Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):o923–o924. doi: 10.1107/S1600536811009664

2-Methyl-4-phenyl-3,4-dihydro­quinazoline

Arto Valkonen a,*, Erkki Kolehmainen a, Anna Zakrzewska b, Agnieszka Skotnicka b, Ryszard Gawinecki b
PMCID: PMC3099896  PMID: 21754194

Abstract

The title compound, C15H14N2, was formed during the lithia­tion of 2-methyl­quinazoline with phenyl­lithium followed by hydrolysis of the inter­mediate lithium 2-methyl-4-phenyl-4H-quinazolin-3-ide. NMR spectra as well as single-crystal X-ray structural data indicate that the reaction product to have the same structure in chloro­form solution as in the crystalline state. The phenyl substituent is twisted out of the plane of the 3,4-dihydro­quinazoline ring system by 86.47 (7)°. In the crystal, inter­molecular N—H⋯N inter­actions connect the mol­ecules into infinite chains.

Related literature

For organolithium compounds and lithia­tion, see: Gawinecki et al. (2006); Kolehmainen et al. (2000); Wakefield (1976); Armarego (1967). For previous characterizations of the title compound, see: Suri et al. (1993). For related structures, see: Rajnikant et al. (2002).graphic file with name e-67-0o923-scheme1.jpg

Experimental

Crystal data

  • C15H14N2

  • M r = 222.28

  • Trigonal, Inline graphic

  • a = 9.5600 (4) Å

  • c = 11.2569 (5) Å

  • V = 890.97 (7) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 123 K

  • 0.35 × 0.13 × 0.12 mm

Data collection

  • Bruker–Nonius KappaCCD with APEXII detector diffractometer

  • 6729 measured reflections

  • 1468 independent reflections

  • 1215 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.095

  • S = 1.06

  • 1468 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009664/im2274sup1.cif

e-67-0o923-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009664/im2274Isup2.hkl

e-67-0o923-Isup2.hkl (70.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.88 2.04 2.908 (3) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

Academy Professor Kari Rissanen and the Academy of Finland (project No. 212588 for KR) are gratefully acknowledged for funding. Dr Katri Laihia is thanked for characterization of the NMR spectra.

supplementary crystallographic information

Comment

Addition of phenyllithium to 2-methylquinazoline takes place exclusively at the 3,4-position (neither 2-methyl-2-phenyl-1,2-dihydroquinazoline nor 2-methyl-4-phenyl-1,4-dihydroquinazoline were detected in the reaction mixture). Susceptibility of quinazolines to undergo the nucleophilic addition to their 3,4-double bonds has been reported earlier (Suri et al., 1993). It is also known that 4-substituted 3,4-dihydroquinazolines can be generated from quinazolines when treated with organometallic compounds (Armarego, 1967). Furthermore, low susceptibility of 2-methyl group to lithiation precludes 2-methylquinazoline to be used as a starting material in syntheses of the important Cexo-substituted 2-methylquinazolines (Wakefield, 1976; Kolehmainen et al., 2000; Gawinecki et al., 2006).

In crystalline state the title compound shows the 3,4-dihydroquinazoline moiety to be planar (Fig. 1). The phenyl substituent is twisted out of plane of the moiety by 86.47 (7) °, which is rather close to the twist (79.3 (1) °) found in 2-methyl-4-phenyl-3,4-dihydroquinazolinium chloride (Rajnikant et al., 2002). Intermolecular N3—H···N1 hydrogen bonds (-y, x-y + 1, z + 1/3 direction) define the supramolecular structure and connect the molecules to infinite helical chains (Fig. 2). Unfortunately, no reliable determination of the absolute structure (or handedness of helix) is possible by X-ray crystallography.

Experimental

A solution of 2-methyl-quinazoline (10.09 g, 0.07 mol) in absolute ethyl ether (100 ml) was added dropwise with stirring to a solution of phenyllithium [obtained by a standard method starting from freshly distilled bromobenzene (15.70 g, 0.1 mol), absolute ethyl ether (0.5 L) and lithium (2.80 g, 0.4 mol)]. The reaction mixture was stirred at room temperature for additional 2 h and the reaction was quenched by addition of water (0.5 L). The organic layer was combined with the ether extracts of the water layer, dried (K2CO3) and evaporated to dryness. The crude solid product was recrystallized from ethanol to give white crystals (51%) melting at 168–170 °C [lit. mp 168–170 °C (Suri et al., 1993)]. 1H NMR (CDCl3): δ (p.p.m.) = 7.26–7.34 (m, 5H, H12—H16), 7.13 (dd, 1H, H7), 7.02 (d, 1H, H8), 6.90 (dd, 1H, H6), 6.71 (d, 1H, H5), 5.67 (s, 1H, H4), 2.02 (s, 3H, CH3). 13C NMR (CDCl3): δ (p.p.m.) = 153.9 (C2), 145.3 (C11), 140.6 (C9), 128.1 (C7), 127.8 (C14), 128.7 (C13, C15), 127.3 (C12, C16), 126.7 (C5), 124.1 (C6), 123.3 (C10), 58.1 (C4), 22.5 (C17).

Suitable single crystals for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where CDCl3 was used as a solvent.

Refinement

In the absence of significant anomalous disperson effects, Friedel pairs were averaged. All H atoms were visible in electron density maps, but were calculated at their idealized positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å (aromatic), 0.98 Å (methyl), 1.00 Å (methine), and N—H distance of 0.88 Å, with Uiso(H) of 1.2 times Ueq(C,N) or 1.5 times Ueq(C) (methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Fig. 2.

Fig. 2.

Part of the helical chain. Right-handed arbitrary presentation.

Crystal data

C15H14N2 Dx = 1.243 Mg m3
Mr = 222.28 Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31 Cell parameters from 3635 reflections
Hall symbol: P 31 θ = 0.4–28.3°
a = 9.5600 (4) Å µ = 0.07 mm1
c = 11.2569 (5) Å T = 123 K
V = 890.97 (7) Å3 Long plate, colourless
Z = 3 0.35 × 0.13 × 0.12 mm
F(000) = 354

Data collection

Bruker–Nonius KappaCCD with APEXII detector diffractometer 1215 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.068
graphite θmax = 28.2°, θmin = 2.5°
Detector resolution: 9 pixels mm-1 h = −12→12
φ and ω scans k = −12→12
6729 measured reflections l = −12→14
1468 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.2356P] where P = (Fo2 + 2Fc2)/3
1468 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.1844 (3) 0.2606 (3) 0.0291 (2) 0.0332 (5)
N3 −0.1137 (3) 0.4459 (3) 0.1862 (2) 0.0308 (5)
H3 −0.1520 0.4742 0.2470 0.037*
C2 −0.2197 (3) 0.3278 (3) 0.1150 (2) 0.0277 (6)
C4 0.0619 (3) 0.5311 (3) 0.1691 (2) 0.0266 (6)
H4 0.1125 0.5233 0.2447 0.032*
C5 0.2646 (3) 0.4997 (4) 0.0469 (3) 0.0339 (7)
H5 0.3474 0.5863 0.0910 0.041*
C6 0.3061 (4) 0.4266 (4) −0.0421 (3) 0.0379 (7)
H6 0.4165 0.4634 −0.0591 0.045*
C7 0.1854 (4) 0.2994 (4) −0.1060 (3) 0.0362 (7)
H7 0.2129 0.2484 −0.1667 0.043*
C8 0.0256 (4) 0.2473 (3) −0.0813 (2) 0.0327 (6)
H8 −0.0563 0.1604 −0.1258 0.039*
C9 −0.0184 (3) 0.3198 (3) 0.0081 (2) 0.0281 (6)
C10 0.1033 (3) 0.4480 (3) 0.0727 (2) 0.0264 (6)
C11 0.1197 (3) 0.7087 (3) 0.1459 (2) 0.0257 (6)
C12 0.1080 (3) 0.7642 (3) 0.0349 (2) 0.0295 (6)
H12 0.0722 0.6927 −0.0311 0.035*
C13 0.1485 (3) 0.9247 (3) 0.0197 (3) 0.0341 (7)
H13 0.1425 0.9627 −0.0570 0.041*
C14 0.1977 (3) 1.0291 (4) 0.1157 (3) 0.0351 (7)
H14 0.2219 1.1376 0.1055 0.042*
C15 0.2112 (3) 0.9745 (3) 0.2266 (3) 0.0337 (6)
H15 0.2470 1.0461 0.2925 0.040*
C16 0.1724 (3) 0.8150 (3) 0.2415 (2) 0.0287 (6)
H16 0.1820 0.7781 0.3178 0.034*
C17 −0.3942 (3) 0.2713 (4) 0.1398 (3) 0.0384 (7)
H17A −0.4623 0.1767 0.0907 0.058*
H17B −0.4170 0.3581 0.1211 0.058*
H17C −0.4172 0.2424 0.2239 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0291 (12) 0.0346 (13) 0.0338 (13) 0.0144 (11) −0.0030 (10) −0.0035 (11)
N3 0.0272 (12) 0.0290 (12) 0.0297 (12) 0.0090 (10) 0.0067 (10) −0.0042 (10)
C2 0.0270 (14) 0.0274 (14) 0.0282 (14) 0.0131 (12) 0.0016 (11) 0.0043 (11)
C4 0.0253 (13) 0.0249 (13) 0.0282 (14) 0.0114 (11) −0.0007 (11) 0.0003 (11)
C5 0.0275 (14) 0.0318 (15) 0.0395 (17) 0.0126 (12) 0.0032 (12) −0.0008 (12)
C6 0.0352 (16) 0.0366 (16) 0.0451 (18) 0.0204 (14) 0.0136 (14) 0.0069 (14)
C7 0.0548 (19) 0.0348 (16) 0.0307 (15) 0.0313 (15) 0.0137 (14) 0.0080 (13)
C8 0.0410 (16) 0.0273 (14) 0.0308 (15) 0.0179 (13) 0.0017 (13) −0.0010 (12)
C9 0.0329 (15) 0.0278 (13) 0.0264 (13) 0.0174 (12) −0.0015 (12) 0.0014 (11)
C10 0.0276 (13) 0.0230 (13) 0.0279 (14) 0.0122 (11) 0.0036 (11) 0.0032 (11)
C11 0.0196 (12) 0.0264 (13) 0.0309 (15) 0.0113 (11) 0.0030 (10) 0.0009 (11)
C12 0.0266 (14) 0.0333 (15) 0.0297 (14) 0.0158 (12) −0.0011 (12) −0.0010 (12)
C13 0.0306 (15) 0.0352 (16) 0.0378 (16) 0.0175 (13) 0.0008 (12) 0.0069 (13)
C14 0.0277 (15) 0.0271 (14) 0.0511 (18) 0.0141 (12) 0.0046 (13) 0.0047 (13)
C15 0.0278 (15) 0.0312 (15) 0.0416 (16) 0.0142 (12) −0.0011 (12) −0.0073 (13)
C16 0.0253 (13) 0.0306 (14) 0.0298 (15) 0.0137 (12) −0.0021 (11) −0.0030 (11)
C17 0.0282 (16) 0.0404 (17) 0.0404 (17) 0.0125 (13) −0.0001 (13) −0.0014 (13)

Geometric parameters (Å, °)

N1—C2 1.296 (4) C8—H8 0.9500
N1—C9 1.413 (3) C9—C10 1.401 (4)
N3—C2 1.341 (4) C11—C12 1.384 (4)
N3—C4 1.467 (3) C11—C16 1.390 (4)
N3—H3 0.8800 C12—C13 1.392 (4)
C2—C17 1.500 (4) C12—H12 0.9500
C4—C10 1.509 (4) C13—C14 1.384 (4)
C4—C11 1.523 (3) C13—H13 0.9500
C4—H4 1.0000 C14—C15 1.384 (4)
C5—C6 1.388 (4) C14—H14 0.9500
C5—C10 1.394 (4) C15—C16 1.387 (4)
C5—H5 0.9500 C15—H15 0.9500
C6—C7 1.387 (5) C16—H16 0.9500
C6—H6 0.9500 C17—H17A 0.9800
C7—C8 1.378 (4) C17—H17B 0.9800
C7—H7 0.9500 C17—H17C 0.9800
C8—C9 1.400 (4)
C2—N1—C9 116.5 (2) C5—C10—C9 119.3 (2)
C2—N3—C4 124.2 (2) C5—C10—C4 119.9 (2)
C2—N3—H3 117.9 C9—C10—C4 120.8 (2)
C4—N3—H3 117.9 C12—C11—C16 119.2 (2)
N1—C2—N3 126.1 (2) C12—C11—C4 121.9 (2)
N1—C2—C17 118.6 (2) C16—C11—C4 118.6 (2)
N3—C2—C17 115.3 (2) C11—C12—C13 120.2 (3)
N3—C4—C10 109.3 (2) C11—C12—H12 119.9
N3—C4—C11 108.5 (2) C13—C12—H12 119.9
C10—C4—C11 114.8 (2) C14—C13—C12 120.4 (3)
N3—C4—H4 108.0 C14—C13—H13 119.8
C10—C4—H4 108.0 C12—C13—H13 119.8
C11—C4—H4 108.0 C15—C14—C13 119.6 (3)
C6—C5—C10 121.1 (3) C15—C14—H14 120.2
C6—C5—H5 119.5 C13—C14—H14 120.2
C10—C5—H5 119.5 C14—C15—C16 120.0 (3)
C7—C6—C5 119.6 (3) C14—C15—H15 120.0
C7—C6—H6 120.2 C16—C15—H15 120.0
C5—C6—H6 120.2 C15—C16—C11 120.6 (3)
C8—C7—C6 119.9 (3) C15—C16—H16 119.7
C8—C7—H7 120.0 C11—C16—H16 119.7
C6—C7—H7 120.0 C2—C17—H17A 109.5
C7—C8—C9 121.3 (3) C2—C17—H17B 109.5
C7—C8—H8 119.4 H17A—C17—H17B 109.5
C9—C8—H8 119.4 C2—C17—H17C 109.5
C8—C9—C10 118.9 (2) H17A—C17—H17C 109.5
C8—C9—N1 118.5 (3) H17B—C17—H17C 109.5
C10—C9—N1 122.6 (2)
C9—N1—C2—N3 −1.0 (4) N1—C9—C10—C4 −0.4 (4)
C9—N1—C2—C17 179.0 (3) N3—C4—C10—C5 −175.0 (2)
C4—N3—C2—N1 7.2 (4) C11—C4—C10—C5 62.8 (3)
C4—N3—C2—C17 −172.8 (3) N3—C4—C10—C9 5.4 (3)
C2—N3—C4—C10 −8.7 (4) C11—C4—C10—C9 −116.8 (3)
C2—N3—C4—C11 117.2 (3) N3—C4—C11—C12 −81.0 (3)
C10—C5—C6—C7 −0.4 (4) C10—C4—C11—C12 41.6 (3)
C5—C6—C7—C8 0.4 (4) N3—C4—C11—C16 93.3 (3)
C6—C7—C8—C9 −0.3 (4) C10—C4—C11—C16 −144.1 (2)
C7—C8—C9—C10 0.2 (4) C16—C11—C12—C13 −0.1 (4)
C7—C8—C9—N1 −179.9 (2) C4—C11—C12—C13 174.2 (2)
C2—N1—C9—C8 177.9 (3) C11—C12—C13—C14 −1.3 (4)
C2—N1—C9—C10 −2.3 (4) C12—C13—C14—C15 2.0 (4)
C6—C5—C10—C9 0.3 (4) C13—C14—C15—C16 −1.3 (4)
C6—C5—C10—C4 −179.3 (3) C14—C15—C16—C11 −0.1 (4)
C8—C9—C10—C5 −0.2 (4) C12—C11—C16—C15 0.8 (4)
N1—C9—C10—C5 179.9 (2) C4—C11—C16—C15 −173.7 (2)
C8—C9—C10—C4 179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···N1i 0.88 2.04 2.908 (3) 169

Symmetry codes: (i) −y, xy+1, z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2274).

References

  1. Armarego, W. L. F. (1967). The Chemistry of Heterocyclic Compounds, Fused Pyrimidines, Part I, Quinazolines, edited by D. J. Brown, p. 35. New York: Interscience.
  2. Bruker (2008). COLLECT Bruker AXS Inc., Madison, Wisconsin, USA..
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gawinecki, R., Kolehmainen, E., Loghmani-Khouzani, H., Ośmiałowski, B., Lovász, T. & Rosa, P. (2006). Eur. J. Org. Chem. pp. 2817–2824.
  6. Kolehmainen, E., Ośmiałowski, B., Krygowski, T. M., Kauppinen, R., Nissinen, M. & Gawinecki, R. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1259–1266.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Rajnikant, Gupta, V. K., Suri, O. P. & Lal, M. (2002). Indian J. Pure Appl. Phys. 40, 59–61.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Suri, K. A., Satti, N. K., Mahajan, B., Suri, O. P. & Dhar, K. L. (1993). Indian J. Chem. Sect. B, 32, 1171–1172.
  12. Wakefield, B. J. (1976). The Chemistry of Organolithium Compounds, pp. 26, 32, 112, 138, 190. Oxford: Pergamon Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009664/im2274sup1.cif

e-67-0o923-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009664/im2274Isup2.hkl

e-67-0o923-Isup2.hkl (70.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES