Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):o925. doi: 10.1107/S1600536811009743

1,3-Di-n-butyl­thio­urea

Andrzej Okuniewski a, Agnieszka Dąbrowska a, Jaroslaw Chojnacki a,*
PMCID: PMC3099899  PMID: 21754195

Abstract

In the title compound, C9H20N2S, the n-butyl groups are in syn and anti positions in relation to the C=S bond. In the crystal, two mol­ecules are connected by two N—H⋯S=C hydrogen bonds into a centrosymmetric dimer. Another N—H⋯S=C hydrogen bond links the dimers, forming layers with a hydro­philic inter­ior and a hydro­phobic exterior, which spread across the (100) plane. Inter­lacing of the external butyl groups combines these layers into a three-dimensional structure.

Related literature

For structures of N,N′-di-n-butyl­thio­urea complexes with mercury and copper, see: Ahmad et al. (2009); Khan et al. (2007); Warda (1998). For structures of other symmetrically substituted thio­urea derivatives, see: Custelcean et al. (2005); Djurdjevic et al. (2007); Ramnathan et al. (1995). For synthetic methods, see: Herr et al. (2000); Kricheldorf (1970); Ranu et al. (2003). graphic file with name e-67-0o925-scheme1.jpg

Experimental

Crystal data

  • C9H20N2S

  • M r = 188.33

  • Monoclinic, Inline graphic

  • a = 12.6395 (6) Å

  • b = 10.0836 (6) Å

  • c = 9.0128 (5) Å

  • β = 90.476 (5)°

  • V = 1148.66 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 K

  • 0.48 × 0.29 × 0.09 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010; based on Clark & Reid, 1995)] T min = 0.94, T max = 0.978

  • 5268 measured reflections

  • 2247 independent reflections

  • 1656 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.116

  • S = 0.97

  • 2247 reflections

  • 119 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009743/si2344sup1.cif

e-67-0o925-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009743/si2344Isup2.hkl

e-67-0o925-Isup2.hkl (108.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.84 (1) 2.58 (1) 3.3943 (17) 164 (2)
N2—H2⋯S1ii 0.85 (1) 2.52 (1) 3.3319 (17) 159 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the Polish Ministry of Science and Higher Education to AO (project No. N N204 543339) is gratefully acknowledged.

supplementary crystallographic information

Comment

N,N'-Di-n-butylthiourea, S═C(NHnBu)2, is commonly used as a vulcanization accelerator in rubber processing, as an insecticide, as an additive to fertilizers, as a corrosion inhibitor, as an agent for metal treatments, etc.

No X-ray structure of pure compound was known until now, although the Cambridge Structural Database contains data on its mercury(ii) (Ahmad et al., 2009), copper(i) (Khan et al., 2007) and copper(ii) (Warda, 1998) complexes. In their structures one of the n-butyl groups of N,N'-di-n-butylthiourea molecule is in the syn position and the second is in the anti position in relation to the C═S bond. The same conformation is present in the title compound and this allows the formation of the centrosymmetric dimers (see Fig. 1) held together by two N1—H···S1i═C1i hydrogen bonds [symmetry code: (i): –x, –y + 1, –z + 2]. Namely, motif R22(8) is formed. Furthermore, there are additional N2—H···S1ii═C1ii hydrogen bonds [symmetry code: (ii): x, –y + 3/2, z–1/2], which link the dimers to form the two-dimensional layers (see Fig. 2). Hydrogen bonds parameters are summarized in Tab. 1. Hydrocarbon chains pointing outside the layer interact with those from the neighbouring ones by van der Waals forces to form a three-dimensional crystal structure. The same packing patterns can be found in syn,anti isomers of other analogues: N,N'-diethylthiourea and N,N'-diisopropylthiourea (Ramnathan et al., 1995) and similar in N,N'-bis(prop-2-en-1-yl)thiourea (Djurdjevic et al., 2007). The case of N,N'-di-tert-butylthiourea is different, because the molecules adopt syn,syn conformation (Custelcean et al., 2005).

There are several synthetic methods to obtain symmetrical thioureas. For example condensation of amine hydrochlorides with potassium thiocyanate (Herr et al., 2000) or reaction of N-silylated amines with carbon disulfide (Kricheldorf, 1970). The very simple, quick and solvent-free method was proposed by Ranu et al. (2003) incorporating addition of amines to carbon disulfide on the surface of alumina under microwave irradition. In the case of n-butylamine, mixture was irradiated for 2 minutes and the yield was 89%.

We found that good quality crystals can be obtained by recrystallization from ethyl acetate or acetylacetone (2,4-pentanedione).

Experimental

0.25 g (1.33 mmol) of commercially available N,N'-di-n-butylthiourea was dissolved in 2 ml of freshly distilled acetylacetone. The mixture was filtered and the filtrate was left for crystallization in a refrigerator. After several days well formed, colorless crystals were collected. Melting point: 335 - 337 K.

Refinement

Hydrogen atoms were placed at the calculated positions (dCH = 0.98–0.99 Å) and were treated as riding on their parent atoms, with Uiso(H) set to 1.2–1.5 times Ueq(C). The N—H distances were restrained to 0.85 (1) Å.

Figures

Fig. 1.

Fig. 1.

Structure of [SC(NHnBu)2]2 dimer with the thermal ellipsoids drawn at 50% probability level. Hydrogen bonds marked with dotted lines. Symmetry code (i): –x, –y + 1, –z + 2.

Fig. 2.

Fig. 2.

Layers of SC(NHnBu)2 seen in the a) [001] and b) [010] direction. Hydrogen bonds marked with dotted lines, hydrogen atoms omitted for clarity.

Crystal data

C9H20N2S F(000) = 416
Mr = 188.33 Dx = 1.089 Mg m3
Monoclinic, P21/c Melting point: 336(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 12.6395 (6) Å Cell parameters from 2942 reflections
b = 10.0836 (6) Å θ = 2.6–28.6°
c = 9.0128 (5) Å µ = 0.24 mm1
β = 90.476 (5)° T = 120 K
V = 1148.66 (11) Å3 Prism, clear colourless
Z = 4 0.48 × 0.28 × 0.09 mm

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer 2247 independent reflections
graphite 1656 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1 Rint = 0.038
ω scans θmax = 26°, θmin = 2.6°
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010; based on Clark & Reid, 1995)] h = −15→15
Tmin = 0.94, Tmax = 0.978 k = −12→12
5268 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0753P)2] where P = (Fo2 + 2Fc2)/3
2247 reflections (Δ/σ)max < 0.001
119 parameters Δρmax = 0.45 e Å3
2 restraints Δρmin = −0.27 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66 (Oxford Diffraction, 2010) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.16510 (4) 0.55610 (5) 1.03064 (5) 0.02246 (18)
N1 0.03660 (13) 0.60898 (18) 0.80521 (17) 0.0218 (4)
N2 0.19164 (13) 0.72585 (17) 0.80620 (18) 0.0229 (4)
C1 0.12922 (15) 0.63626 (19) 0.8705 (2) 0.0209 (4)
C2 −0.00052 (15) 0.6657 (2) 0.6656 (2) 0.0225 (5)
H2A 0.0525 0.649 0.5877 0.027*
H2B −0.0082 0.7629 0.6769 0.027*
C3 −0.10604 (15) 0.6065 (2) 0.6181 (2) 0.0232 (5)
H3A −0.1004 0.5086 0.6174 0.028*
H3B −0.1608 0.6314 0.6909 0.028*
C4 −0.13954 (16) 0.6542 (2) 0.4653 (2) 0.0260 (5)
H4A −0.0831 0.6327 0.3938 0.031*
H4B −0.1475 0.7518 0.4676 0.031*
C5 −0.24282 (17) 0.5926 (2) 0.4116 (2) 0.0332 (5)
H5A −0.2359 0.4959 0.4103 0.05*
H5B −0.259 0.6244 0.3112 0.05*
H5C −0.3001 0.618 0.4785 0.05*
C6 0.29696 (15) 0.7629 (2) 0.8598 (2) 0.0239 (5)
H6A 0.296 0.7677 0.9695 0.029*
H6B 0.3145 0.8523 0.8218 0.029*
C7 0.38310 (15) 0.6662 (2) 0.8128 (2) 0.0254 (5)
H7A 0.365 0.5764 0.8489 0.03*
H7B 0.3855 0.6629 0.7031 0.03*
C8 0.49139 (17) 0.7044 (2) 0.8722 (3) 0.0355 (6)
H8A 0.489 0.7081 0.9819 0.043*
H8B 0.5097 0.7941 0.8357 0.043*
C9 0.57675 (19) 0.6074 (3) 0.8255 (3) 0.0469 (7)
H9A 0.5583 0.5182 0.8596 0.07*
H9B 0.6446 0.634 0.8697 0.07*
H9C 0.5824 0.6075 0.7172 0.07*
H1 −0.0032 (14) 0.5586 (19) 0.854 (2) 0.028 (6)*
H2 0.1715 (15) 0.7675 (18) 0.7292 (15) 0.019 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0254 (3) 0.0207 (3) 0.0213 (3) 0.0005 (2) 0.00074 (19) 0.0018 (2)
N1 0.0218 (9) 0.0250 (9) 0.0188 (8) −0.0043 (8) 0.0011 (7) 0.0019 (7)
N2 0.0238 (9) 0.0227 (9) 0.0221 (9) −0.0016 (7) −0.0019 (7) 0.0047 (7)
C1 0.0251 (10) 0.0180 (10) 0.0197 (10) 0.0039 (8) 0.0051 (8) −0.0024 (8)
C2 0.0257 (10) 0.0213 (11) 0.0206 (10) 0.0003 (9) 0.0037 (8) 0.0015 (8)
C3 0.0234 (10) 0.0223 (10) 0.0238 (11) −0.0007 (8) 0.0013 (8) 0.0018 (8)
C4 0.0325 (12) 0.0223 (11) 0.0232 (11) −0.0027 (9) −0.0003 (9) 0.0014 (8)
C5 0.0325 (12) 0.0355 (13) 0.0313 (12) −0.0036 (10) −0.0068 (10) 0.0028 (10)
C6 0.0226 (10) 0.0219 (11) 0.0272 (11) −0.0047 (9) −0.0010 (8) 0.0011 (8)
C7 0.0251 (11) 0.0280 (11) 0.0230 (10) 0.0000 (9) −0.0003 (8) 0.0020 (9)
C8 0.0276 (12) 0.0329 (13) 0.0460 (14) −0.0016 (10) −0.0010 (10) 0.0020 (11)
C9 0.0292 (13) 0.0475 (16) 0.0641 (18) 0.0056 (12) 0.0016 (12) 0.0049 (14)

Geometric parameters (Å, °)

S1—C1 1.712 (2) C5—H5A 0.98
N1—C1 1.334 (2) C5—H5B 0.98
N1—C2 1.456 (2) C5—H5C 0.98
N1—H1 0.844 (9) C6—C7 1.524 (3)
N2—C1 1.335 (3) C6—H6A 0.99
N2—C6 1.461 (3) C6—H6B 0.99
N2—H2 0.849 (9) C7—C8 1.515 (3)
C2—C3 1.519 (3) C7—H7A 0.99
C2—H2A 0.99 C7—H7B 0.99
C2—H2B 0.99 C8—C9 1.518 (3)
C3—C4 1.515 (3) C8—H8A 0.99
C3—H3A 0.99 C8—H8B 0.99
C3—H3B 0.99 C9—H9A 0.98
C4—C5 1.521 (3) C9—H9B 0.98
C4—H4A 0.99 C9—H9C 0.98
C4—H4B 0.99
C1—N1—C2 125.10 (17) H5A—C5—H5B 109.5
C1—N1—H1 114.7 (15) C4—C5—H5C 109.5
C2—N1—H1 120.1 (15) H5A—C5—H5C 109.5
C1—N2—C6 124.74 (17) H5B—C5—H5C 109.5
C1—N2—H2 121.0 (14) N2—C6—C7 113.32 (17)
C6—N2—H2 114.2 (14) N2—C6—H6A 108.9
N1—C1—N2 117.90 (18) C7—C6—H6A 108.9
N1—C1—S1 119.96 (15) N2—C6—H6B 108.9
N2—C1—S1 122.13 (15) C7—C6—H6B 108.9
N1—C2—C3 111.42 (16) H6A—C6—H6B 107.7
N1—C2—H2A 109.3 C8—C7—C6 112.61 (18)
C3—C2—H2A 109.3 C8—C7—H7A 109.1
N1—C2—H2B 109.3 C6—C7—H7A 109.1
C3—C2—H2B 109.3 C8—C7—H7B 109.1
H2A—C2—H2B 108 C6—C7—H7B 109.1
C4—C3—C2 111.70 (16) H7A—C7—H7B 107.8
C4—C3—H3A 109.3 C7—C8—C9 112.3 (2)
C2—C3—H3A 109.3 C7—C8—H8A 109.1
C4—C3—H3B 109.3 C9—C8—H8A 109.1
C2—C3—H3B 109.3 C7—C8—H8B 109.1
H3A—C3—H3B 107.9 C9—C8—H8B 109.1
C3—C4—C5 113.14 (17) H8A—C8—H8B 107.9
C3—C4—H4A 109 C8—C9—H9A 109.5
C5—C4—H4A 109 C8—C9—H9B 109.5
C3—C4—H4B 109 H9A—C9—H9B 109.5
C5—C4—H4B 109 C8—C9—H9C 109.5
H4A—C4—H4B 107.8 H9A—C9—H9C 109.5
C4—C5—H5A 109.5 H9B—C9—H9C 109.5
C4—C5—H5B 109.5
C2—N1—C1—N2 2.5 (3) N1—C2—C3—C4 −173.97 (16)
C2—N1—C1—S1 −176.99 (15) C2—C3—C4—C5 177.74 (17)
C6—N2—C1—N1 −177.36 (17) C1—N2—C6—C7 81.5 (2)
C6—N2—C1—S1 2.1 (3) N2—C6—C7—C8 −178.71 (17)
C1—N1—C2—C3 176.27 (17) C6—C7—C8—C9 179.74 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.84 (1) 2.58 (1) 3.3943 (17) 164 (2)
N2—H2···S1ii 0.85 (1) 2.52 (1) 3.3319 (17) 159 (2)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2344).

References

  1. Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192. [DOI] [PMC free article] [PubMed]
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Custelcean, R., Gorbunova, M. G. & Bonnesen, P. V. (2005). Chem. Eur. J. 11, 1459–1466. [DOI] [PubMed]
  4. Djurdjevic, S., Leigh, D. & Parsons, S. (2007). Private communication to the Cambridge Structural Database (Refcode JIPKAV). CCDC, Union Road, Cambridge, England.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Herr, R. J., Kuhler, L., Meckler, H. & Opalka, C. J. (2000). Synthesis, pp. 1569–1574.
  8. Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551.
  9. Kricheldorf, H. R. (1970). Synthesis, pp. 539–540.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  12. Ramnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Ramadas, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2446–2450.
  13. Ranu, B. C., Dey, S. S. & Bag, S. (2003). ARKIVOC, ix, 14–20.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Warda, S. A. (1998). Acta Cryst. C54, 460–462.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009743/si2344sup1.cif

e-67-0o925-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009743/si2344Isup2.hkl

e-67-0o925-Isup2.hkl (108.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES