Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):m463. doi: 10.1107/S1600536811009330

Bis[2-meth­oxy-6-(phenyl­iminiomethyl)phenolate-κ2 O,O′]bis­(thio­cyanato-κN)manganese(II)

Jin-Bei Shen a, Guo-Di Ge a, Guo-Liang Zhao a,b,*
PMCID: PMC3099895  PMID: 21753979

Abstract

The MnII atom in the title complex, [Mn(NCS)2(C14H13NO2)2], lies on a center of inversion in a MnO4N2 octa­hedral geometry. The Schiff base is present in its zwitterionic form and is O,O′-chelated to the metal atom. The imino N atom is protonated and is involved in an intra­molecular hydrogen bond with the phenolate O atom.

Related literature

For Schiff base ligands derived from o-vanillin and aniline and their rare earth complexes, see: Li et al. (2008); Liu et al. (2009); Xian et al. (2008); Zhao et al. (2005, 2007).graphic file with name e-67-0m463-scheme1.jpg

Experimental

Crystal data

  • [Mn(NCS)2(C14H13NO2)2]

  • M r = 625.61

  • Triclinic, Inline graphic

  • a = 9.0204 (2) Å

  • b = 9.3070 (2) Å

  • c = 9.4087 (2) Å

  • α = 87.417 (1)°

  • β = 82.010 (1)°

  • γ = 65.693 (1)°

  • V = 712.81 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 296 K

  • 0.29 × 0.17 × 0.05 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.877, T max = 0.970

  • 9483 measured reflections

  • 2509 independent reflections

  • 2233 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.077

  • S = 1.06

  • 2509 reflections

  • 188 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009330/ng5130sup1.cif

e-67-0m463-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009330/ng5130Isup2.hkl

e-67-0m463-Isup2.hkl (123.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.97 2.6501 (16) 135

supplementary crystallographic information

Comment

For many years, there has been considerable interest in the study of Schiff base compounds due to their biological activity (Zhao et al., 2005). Interested in this field, we have been synthesized several analogous Schiff bases derived from o-vanillin and prepared their transitional and rare metal complexes further. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al. 2008; Li et al. 2008; Liu et al. 2009). Herein, we describe a new Mn(II) complex.

The structure of complex (1) was shown in Fig. 1 and the coordination environment of Mn(II) was shown in Fig. 2. In this complex the Mn(II) is six- coordinated by two N atoms from thiocyanate ions and four O atoms from the Schiff bases (HL), which can be described as a distorted octahedral geometry. There thiocyanate anions coordinate to Mn(II) ion with N atoms occupying the apices and two HL ligands chelate the Mn(II) ion with four O atoms from deprotonated phenol groups and methoxyl groups occupying the equatorial positions. The Mn—O and Mn—N bond distances were listed in Table 1, The distances between Mn(II) and methoxyl O atoms are obvious longer than Mn—O(phenolic) bond distances, which are similar to the analogous complexes (Zhao et al., 2007; Li et al., 2008, Liu et al., 2009).

The hydrogen bonds and π–π weak non-covalent interactions lend stability to the structure. The stacking plot of this compound was shown in Fig. 3. In HL ligand, two protons of phenolic hydroxyl groups considered to have transferred to imine N atoms involve in forming intramolecular hydrogen bonds. The π–π interactions exist both intra and extra molecules between the approximate paralleled participating benzene rings, which may be the primary forces keep the complex molecules packing together.

Experimental

Reagents and solvents used were of commercially available quality and without purified before using. The Schiff base ligand 2-(phenyliminomethyl)-6-methoxyphenol was synthesized from condensation of o-vanillin and aniline. The title compound was synthesized by traditional method. 1 mmol HL ligand was dissolved in ethanol, then 0.5 mmol Mn(NO3)2.6H2O (in ethanol) was added to the upper solution. The mixture solution was stirred for 2 h at room temperature. Furthermore, 1 mmol NH4SCN (dissolved in ethanol) was added. The mixture was stirred again for 8 h at room temperature. At last, deposit was filtered out and the reddish-brown solution was kept in the open air. The red crystal was obtained after several days.

Refinement

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H = 0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The coordination environment of the Mn(II).

Fig. 3.

Fig. 3.

The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π–π stacking interactions.

Crystal data

[Mn(NCS)2(C14H13NO2)2] Z = 1
Mr = 625.61 F(000) = 323
Triclinic, P1 Dx = 1.457 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0204 (2) Å Cell parameters from 4271 reflections
b = 9.3070 (2) Å θ = 2.2–25.0°
c = 9.4087 (2) Å µ = 0.65 mm1
α = 87.417 (1)° T = 296 K
β = 82.010 (1)° Block, red
γ = 65.693 (1)° 0.29 × 0.17 × 0.05 mm
V = 712.81 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer 2509 independent reflections
Radiation source: fine-focus sealed tube 2233 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.877, Tmax = 0.970 k = −11→11
9483 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.1242P] where P = (Fo2 + 2Fc2)/3
2509 reflections (Δ/σ)max = 0.001
188 parameters Δρmax = 0.17 e Å3
2 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.0000 0.5000 0.5000 0.03697 (13)
S1 0.00911 (6) 0.11697 (6) 0.14672 (6) 0.05653 (16)
O1 0.24701 (13) 0.46530 (13) 0.41948 (12) 0.0385 (3)
N1 0.48105 (16) 0.51194 (15) 0.24678 (14) 0.0354 (3)
H1A 0.3779 0.5397 0.2737 0.043*
O2 0.16157 (14) 0.30666 (15) 0.63303 (13) 0.0465 (3)
C7 0.36297 (19) 0.35112 (18) 0.47429 (16) 0.0320 (3)
C13 0.32723 (19) 0.25949 (19) 0.58901 (17) 0.0361 (4)
C9 0.53201 (19) 0.31088 (19) 0.42564 (17) 0.0354 (4)
C15 0.01407 (19) 0.2348 (2) 0.26679 (19) 0.0401 (4)
C8 0.58045 (19) 0.3952 (2) 0.31424 (18) 0.0389 (4)
H8A 0.6924 0.3648 0.2870 0.047*
C4 0.5244 (2) 0.59880 (19) 0.13313 (17) 0.0358 (4)
C3 0.6852 (2) 0.5520 (2) 0.06908 (19) 0.0451 (4)
H3A 0.7678 0.4615 0.0990 0.054*
C12 0.4481 (2) 0.1394 (2) 0.64754 (19) 0.0452 (4)
H12A 0.4207 0.0812 0.7213 0.054*
C5 0.4016 (2) 0.7315 (2) 0.08693 (19) 0.0441 (4)
H5A 0.2935 0.7612 0.1290 0.053*
C2 0.7210 (2) 0.6418 (2) −0.0399 (2) 0.0537 (5)
H2A 0.8288 0.6114 −0.0832 0.064*
N2 0.01391 (19) 0.3211 (2) 0.35072 (18) 0.0554 (4)
C10 0.6546 (2) 0.1866 (2) 0.4902 (2) 0.0475 (4)
H10A 0.7647 0.1625 0.4585 0.057*
C1 0.5992 (3) 0.7757 (2) −0.0853 (2) 0.0551 (5)
H1B 0.6248 0.8357 −0.1583 0.066*
C11 0.6141 (2) 0.1025 (2) 0.5974 (2) 0.0514 (5)
H11A 0.6960 0.0202 0.6380 0.062*
C6 0.4396 (2) 0.8202 (2) −0.0220 (2) 0.0529 (5)
H6A 0.3570 0.9103 −0.0526 0.063*
C14 0.1088 (3) 0.2163 (3) 0.7377 (3) 0.0723 (7)
H14A 0.1511 0.2175 0.8256 0.108*
H14B 0.1487 0.1096 0.7035 0.108*
H14C −0.0089 0.2609 0.7546 0.108*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.02590 (19) 0.0477 (2) 0.0377 (2) −0.01664 (16) −0.00189 (14) 0.00535 (15)
S1 0.0503 (3) 0.0525 (3) 0.0652 (3) −0.0210 (2) 0.0012 (2) −0.0120 (2)
O1 0.0265 (6) 0.0450 (7) 0.0419 (6) −0.0142 (5) −0.0032 (5) 0.0135 (5)
N1 0.0272 (7) 0.0401 (8) 0.0386 (7) −0.0153 (6) 0.0018 (6) 0.0017 (6)
O2 0.0352 (6) 0.0583 (8) 0.0466 (7) −0.0229 (6) −0.0025 (5) 0.0208 (6)
C7 0.0309 (8) 0.0344 (8) 0.0321 (8) −0.0152 (7) −0.0033 (6) 0.0011 (6)
C13 0.0345 (9) 0.0419 (9) 0.0347 (8) −0.0188 (7) −0.0038 (7) 0.0027 (7)
C9 0.0306 (8) 0.0381 (9) 0.0355 (8) −0.0132 (7) −0.0018 (6) 0.0021 (7)
C15 0.0272 (8) 0.0426 (10) 0.0477 (10) −0.0136 (7) 0.0009 (7) 0.0048 (7)
C8 0.0263 (8) 0.0460 (10) 0.0418 (9) −0.0139 (7) 0.0010 (7) 0.0012 (7)
C4 0.0367 (9) 0.0379 (9) 0.0359 (8) −0.0199 (7) 0.0000 (7) −0.0004 (7)
C3 0.0359 (9) 0.0495 (11) 0.0469 (10) −0.0175 (8) 0.0016 (8) 0.0083 (8)
C12 0.0488 (11) 0.0445 (10) 0.0409 (9) −0.0184 (8) −0.0078 (8) 0.0120 (8)
C5 0.0382 (10) 0.0441 (10) 0.0468 (10) −0.0154 (8) −0.0008 (8) 0.0022 (8)
C2 0.0426 (10) 0.0636 (12) 0.0546 (11) −0.0263 (10) 0.0068 (9) 0.0085 (9)
N2 0.0465 (9) 0.0663 (11) 0.0562 (10) −0.0280 (8) 0.0035 (8) −0.0098 (8)
C10 0.0306 (9) 0.0516 (11) 0.0512 (11) −0.0089 (8) −0.0038 (8) 0.0063 (8)
C1 0.0620 (13) 0.0575 (12) 0.0500 (11) −0.0318 (11) −0.0014 (9) 0.0142 (9)
C11 0.0422 (10) 0.0481 (11) 0.0531 (11) −0.0073 (8) −0.0115 (8) 0.0139 (9)
C6 0.0541 (12) 0.0450 (11) 0.0542 (11) −0.0160 (9) −0.0076 (9) 0.0124 (9)
C14 0.0556 (13) 0.0807 (16) 0.0782 (15) −0.0333 (12) 0.0049 (11) 0.0363 (12)

Geometric parameters (Å, °)

Mn1—O1 2.1455 (10) C4—C5 1.379 (2)
Mn1—O1i 2.1455 (10) C4—C3 1.384 (2)
Mn1—N2 2.1794 (16) C3—C2 1.381 (2)
Mn1—N2i 2.1794 (16) C3—H3A 0.9300
Mn1—O2 2.2525 (12) C12—C11 1.406 (3)
Mn1—O2i 2.2525 (12) C12—H12A 0.9300
S1—C15 1.6270 (19) C5—C6 1.381 (3)
O1—C7 1.2942 (19) C5—H5A 0.9300
N1—C8 1.297 (2) C2—C1 1.378 (3)
N1—C4 1.420 (2) C2—H2A 0.9300
N1—H1A 0.8600 C10—C11 1.351 (3)
O2—C13 1.3790 (19) C10—H10A 0.9300
O2—C14 1.424 (2) C1—C6 1.376 (3)
C7—C9 1.423 (2) C1—H1B 0.9300
C7—C13 1.429 (2) C11—H11A 0.9300
C13—C12 1.360 (2) C6—H6A 0.9300
C9—C8 1.409 (2) C14—H14A 0.9600
C9—C10 1.414 (2) C14—H14B 0.9600
C15—N2 1.151 (2) C14—H14C 0.9600
C8—H8A 0.9300
O1—Mn1—O1i 180.0 C5—C4—C3 120.42 (16)
O1—Mn1—N2 90.41 (5) C5—C4—N1 118.22 (14)
O1i—Mn1—N2 89.59 (5) C3—C4—N1 121.36 (15)
O1—Mn1—N2i 89.59 (5) C2—C3—C4 119.02 (17)
O1i—Mn1—N2i 90.41 (5) C2—C3—H3A 120.5
N2—Mn1—N2i 180.00 (7) C4—C3—H3A 120.5
O1—Mn1—O2 74.23 (4) C13—C12—C11 120.51 (16)
O1i—Mn1—O2 105.77 (4) C13—C12—H12A 119.7
N2—Mn1—O2 88.99 (6) C11—C12—H12A 119.7
N2i—Mn1—O2 91.01 (6) C4—C5—C6 119.83 (16)
O1—Mn1—O2i 105.77 (4) C4—C5—H5A 120.1
O1i—Mn1—O2i 74.23 (4) C6—C5—H5A 120.1
N2—Mn1—O2i 91.01 (6) C1—C2—C3 120.86 (17)
N2i—Mn1—O2i 88.99 (6) C1—C2—H2A 119.6
O2—Mn1—O2i 180.00 (5) C3—C2—H2A 119.6
C7—O1—Mn1 116.71 (9) C15—N2—Mn1 175.35 (17)
C8—N1—C4 126.92 (14) C11—C10—C9 120.88 (16)
C8—N1—H1A 116.5 C11—C10—H10A 119.6
C4—N1—H1A 116.5 C9—C10—H10A 119.6
C13—O2—C14 119.03 (14) C6—C1—C2 119.66 (18)
C13—O2—Mn1 114.02 (9) C6—C1—H1B 120.2
C14—O2—Mn1 126.09 (12) C2—C1—H1B 120.2
O1—C7—C9 122.31 (14) C10—C11—C12 120.05 (17)
O1—C7—C13 121.33 (14) C10—C11—H11A 120.0
C9—C7—C13 116.36 (14) C12—C11—H11A 120.0
C12—C13—O2 124.73 (15) C1—C6—C5 120.20 (18)
C12—C13—C7 121.84 (15) C1—C6—H6A 119.9
O2—C13—C7 113.42 (14) C5—C6—H6A 119.9
C8—C9—C10 118.78 (15) O2—C14—H14A 109.5
C8—C9—C7 120.86 (15) O2—C14—H14B 109.5
C10—C9—C7 120.35 (15) H14A—C14—H14B 109.5
N2—C15—S1 178.24 (18) O2—C14—H14C 109.5
N1—C8—C9 125.08 (14) H14A—C14—H14C 109.5
N1—C8—H8A 117.5 H14B—C14—H14C 109.5
C9—C8—H8A 117.5
N2—Mn1—O1—C7 −84.38 (11) C13—C7—C9—C8 −179.21 (15)
N2i—Mn1—O1—C7 95.62 (11) O1—C7—C9—C10 179.05 (15)
O2—Mn1—O1—C7 4.46 (10) C13—C7—C9—C10 −0.2 (2)
O2i—Mn1—O1—C7 −175.54 (10) C4—N1—C8—C9 −179.22 (15)
O1—Mn1—O2—C13 −4.72 (10) C10—C9—C8—N1 −179.53 (16)
O1i—Mn1—O2—C13 175.28 (10) C7—C9—C8—N1 −0.5 (3)
N2—Mn1—O2—C13 85.99 (11) C8—N1—C4—C5 −172.09 (16)
N2i—Mn1—O2—C13 −94.01 (11) C8—N1—C4—C3 8.3 (3)
O1—Mn1—O2—C14 −173.90 (17) C5—C4—C3—C2 1.1 (3)
O1i—Mn1—O2—C14 6.10 (17) N1—C4—C3—C2 −179.25 (16)
N2—Mn1—O2—C14 −83.19 (17) O2—C13—C12—C11 −178.46 (16)
N2i—Mn1—O2—C14 96.81 (17) C7—C13—C12—C11 0.8 (3)
Mn1—O1—C7—C9 176.96 (11) C3—C4—C5—C6 −1.3 (3)
Mn1—O1—C7—C13 −3.79 (19) N1—C4—C5—C6 179.06 (16)
C14—O2—C13—C12 −6.3 (3) C4—C3—C2—C1 −0.3 (3)
Mn1—O2—C13—C12 −176.32 (13) C8—C9—C10—C11 179.98 (17)
C14—O2—C13—C7 174.40 (17) C7—C9—C10—C11 1.0 (3)
Mn1—O2—C13—C7 4.39 (17) C3—C2—C1—C6 −0.5 (3)
O1—C7—C13—C12 −179.92 (15) C9—C10—C11—C12 −0.9 (3)
C9—C7—C13—C12 −0.6 (2) C13—C12—C11—C10 0.0 (3)
O1—C7—C13—O2 −0.6 (2) C2—C1—C6—C5 0.3 (3)
C9—C7—C13—O2 178.68 (13) C4—C5—C6—C1 0.6 (3)
O1—C7—C9—C8 0.1 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.86 1.97 2.6501 (16) 135

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5130).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594. [DOI] [PMC free article] [PubMed]
  3. Liu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385–m1386. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422. [DOI] [PMC free article] [PubMed]
  7. Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.
  8. Zhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421–424.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009330/ng5130sup1.cif

e-67-0m463-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009330/ng5130Isup2.hkl

e-67-0m463-Isup2.hkl (123.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES