.6788 (3) 0.58296 (12) −0.07142 (7) 0.0270 (4)
H11B 0.6894 0.5465 −0.1041 0.032*
H12B 0.6785 0.5482 −0.038 0.032*
N2A 0.7181 (2) 0.24906 (12) 0.16507 (6) 0.0215 (3)
H2A 0.7187 0.2899 0.1964 0.026*
N2B 0.6642 (2) 0.73990 (13) −0.12524 (6) 0.0225 (3)
H2B 0.6761 0.6992 −0.1565 0.027*
O1 0.7971 (2) 0.35697 (10) 0.26811 (5) 0.0259 (3)
O1A 0.7192 (2) 0.20503 (10) −0.03781 (5) 0.0294 (3)
H1A 0.714 0.2352 −0.0705 0.044*
O1B 0.6533 (2) 0.78383 (10) 0.07796 (5) 0.0277 (3)
H1B 0.6398 0.7538 0.1105 0.042*
O2 0.7597 (2) 0.52317 (11) 0.32163 (5) 0.0311 (3)
O1W 0.6295 (3) 0.71875 (14) 0.18121 (6) 0.0467 (5)
H1W 0.652 (5) 0.765 (3) 0.2061 (14) 0.07*
H2W 0.653 (5) 0.664 (3) 0.1933 (14) 0.07*
O2A 0.7137 (2) 0.37665 (11) −0.00595 (5) 0.0296 (3)
O2B 0.6414 (2) 0.61242 (10) 0.04572 (5) 0.0266 (3)
O3 0.9930 (2) 0.51502 (12) 0.24034 (6) 0.0301 (3)
O2W 0.3026 (2) 0.36878 (11) 0.23220 (6) 0.0270 (3)
H3W 0.201 (4) 0.405 (2) 0.2347 (11) 0.04*
H4W 0.405 (4) 0.417 (2) 0.2307 (11) 0.04*
O4 0.6310 (2) 0.50965 (11) 0.22342 (5) 0.0259 (3)
O3W 0.2063 (3) 0.23235 (12) 0.14171 (6) 0.0325 (3)
H5W 0.239 (4) 0.271 (2) 0.1664 (11) 0.049*
H6W 0.227 (4) 0.170 (2) 0.1557 (11) 0.049*
S1 0.79804 (7) 0.47766 (4) 0.263808 (18) 0.01992 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0196 (8) 0.0255 (10) 0.0197 (8) −0.0003 (8) −0.0009 (7) −0.0008 (7)
C1B 0.0188 (9) 0.0236 (10) 0.0176 (8) 0.0009 (7) −0.0004 (7) −0.0013 (7)
C2A 0.0205 (9) 0.0210 (9) 0.0207 (8) −0.0023 (7) −0.0018 (7) −0.0009 (7)
C2B 0.0192 (9) 0.0212 (9) 0.0165 (8) −0.0012 (7) −0.0016 (7) −0.0003 (7)
C3A 0.0203 (8) 0.0203 (8) 0.0196 (8) −0.0009 (8) −0.0001 (8) 0.0007 (7)
C3B 0.0205 (9) 0.0199 (9) 0.0167 (8) 0.0008 (7) −0.0006 (7) 0.0007 (7)
C4A 0.0318 (10) 0.0239 (9) 0.0232 (9) 0.0002 (8) −0.0036 (8) 0.0062 (8)
C4B 0.0300 (11) 0.0261 (10) 0.0225 (9) 0.0020 (8) −0.0008 (8) 0.0081 (8)
C5A 0.0451 (12) 0.0192 (9) 0.0293 (10) −0.0003 (9) −0.0034 (9) 0.0025 (8)
C5B 0.0336 (11) 0.0214 (10) 0.0294 (10) 0.0018 (8) −0.0012 (8) 0.0047 (8)
C6A 0.0354 (11) 0.0218 (9) 0.0266 (10) 0.0000 (8) −0.0017 (9) −0.0036 (8)
C6B 0.0278 (10) 0.0221 (9) 0.0241 (9) 0.0003 (8) −0.0007 (8) −0.0021 (8)
N1A 0.0465 (9) 0.0181 (8) 0.0188 (7) 0.0007 (8) −0.0003 (8) −0.0004 (6)
N1B 0.0436 (10) 0.0204 (8) 0.0171 (7) 0.0013 (8) −0.0001 (7) −0.0006 (6)
N2A 0.0256 (8) 0.0214 (7) 0.0175 (7) 0.0004 (7) −0.0014 (6) 0.0000 (6)
N2B 0.0270 (8) 0.0243 (8) 0.0162 (7) 0.0004 (6) 0.0004 (6) −0.0011 (6)
O1 0.0404 (7) 0.0191 (6) 0.0181 (6) −0.0016 (6) −0.0021 (6) 0.0004 (5)
O1A 0.0454 (8) 0.0252 (7) 0.0176 (6) 0.0011 (7) −0.0006 (6) −0.0015 (5)
O1B 0.0414 (8) 0.0250 (7) 0.0166 (6) 0.0008 (6) −0.0005 (6) −0.0018 (5)
O2 0.0508 (9) 0.0240 (7) 0.0184 (6) 0.0046 (6) 0.0021 (6) −0.0021 (6)
O1W 0.0970 (15) 0.0245 (8) 0.0185 (7) 0.0102 (9) −0.0078 (8) −0.0008 (6)
O2A 0.0453 (8) 0.0226 (7) 0.0208 (6) 0.0020 (6) 0.0017 (6) 0.0026 (5)
O2B 0.0363 (8) 0.0224 (7) 0.0212 (7) 0.0017 (6) 0.0004 (6) 0.0031 (6)
O3 0.0274 (7) 0.0295 (8) 0.0332 (8) −0.0038 (6) 0.0025 (6) 0.0054 (7)
O2W 0.0264 (7) 0.0248 (7) 0.0297 (7) −0.0016 (6) 0.0013 (7) −0.0017 (6)
O4 0.0284 (7) 0.0260 (7) 0.0234 (7) −0.0015 (6) −0.0034 (5) 0.0041 (6)
O3W 0.0538 (9) 0.0244 (8) 0.0193 (7) −0.0026 (7) −0.0042 (7) −0.0014 (6)
S1 0.0259 (2) 0.0184 (2) 0.01552 (19) −0.00133 (19) −0.00044 (18) 0.00021 (17)

Geometric parameters (Å, °)

C1A—O2A 1.214 (2) C5B—C6B 1.395 (3)
C1A—O1A 1.317 (2) C5B—H5B 0.95
C1A—C2A 1.488 (2) C6A—H6A 0.95
C1B—O2B 1.217 (2) C6B—H6B 0.95
C1B—O1B 1.316 (2) N1A—H11A 0.88
C1B—C2B 1.491 (2) N1A—H12A 0.88
C2A—C6A 1.375 (3) N1B—H11B 0.88
C2A—C3A 1.425 (2) N1B—H12B 0.88
C2B—C6B 1.377 (3) N2A—H2A 0.88
C2B—C3B 1.430 (2) N2B—H2B 0.88
C3A—N1A 1.320 (2) O1—S1 1.4895 (13)
C3A—N2A 1.360 (2) O1A—H1A 0.84
C3B—N1B 1.317 (2) O1B—H1B 0.84
C3B—N2B 1.365 (2) O2—S1 1.4662 (13)
C4A—N2A 1.351 (2) O1W—H1W 0.82 (3)
C4A—C5A 1.357 (3) O1W—H2W 0.75 (3)
C4A—H4A 0.95 O3—S1 1.4591 (14)
C4B—N2B 1.350 (2) O2W—H3W 0.80 (3)
C4B—C5B 1.362 (3) O2W—H4W 0.89 (3)
C4B—H4B 0.95 O4—S1 1.4877 (13)
C5A—C6A 1.394 (3) O3W—H5W 0.77 (3)
C5A—H5A 0.95 O3W—H6W 0.85 (3)
O2A—C1A—O1A 124.23 (16) C2A—C6A—C5A 122.46 (18)
O2A—C1A—C2A 123.47 (16) C2A—C6A—H6A 118.8
O1A—C1A—C2A 112.30 (15) C5A—C6A—H6A 118.8
O2B—C1B—O1B 124.18 (16) C2B—C6B—C5B 121.86 (18)
O2B—C1B—C2B 123.32 (16) C2B—C6B—H6B 119.1
O1B—C1B—C2B 112.51 (15) C5B—C6B—H6B 119.1
C6A—C2A—C3A 118.44 (16) C3A—N1A—H11A 120
C6A—C2A—C1A 121.03 (16) C3A—N1A—H12A 120
C3A—C2A—C1A 120.52 (15) H11A—N1A—H12A 120
C6B—C2B—C3B 118.95 (16) C3B—N1B—H11B 120
C6B—C2B—C1B 121.05 (16) C3B—N1B—H12B 120
C3B—C2B—C1B 120.00 (15) H11B—N1B—H12B 120
N1A—C3A—N2A 118.38 (15) C4A—N2A—C3A 123.86 (15)
N1A—C3A—C2A 124.77 (15) C4A—N2A—H2A 118.1
N2A—C3A—C2A 116.85 (15) C3A—N2A—H2A 118.1
N1B—C3B—N2B 117.89 (16) C4B—N2B—C3B 123.82 (16)
N1B—C3B—C2B 125.49 (15) C4B—N2B—H2B 118.1
N2B—C3B—C2B 116.61 (15) C3B—N2B—H2B 118.1
N2A—C4A—C5A 120.77 (17) C1A—O1A—H1A 109.5
N2A—C4A—H4A 119.6 C1B—O1B—H1B 109.5
C5A—C4A—H4A 119.6 H1W—O1W—H2W 109 (3)
N2B—C4B—C5B 120.77 (17) H3W—O2W—H4W 105 (2)
N2B—C4B—H4B 119.6 H5W—O3W—H6W 104 (3)
C5B—C4B—H4B 119.6 O3—S1—O2 111.42 (9)
C4A—C5A—C6A 117.56 (18) O3—S1—O4 109.05 (8)
C4A—C5A—H5A 121.2 O2—S1—O4 109.93 (8)
C6A—C5A—H5A 121.2 O3—S1—O1 110.06 (9)
C4B—C5B—C6B 117.98 (18) O2—S1—O1 108.68 (7)
C4B—C5B—H5B 121 O4—S1—O1 107.62 (8)
C6B—C5B—H5B 121
O2A—C1A—C2A—C6A −178.3 (2) C1B—C2B—C3B—N2B −179.57 (16)
O1A—C1A—C2A—C6A 1.6 (3) N2A—C4A—C5A—C6A 1.1 (3)
O2A—C1A—C2A—C3A 1.3 (3) N2B—C4B—C5B—C6B −0.1 (3)
O1A—C1A—C2A—C3A −178.75 (18) C3A—C2A—C6A—C5A 1.0 (3)
O2B—C1B—C2B—C6B 173.11 (18) C1A—C2A—C6A—C5A −179.38 (18)
O1B—C1B—C2B—C6B −6.9 (2) C4A—C5A—C6A—C2A −2.1 (3)
O2B—C1B—C2B—C3B −6.5 (3) C3B—C2B—C6B—C5B −0.1 (3)
O1B—C1B—C2B—C3B 173.45 (16) C1B—C2B—C6B—C5B −179.72 (17)
C6A—C2A—C3A—N1A −179.65 (19) C4B—C5B—C6B—C2B −0.2 (3)
C1A—C2A—C3A—N1A 0.7 (3) C5A—C4A—N2A—C3A 1.0 (3)
C6A—C2A—C3A—N2A 1.1 (3) N1A—C3A—N2A—C4A 178.57 (18)
C1A—C2A—C3A—N2A −178.53 (16) C2A—C3A—N2A—C4A −2.1 (3)
C6B—C2B—C3B—N1B 179.90 (18) C5B—C4B—N2B—C3B 0.9 (3)
C1B—C2B—C3B—N1B −0.5 (3) N1B—C3B—N2B—C4B 179.60 (18)
C6B—C2B—C3B—N2B 0.8 (3) C2B—C3B—N2B—C4B −1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O3Wi 0.84 1.69 2.5152 (18) 167
O1B—H1B···O1W 0.84 1.69 2.5138 (18) 168
O1W—H1W···O2Wii 0.82 (4) 1.93 (3) 2.754 (2) 177 (4)
O3W—H5W···O2W 0.77 (3) 1.98 (3) 2.750 (2) 176 (3)
O1W—H2W···O4 0.75 (4) 2.03 (4) 2.752 (2) 164 (3)
O2W—H3W···O3iii 0.80 (3) 1.92 (3) 2.7151 (19) 169 (3)
O2W—H4W···O4 0.90 (3) 1.87 (3) 2.7675 (19) 175 (3)
O3W—H6W···O2iv 0.84 (2) 1.88 (2) 2.720 (2) 171 (3)
N2A—H2A···O1 0.88 1.92 2.7681 (18) 163
N2B—H2B···O1v 0.88 1.88 2.7419 (19) 167
N1A—H11A···O4 0.88 2.05 2.915 (2) 166
N1B—H11B···O2v 0.88 1.94 2.817 (2) 173
N1A—H12A···O2A 0.88 2.09 2.726 (2) 129
N1A—H12A···O2B 0.88 2.27 2.979 (2) 138
N1B—H12B···O2A 0.88 2.25 2.963 (2) 138
N1B—H12B···O2B 0.88 2.10 2.733 (2) 128
C4A—H4A···O3vi 0.95 2.46 3.143 (2) 129
C4B—H4B···O3vii 0.95 2.31 3.169 (2) 150
C6A—H6A···O1A 0.95 2.35 2.697 (2) 101
C6B—H6B···O1B 0.95 2.37 2.709 (2) 100

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+3/2, −y+1, z−1/2; (vi) −x+2, y−1/2, −z+1/2; (vii) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5219).

References

  1. Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Berrah, F., Lamraoui, H. & Benali-Cherif, N. (2005). Acta Cryst. E61, o210–o212.
  4. Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526. [DOI] [PMC free article] [PubMed]
  5. Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678. [DOI] [PMC free article] [PubMed]
  6. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  7. Bruker (2001). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  9. Desiraju, G. R. (2003). Crystal Design: Structure and Function Perspectives in Supramolecular Chemistry, Vol. 7. Chichester: John Wiley & Sons Ltd.
  10. Dobson, A. J. & Gerkin, R. E. (1997). Acta Cryst. C53, 1427–1429. [DOI] [PubMed]
  11. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  12. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  13. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  14. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  15. Giantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334–335. [DOI] [PubMed]
  16. Pawlukojc, A., Starosta, W., Leciejewicz, J., Natkaniec, I. & Nowak, D. (2007). Chem. Phys. Lett. 437, 32–37.
  17. Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010191/lh5219sup1.cif

e-67-0o953-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010191/lh5219Isup2.hkl

e-67-0o953-Isup2.hkl (203.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES