Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 9;67(Pt 4):o821. doi: 10.1107/S1600536811007823

4,4′,5,5′-Tetra­kis(benzyl­sulfan­yl)tetra­thia­fulvalene

Cheng-Xiang Yu a, Yu-Lan Zhu b,*, Zhao-Xiang Chen b, Ming-Zhu Lu b, Kun Wang a
PMCID: PMC3099894  PMID: 21754105

Abstract

The asymmetric unit of the title compound, C34H28S8, contains two crystallographically independent half-mol­ecules. The mol­ecules lie on centers of inversion. The four benzene rings of each mol­ecule are substantially twisted from the planes of the 1,3-dithiole rings, forming dihedral angles of 43.6 (2) and 61.4 (1)° in one mol­ecule and 54.2 (1) and 65.2 (1)° in the other.

Related literature

For related structures, see: Abashev et al. (2003); Wang et al. (1997). For the synthesis of 4,5-bis­(3-picolyl­thio)-1,3-dithiole-2-thione, see: see: Jia et al. (2001). For tetra­thia­fulvalene derivatives, see: Shibaeva & Yagubskii (2004); Varma et al. (1987); Williams et al. (1984). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-0o821-scheme1.jpg

Experimental

Crystal data

  • C34H28S8

  • M r = 693.04

  • Triclinic, Inline graphic

  • a = 5.7450 (7) Å

  • b = 17.052 (2) Å

  • c = 18.701 (3) Å

  • α = 115.199 (2)°

  • β = 95.238 (2)°

  • γ = 95.922 (2)°

  • V = 1630.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.3 × 0.2 × 0.1 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.871, T max = 0.944

  • 11631 measured reflections

  • 5688 independent reflections

  • 3518 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.157

  • S = 1.06

  • 5688 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536811007823/zq2088sup1.cif

e-67-0o821-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007823/zq2088Isup2.hkl

e-67-0o821-Isup2.hkl (278.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 20671038, 20975043) and the Jiangsu Key Laboratory for the Chemistry of Low Dimensional Materials (No. JSKC09061). They also thank Dr K.-R. Ma for assistance with the crystallographic analysis.

supplementary crystallographic information

Comment

Many researchers have focused on a particularly important class of complexes with TTF (tetrathiafulvalene) and BEDT-TTF [bis(ethylenedithio)tetrathiafulvalene] derivatives (Shibaeva & Yagubskii, 2004; Varma et al., 1987). They have found related the wide range of technological applications, such as high electronic conductivity or superconductivity (Williams et al., 1984). In order to obtain materials involved in nonlinear optics, opto-electronics, molecular electronics, currently, our research is focused on the synthesis and crystal structures of TTF derivatives.

The asymmetric unit of the title compound, C34H28S8, contains two crystallographically independent half-molecules. The molecules lie on centers of inversion. They adopt chair-like conformations and the four benzene rings of each molecule are severely twisted from the planarity of the 1,3-dithiole rings (Fig. 1). Due to the Ci symmetry of the molecules, the substituent groups of the TTF core are located in opposite directions, resulting in chair-like molecular conformations. The four benzene rings of each molecule are severely twisted from the planarity of the 1,3-dithiole rings. The C—S bonds in the five-membered rings fall in the range of 1.742 (4)–1.761 (4) Å and are shorter than a typical C—S single bond (1.82 Å; Allen et al., 1987), revealing the high degree of conjugation into the five-membered rings of the title compound. On the other hand, the S—C(CH2Ph) bond distances are longer than the C-S bonds of the rings falling in the range of 1.794 (5)-1.837 (5) Å, similar to a typical C—S single bond. The mean planes of the C5–C10 and C12–C13 benzene rings [C22–C27 and C29–C34] form dihedral angles of 43.6 (2) and 61.4 (1)° [54.2 (1) and 65.2 (1)°] with the least-squares plane of the central dithiolane ring, respectively. The crystal packing diagram of the title compound is shown in Fig. 2. The shortest intermolecular S-S distances, S(1)—S(2) and S(5)—S(6) distances, are 3.793 (2) Å and 3.855 (2) Å, respectively.

Experimental

A total of 42.15 mg (0.3 mmol) of K2CO3 was dissolved in less than 5 ml of water, and 100 mg (0.61 mmol) of 3-picolyl chloride hydrochloride was added at room temperature. After the gas evolution was stopped, a colorless dense liquid was present. Subsequently, 143.35 mg (0.15 mmol) of TBA2[Zn(DMIT)2] dissolved in 15 ml of acetonitrile was mixed with this dense liquid, and the solution was stirred at 50–60 °C for 1.5–2 h. The reaction mixture was filtered, and the solid residue was washed twice with dichloromethane (20 ml). The combined filtrate and washings were decolorized by activated charcoal. After removing the solvent, column chromatography of the crude reaction mixture on silica gel with ethyl acetate/methanol (10:1) afforded compound 1a as a yellow solid (85.5 mg, 75%). Benzyl chloride (12 ml) was added dropwise to a solution of TBA2[Zn(DMIT)2] (10 mmol) in acetone (100 ml). The mixture was refluxed under N2 for 24 h. Stirring was continued overnight. The resulting orange precipitate was filtered off. The product was further purified by recrystallization from methanol to give yellow needle like crystals (yield 76%). All solvent were distilled before use. 95 mg (0.25 mmol) of 4,5-bis(3-picolylthio)-1,3-dithiole-2-thione and 144 mg (0.4 mmol) of 4,5- bis(benzylthio)-1,3-dithione- 2-thione (0.3 mmol) were stirred in 30 ml of dry toluene under N2. Then, 2.5 ml of P(OEt)3 was added and the yellowish suspension was refluxed for 4 h at 120 °C. The resulting orange yellow precipitate that formed was filtered off. The red filtrate was left to stand for several days, giving pale red crystals suitable for a X-ray structure analysis.

Refinement

All non-hydrogen atoms were located from the difference Fourier maps, and were refined anisotropically. All H atoms were positioned geometrically, and were allowed to ride on their corresponding parent atoms with Uiso = 1.2 Ueq.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram.

Crystal data

C34H28S8 V = 1630.1 (4) Å3
Mr = 693.04 Z = 2
Triclinic, P1 F(000) = 720
Hall symbol: -P 1 Dx = 1.412 Mg m3
a = 5.7450 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 17.052 (2) Å θ = 1.2–25.0°
c = 18.701 (3) Å µ = 0.57 mm1
α = 115.199 (2)° T = 296 K
β = 95.238 (2)° Needle, red
γ = 95.922 (2)° 0.3 × 0.2 × 0.1 mm

Data collection

Bruker SMART APEXII diffractometer 5688 independent reflections
Radiation source: fine-focus sealed tube 3518 reflections with I > 2σ(I)
graphite Rint = 0.033
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 1.2°
ω–scan h = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2000) k = −19→20
Tmin = 0.871, Tmax = 0.944 l = −22→19
11631 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0745P)2] where P = (Fo2 + 2Fc2)/3
5688 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.76116 (19) 0.45649 (8) 0.06508 (7) 0.0626 (3)
S2 0.7452 (2) 0.41173 (8) −0.10618 (7) 0.0624 (3)
S3 0.2978 (2) 0.28449 (8) −0.15494 (7) 0.0675 (4)
S4 0.30556 (19) 0.33663 (8) 0.03726 (7) 0.0634 (3)
S5 1.18791 (19) 0.39890 (7) 0.44406 (7) 0.0604 (3)
S6 1.37020 (19) 0.51995 (7) 0.61260 (7) 0.0634 (3)
S7 0.9859 (2) 0.44729 (8) 0.67531 (7) 0.0707 (4)
S8 0.77397 (19) 0.31193 (7) 0.48536 (8) 0.0666 (4)
C1 0.8989 (7) 0.4720 (3) −0.0086 (2) 0.0521 (10)
C2 0.5204 (7) 0.3564 (3) −0.0793 (3) 0.0525 (10)
C3 0.5289 (7) 0.3773 (2) −0.0010 (3) 0.0503 (10)
C4 0.4542 (9) 0.1914 (3) −0.2040 (3) 0.0772 (14)
H4A 0.3542 0.1486 −0.2525 0.093*
H4B 0.5966 0.2120 −0.2192 0.093*
C5 0.5204 (8) 0.1480 (3) −0.1528 (3) 0.0588 (11)
C6 0.3653 (9) 0.0843 (3) −0.1473 (3) 0.0846 (16)
H6 0.2151 0.0674 −0.1773 0.101*
C7 0.4232 (10) 0.0452 (3) −0.0998 (4) 0.0864 (16)
H7 0.3148 0.0020 −0.0977 0.104*
C8 0.6399 (11) 0.0697 (4) −0.0556 (4) 0.0893 (16)
H8 0.6809 0.0432 −0.0229 0.107*
C9 0.7975 (10) 0.1321 (4) −0.0583 (3) 0.0893 (16)
H9 0.9465 0.1485 −0.0276 0.107*
C10 0.7390 (8) 0.1713 (3) −0.1062 (3) 0.0745 (14)
H10 0.8490 0.2146 −0.1074 0.089*
C11 0.4694 (8) 0.3179 (3) 0.1146 (3) 0.0768 (14)
H11A 0.5860 0.2803 0.0928 0.092*
H11B 0.5503 0.3730 0.1573 0.092*
C12 0.2902 (7) 0.2742 (3) 0.1453 (3) 0.0576 (11)
C13 0.2587 (10) 0.1853 (4) 0.1199 (3) 0.0823 (15)
H13 0.3578 0.1525 0.0862 0.099*
C14 0.0888 (10) 0.1439 (3) 0.1422 (3) 0.0807 (15)
H14 0.0690 0.0833 0.1236 0.097*
C15 −0.0532 (9) 0.1920 (4) 0.1922 (3) 0.0787 (15)
H15 −0.1715 0.1637 0.2078 0.094*
C16 −0.0264 (9) 0.2797 (4) 0.2199 (3) 0.0754 (14)
H16 −0.1243 0.3120 0.2544 0.090*
C17 0.1477 (9) 0.3207 (3) 0.1963 (3) 0.0734 (13)
H17 0.1684 0.3814 0.2156 0.088*
C18 1.4097 (7) 0.4832 (2) 0.5118 (2) 0.0515 (10)
C19 1.1169 (7) 0.4427 (2) 0.5933 (2) 0.0524 (10)
C20 1.0339 (7) 0.3877 (2) 0.5165 (3) 0.0519 (10)
C21 1.1842 (9) 0.3938 (3) 0.7156 (3) 0.0731 (13)
H21A 1.3445 0.4247 0.7265 0.088*
H21B 1.1398 0.3982 0.7658 0.088*
C22 1.1795 (7) 0.2990 (3) 0.6602 (2) 0.0538 (10)
C23 1.3551 (8) 0.2731 (3) 0.6152 (3) 0.0731 (13)
H23 1.4791 0.3147 0.6185 0.088*
C24 1.3509 (10) 0.1866 (4) 0.5652 (3) 0.0910 (17)
H24 1.4714 0.1696 0.5345 0.109*
C25 1.1736 (12) 0.1262 (3) 0.5603 (3) 0.0902 (18)
H25 1.1743 0.0673 0.5269 0.108*
C26 0.9954 (9) 0.1488 (3) 0.6025 (3) 0.0768 (15)
H26 0.8715 0.1065 0.5979 0.092*
C27 0.9989 (8) 0.2348 (3) 0.6522 (3) 0.0738 (14)
H27 0.8756 0.2508 0.6817 0.089*
C28 0.8508 (9) 0.2203 (3) 0.4031 (3) 0.0909 (18)
H28A 0.8838 0.2367 0.3610 0.109*
H28B 0.9915 0.2024 0.4206 0.109*
C29 0.6469 (8) 0.1459 (3) 0.3725 (3) 0.0634 (12)
C30 0.4469 (9) 0.1446 (3) 0.3250 (3) 0.0723 (13)
H30 0.4372 0.1901 0.3104 0.087*
C31 0.2629 (8) 0.0768 (3) 0.2992 (3) 0.0754 (14)
H31 0.1279 0.0763 0.2674 0.090*
C32 0.2775 (9) 0.0106 (3) 0.3199 (3) 0.0768 (14)
H32 0.1516 −0.0353 0.3024 0.092*
C33 0.4706 (9) 0.0101 (3) 0.3652 (3) 0.0744 (14)
H33 0.4786 −0.0358 0.3792 0.089*
C34 0.6527 (9) 0.0760 (3) 0.3904 (3) 0.0784 (14)
H34 0.7873 0.0743 0.4210 0.094*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0595 (7) 0.0670 (7) 0.0542 (7) −0.0072 (5) 0.0140 (5) 0.0227 (6)
S2 0.0632 (7) 0.0664 (7) 0.0577 (7) −0.0015 (6) 0.0148 (5) 0.0287 (6)
S3 0.0635 (7) 0.0725 (8) 0.0667 (8) −0.0025 (6) −0.0086 (6) 0.0371 (7)
S4 0.0483 (6) 0.0828 (8) 0.0765 (8) 0.0003 (6) 0.0072 (5) 0.0541 (7)
S5 0.0561 (7) 0.0603 (7) 0.0583 (7) −0.0096 (5) 0.0001 (5) 0.0257 (6)
S6 0.0623 (7) 0.0568 (7) 0.0607 (7) −0.0053 (5) −0.0011 (6) 0.0214 (6)
S7 0.0860 (9) 0.0560 (7) 0.0689 (8) 0.0178 (6) 0.0295 (7) 0.0214 (6)
S8 0.0556 (7) 0.0486 (6) 0.0825 (8) −0.0014 (5) 0.0199 (6) 0.0167 (6)
C1 0.051 (2) 0.051 (2) 0.056 (3) 0.0040 (18) 0.014 (2) 0.025 (2)
C2 0.049 (2) 0.054 (2) 0.062 (3) 0.0076 (19) 0.010 (2) 0.032 (2)
C3 0.046 (2) 0.050 (2) 0.060 (3) 0.0034 (18) 0.0080 (19) 0.029 (2)
C4 0.092 (4) 0.070 (3) 0.055 (3) 0.000 (3) 0.001 (3) 0.019 (3)
C5 0.066 (3) 0.048 (2) 0.055 (3) 0.003 (2) 0.011 (2) 0.017 (2)
C6 0.068 (3) 0.069 (3) 0.105 (4) −0.006 (3) 0.008 (3) 0.032 (3)
C7 0.092 (4) 0.063 (3) 0.118 (5) 0.002 (3) 0.027 (4) 0.053 (3)
C8 0.097 (4) 0.082 (4) 0.103 (4) 0.027 (3) 0.025 (4) 0.050 (3)
C9 0.074 (4) 0.100 (4) 0.103 (4) 0.015 (3) 0.005 (3) 0.055 (4)
C10 0.060 (3) 0.073 (3) 0.088 (4) −0.002 (2) 0.012 (3) 0.035 (3)
C11 0.063 (3) 0.105 (4) 0.085 (4) 0.009 (3) 0.006 (3) 0.065 (3)
C12 0.057 (3) 0.072 (3) 0.055 (3) 0.014 (2) 0.009 (2) 0.038 (2)
C13 0.104 (4) 0.085 (4) 0.081 (4) 0.036 (3) 0.042 (3) 0.047 (3)
C14 0.116 (4) 0.058 (3) 0.083 (4) 0.019 (3) 0.038 (3) 0.040 (3)
C15 0.085 (4) 0.096 (4) 0.079 (4) 0.006 (3) 0.020 (3) 0.060 (3)
C16 0.086 (4) 0.094 (4) 0.063 (3) 0.032 (3) 0.032 (3) 0.043 (3)
C17 0.091 (4) 0.065 (3) 0.063 (3) 0.012 (3) 0.007 (3) 0.028 (3)
C18 0.054 (2) 0.044 (2) 0.060 (3) 0.0030 (18) 0.001 (2) 0.028 (2)
C19 0.057 (2) 0.043 (2) 0.057 (3) 0.0114 (19) 0.011 (2) 0.021 (2)
C20 0.052 (2) 0.043 (2) 0.061 (3) 0.0092 (18) 0.011 (2) 0.023 (2)
C21 0.101 (4) 0.065 (3) 0.049 (3) 0.011 (3) 0.011 (2) 0.021 (2)
C22 0.064 (3) 0.060 (3) 0.041 (2) 0.008 (2) 0.005 (2) 0.027 (2)
C23 0.066 (3) 0.073 (3) 0.076 (3) 0.003 (3) 0.017 (3) 0.030 (3)
C24 0.092 (4) 0.086 (4) 0.089 (4) 0.035 (3) 0.029 (3) 0.026 (3)
C25 0.104 (5) 0.059 (3) 0.092 (4) 0.009 (3) −0.021 (4) 0.026 (3)
C26 0.067 (3) 0.064 (3) 0.096 (4) −0.017 (3) −0.010 (3) 0.043 (3)
C27 0.062 (3) 0.093 (4) 0.076 (3) 0.003 (3) 0.011 (2) 0.048 (3)
C28 0.074 (3) 0.074 (3) 0.082 (4) −0.020 (3) 0.026 (3) −0.001 (3)
C29 0.060 (3) 0.060 (3) 0.049 (3) −0.004 (2) 0.015 (2) 0.006 (2)
C30 0.084 (3) 0.060 (3) 0.077 (3) 0.009 (3) 0.009 (3) 0.035 (3)
C31 0.061 (3) 0.066 (3) 0.088 (4) 0.003 (2) −0.008 (3) 0.028 (3)
C32 0.075 (3) 0.059 (3) 0.080 (4) −0.006 (2) 0.001 (3) 0.021 (3)
C33 0.089 (4) 0.053 (3) 0.074 (3) 0.001 (3) −0.005 (3) 0.027 (3)
C34 0.074 (3) 0.079 (4) 0.069 (3) 0.012 (3) −0.004 (3) 0.022 (3)

Geometric parameters (Å, °)

S1—C3 1.742 (4) C13—H13 0.9300
S1—C1 1.750 (4) C14—C15 1.356 (7)
S2—C2 1.756 (4) C14—H14 0.9300
S2—C1 1.757 (4) C15—C16 1.344 (7)
S3—C2 1.735 (4) C15—H15 0.9300
S3—C4 1.837 (5) C16—C17 1.372 (6)
S4—C3 1.745 (4) C16—H16 0.9300
S4—C11 1.813 (4) C17—H17 0.9300
S5—C20 1.749 (4) C18—C18ii 1.333 (7)
S5—C18 1.752 (4) C19—C20 1.344 (6)
S6—C19 1.757 (4) C21—C22 1.499 (6)
S6—C18 1.761 (4) C21—H21A 0.9700
S7—C19 1.745 (4) C21—H21B 0.9700
S7—C21 1.827 (5) C22—C23 1.360 (6)
S8—C20 1.744 (4) C22—C27 1.376 (6)
S8—C28 1.794 (5) C23—C24 1.366 (7)
C1—C1i 1.343 (7) C23—H23 0.9300
C2—C3 1.347 (6) C24—C25 1.339 (7)
C4—C5 1.486 (6) C24—H24 0.9300
C4—H4A 0.9700 C25—C26 1.337 (7)
C4—H4B 0.9700 C25—H25 0.9300
C5—C6 1.377 (6) C26—C27 1.358 (7)
C5—C10 1.378 (6) C26—H26 0.9300
C6—C7 1.356 (7) C27—H27 0.9300
C6—H6 0.9300 C28—C29 1.505 (6)
C7—C8 1.349 (7) C28—H28A 0.9700
C7—H7 0.9300 C28—H28B 0.9700
C8—C9 1.345 (7) C29—C34 1.371 (7)
C8—H8 0.9300 C29—C30 1.379 (6)
C9—C10 1.365 (7) C30—C31 1.366 (6)
C9—H9 0.9300 C30—H30 0.9300
C10—H10 0.9300 C31—C32 1.348 (6)
C11—C12 1.503 (6) C31—H31 0.9300
C11—H11A 0.9700 C32—C33 1.336 (6)
C11—H11B 0.9700 C32—H32 0.9300
C12—C17 1.357 (6) C33—C34 1.340 (6)
C12—C13 1.368 (6) C33—H33 0.9300
C13—C14 1.345 (6) C34—H34 0.9300
C3—S1—C1 95.58 (19) C17—C16—H16 120.5
C2—S2—C1 95.26 (19) C12—C17—C16 121.1 (5)
C2—S3—C4 100.3 (2) C12—C17—H17 119.4
C3—S4—C11 102.9 (2) C16—C17—H17 119.4
C20—S5—C18 95.82 (19) C18ii—C18—S5 122.4 (4)
C19—S6—C18 95.26 (18) C18ii—C18—S6 123.4 (4)
C19—S7—C21 101.0 (2) S5—C18—S6 114.2 (2)
C20—S8—C28 102.0 (2) C20—C19—S7 125.4 (3)
C1i—C1—S1 122.5 (4) C20—C19—S6 117.4 (3)
C1i—C1—S2 122.9 (4) S7—C19—S6 117.1 (2)
S1—C1—S2 114.5 (2) C19—C20—S8 123.9 (3)
C3—C2—S3 125.7 (3) C19—C20—S5 117.2 (3)
C3—C2—S2 116.9 (3) S8—C20—S5 118.8 (2)
S3—C2—S2 117.3 (2) C22—C21—S7 113.2 (3)
C2—C3—S1 117.6 (3) C22—C21—H21A 108.9
C2—C3—S4 123.0 (3) S7—C21—H21A 108.9
S1—C3—S4 119.1 (2) C22—C21—H21B 108.9
C5—C4—S3 113.3 (3) S7—C21—H21B 108.9
C5—C4—H4A 108.9 H21A—C21—H21B 107.8
S3—C4—H4A 108.9 C23—C22—C27 117.2 (4)
C5—C4—H4B 108.9 C23—C22—C21 120.8 (4)
S3—C4—H4B 108.9 C27—C22—C21 122.0 (4)
H4A—C4—H4B 107.7 C22—C23—C24 120.6 (5)
C6—C5—C10 116.2 (5) C22—C23—H23 119.7
C6—C5—C4 122.2 (4) C24—C23—H23 119.7
C10—C5—C4 121.5 (4) C25—C24—C23 120.1 (5)
C7—C6—C5 122.6 (5) C25—C24—H24 120.0
C7—C6—H6 118.7 C23—C24—H24 120.0
C5—C6—H6 118.7 C26—C25—C24 121.3 (5)
C8—C7—C6 119.2 (5) C26—C25—H25 119.3
C8—C7—H7 120.4 C24—C25—H25 119.3
C6—C7—H7 120.4 C25—C26—C27 118.7 (5)
C9—C8—C7 120.7 (6) C25—C26—H26 120.7
C9—C8—H8 119.7 C27—C26—H26 120.7
C7—C8—H8 119.7 C26—C27—C22 122.0 (5)
C8—C9—C10 120.1 (5) C26—C27—H27 119.0
C8—C9—H9 120.0 C22—C27—H27 119.0
C10—C9—H9 120.0 C29—C28—S8 108.6 (3)
C9—C10—C5 121.3 (5) C29—C28—H28A 110.0
C9—C10—H10 119.3 S8—C28—H28A 110.0
C5—C10—H10 119.3 C29—C28—H28B 110.0
C12—C11—S4 106.2 (3) S8—C28—H28B 110.0
C12—C11—H11A 110.5 H28A—C28—H28B 108.3
S4—C11—H11A 110.5 C34—C29—C30 117.1 (4)
C12—C11—H11B 110.5 C34—C29—C28 121.2 (5)
S4—C11—H11B 110.5 C30—C29—C28 121.7 (5)
H11A—C11—H11B 108.7 C31—C30—C29 120.3 (5)
C17—C12—C13 117.8 (4) C31—C30—H30 119.9
C17—C12—C11 121.4 (4) C29—C30—H30 119.9
C13—C12—C11 120.7 (4) C32—C31—C30 119.9 (5)
C14—C13—C12 121.9 (5) C32—C31—H31 120.1
C14—C13—H13 119.0 C30—C31—H31 120.1
C12—C13—H13 119.0 C33—C32—C31 120.8 (5)
C13—C14—C15 118.9 (5) C33—C32—H32 119.6
C13—C14—H14 120.5 C31—C32—H32 119.6
C15—C14—H14 120.5 C32—C33—C34 119.9 (5)
C16—C15—C14 121.3 (5) C32—C33—H33 120.1
C16—C15—H15 119.4 C34—C33—H33 120.1
C14—C15—H15 119.4 C33—C34—C29 122.1 (5)
C15—C16—C17 118.9 (5) C33—C34—H34 119.0
C15—C16—H16 120.5 C29—C34—H34 119.0
C3—S1—C1—C1i −178.8 (5) C20—S5—C18—C18ii 177.2 (5)
C3—S1—C1—S2 3.6 (3) C20—S5—C18—S6 −3.6 (3)
C2—S2—C1—C1i 178.7 (5) C19—S6—C18—C18ii −177.2 (5)
C2—S2—C1—S1 −3.7 (3) C19—S6—C18—S5 3.6 (3)
C4—S3—C2—C3 −108.3 (4) C21—S7—C19—C20 104.9 (4)
C4—S3—C2—S2 75.8 (3) C21—S7—C19—S6 −78.2 (3)
C1—S2—C2—C3 2.3 (4) C18—S6—C19—C20 −2.2 (4)
C1—S2—C2—S3 178.6 (2) C18—S6—C19—S7 −179.4 (2)
S3—C2—C3—S1 −176.1 (2) S7—C19—C20—S8 1.4 (6)
S2—C2—C3—S1 −0.2 (5) S6—C19—C20—S8 −175.4 (2)
S3—C2—C3—S4 −2.2 (6) S7—C19—C20—S5 176.9 (2)
S2—C2—C3—S4 173.7 (2) S6—C19—C20—S5 0.1 (5)
C1—S1—C3—C2 −2.1 (4) C28—S8—C20—C19 −143.4 (4)
C1—S1—C3—S4 −176.2 (2) C28—S8—C20—S5 41.1 (3)
C11—S4—C3—C2 141.7 (4) C18—S5—C20—C19 2.1 (4)
C11—S4—C3—S1 −44.4 (3) C18—S5—C20—S8 177.9 (2)
C2—S3—C4—C5 65.9 (4) C19—S7—C21—C22 −65.1 (4)
S3—C4—C5—C6 84.5 (5) S7—C21—C22—C23 101.7 (5)
S3—C4—C5—C10 −93.5 (5) S7—C21—C22—C27 −78.0 (5)
C10—C5—C6—C7 −0.9 (8) C27—C22—C23—C24 −0.7 (7)
C4—C5—C6—C7 −179.0 (5) C21—C22—C23—C24 179.6 (4)
C5—C6—C7—C8 0.5 (9) C22—C23—C24—C25 −0.3 (8)
C6—C7—C8—C9 0.0 (9) C23—C24—C25—C26 1.3 (9)
C7—C8—C9—C10 0.0 (9) C24—C25—C26—C27 −1.2 (8)
C8—C9—C10—C5 −0.4 (8) C25—C26—C27—C22 0.2 (7)
C6—C5—C10—C9 0.9 (7) C23—C22—C27—C26 0.8 (7)
C4—C5—C10—C9 179.0 (5) C21—C22—C27—C26 −179.5 (4)
C3—S4—C11—C12 −174.6 (3) C20—S8—C28—C29 176.3 (4)
S4—C11—C12—C17 −77.4 (5) S8—C28—C29—C34 −103.0 (5)
S4—C11—C12—C13 99.8 (5) S8—C28—C29—C30 77.3 (5)
C17—C12—C13—C14 1.9 (7) C34—C29—C30—C31 1.4 (7)
C11—C12—C13—C14 −175.4 (5) C28—C29—C30—C31 −178.9 (4)
C12—C13—C14—C15 −0.9 (8) C29—C30—C31—C32 −0.4 (8)
C13—C14—C15—C16 −0.2 (8) C30—C31—C32—C33 −0.3 (8)
C14—C15—C16—C17 0.3 (8) C31—C32—C33—C34 −0.1 (8)
C13—C12—C17—C16 −1.7 (7) C32—C33—C34—C29 1.3 (8)
C11—C12—C17—C16 175.5 (4) C30—C29—C34—C33 −1.9 (7)
C15—C16—C17—C12 0.7 (7) C28—C29—C34—C33 178.4 (4)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2088).

References

  1. Abashev, G. G., Shklyaeva, E. V., Tenishev, A. G., Kazheva, O. N., Shilov, G. V. & Dyachenko, O. A. (2003). Synth. Met. 133, 329–331.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Jia, C.-Y., Zhang, D.-Q., Xu, W. & Zhu, D.-B. (2001). Org. Lett. 12, 1941–1944. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shibaeva, R. P. & Yagubskii, E. B. (2004). Chem. Rev. 104, 5347–5378. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Varma, K. S., Bury, A., Harris, N. J. & Underhill, A. E. (1987). Synthesis pp. 837–838.
  11. Wang, C., Bryce, M. R., Batsanov, A. S., Goldenberg, L. M. & Howard, J. A. K. (1997). J. Mater. Chem. 7, 1189–1197.
  12. Williams, J. M., Emge, T. J., Wang, H. H., Beno, M. A., Copps, P. T., Hall, L. N., Carlson, K. D. & Crabtree, G. W. (1984). Inorg. Chem. 23, 2558–2560.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536811007823/zq2088sup1.cif

e-67-0o821-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007823/zq2088Isup2.hkl

e-67-0o821-Isup2.hkl (278.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES