Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):m509–m510. doi: 10.1107/S1600536811011147

3,5-Diamino-4H-1,2,4-triazol-1-ium (6-carb­oxy­pyridine-2-carboxyl­ato)(pyridine-2,6-dicarboxyl­ato)cuprate(II) trihydrate

S Yousuf a, A S Johnson b, S A Kazmi a, O E Offiong b, Hoong-Kun Fun c,*,
PMCID: PMC3099907  PMID: 21754014

Abstract

In the complex anion of the title compound, (C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O, the CuII atom is coordinated by tridentate 6-carb­oxy­pyridine-2-carboxyl­ate and pyridine-2,6-dicarboxyl­ate ligands and is surrounded by four O atoms in the equatorial plane and two N atoms in axial positions in a distorted octa­hedral geometry. In the crystal, the components are linked into a three dimensional network by O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds and a π–π inter­action with a centroid–centroid distance of 3.6080 (8) Å.

Related literature

For general background to and applications of supra­molecular arrangements, see: Lehn (1995); Aghajani et al. (2009); Tshuva & Lippard (2004); Kuzelka et al. (2003). For crystal structures of related complexes, see: Aghabozorg et al. (2007); Ramos Silva et al. (2008); Wang et al. (2004); MacDonald et al. (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-0m509-scheme1.jpg

Experimental

Crystal data

  • (C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O

  • M r = 548.92

  • Orthorhombic, Inline graphic

  • a = 11.3091 (2) Å

  • b = 14.9442 (3) Å

  • c = 24.6045 (5) Å

  • V = 4158.29 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 100 K

  • 0.54 × 0.20 × 0.07 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.583, T max = 0.921

  • 55434 measured reflections

  • 9184 independent reflections

  • 6619 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.098

  • S = 1.05

  • 9184 reflections

  • 368 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011147/is2693sup1.cif

e-67-0m509-sup1.cif (26.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011147/is2693Isup2.hkl

e-67-0m509-Isup2.hkl (440.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1O8⋯O1i 0.90 (3) 1.71 (2) 2.5536 (15) 157 (2)
N3—H1N3⋯O2Wii 0.76 (2) 2.26 (2) 2.9081 (19) 144 (2)
N5—H1N5⋯O3Wiii 0.80 (2) 2.23 (2) 2.8310 (17) 132.3 (18)
N5—H1N5⋯N4iv 0.80 (2) 2.40 (2) 2.9925 (18) 131.2 (19)
N6—H1N6⋯O2Wii 0.83 (2) 2.47 (2) 3.209 (2) 147.6 (19)
N6—H2N6⋯O3v 0.93 (2) 2.06 (2) 2.9699 (17) 168.7 (19)
N7—H1N7⋯O3Wiii 0.81 (2) 2.15 (2) 2.8570 (19) 145 (2)
N7—H2N7⋯O7vi 0.82 (2) 1.96 (2) 2.7714 (18) 170 (2)
O1W—H1W1⋯O2 0.79 (2) 2.03 (3) 2.7985 (19) 168 (3)
O1W—H2W1⋯O5v 0.77 (3) 2.11 (3) 2.8715 (17) 171 (2)
O2W—H1W2⋯O1W 0.90 (3) 1.81 (3) 2.703 (2) 173 (3)
O2W—H2W2⋯O1i 0.85 (3) 2.58 (3) 3.3968 (18) 162 (3)
O3W—H1W3⋯O6vii 0.89 (3) 1.90 (3) 2.7712 (17) 169 (2)
O3W—H2W3⋯O3 0.77 (3) 2.04 (3) 2.8113 (16) 177 (2)
C5—H5A⋯O6viii 0.93 2.35 3.2042 (18) 153
C12—H12A⋯O7i 0.93 2.47 3.3960 (17) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

AJ thanks The Academy of Sciences for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship and the H·E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities. HKF thanks the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Non-covalent supramolecular arrangements due to the non-covalent interactions between two or more molecular sub-units are responsible for influencing different structural properties and the addition of metal in the coordination is considered to be an effective tool to study and control the connectivity and linkages (Lehn et al., 1995). The study of the construction of metal organic frameworks indicates that under suitable conditions, the transfer of the acidic protons to appropriate bases will result in increased intermolecular interactions and as a result enhanced stabilization of the resulting system (Aghajani et al., 2009). The study of metal carboxylates has always been fascinating for the researchers because they play important roles not only in synthetic chemistry, considering the vast array of coordination modes of the carboxylate group, but also in biological activities (Tshuva et al., 2004; Kuzelka et al., 2003) and physiological effects (Aghabozorg et al., 2007). In our ongoing research to study the packing features of molecules containing metal chelate and triazole rings, the title Cu complex (I) was prepared from 3,5-diamino-1,2,4-triazole and dipicolinic acid.

The title complex, (C2H6N5)+[Cu(C7H4NO4)(C7H3NO4)]-.3H2O, contains two tridentate dipicolinate ligands (one neutral and one protonated) coordinated with Cu(II) to reveal a distorted octahedral geometry, one independent protonated triazole and three water molecules (Fig. 1). The coordination environment around the Cu(II) ion is such that the two dipiconilate ligands are assembled perpendicular to each other with two axially oriented N atoms [Cu1—N1 = 1.9057 (12) Å, Cu1—N2 = 1.9723 (2) Å] and four O atoms on the basal positions [Cu1—O1 = 2.0889 (10) Å, Cu1—O2 = 2.0453 (10) Å, Cu1—O3 = 2.2727 (10) Å, Cu1—O4 = 2.3939 (10) Å]. Coordination of CuII ion with N1, O1, O2 and N2, O3, O4 of the two chelating dipicolinate ligands is responsible for the formation of four five-membered rings, A, (Cu1/O1/C1/C2/N1, with a maximum deviation of 0.049 (1) Å for atom O1), B (Cu1/N1/C6/C7/O2, with a maximum deviation of -0.042 (1) Å for atom O2), C (Cu1/O3/C8/C9/N2, with a maximum deviation of -0.043 (1) Å for atom C8) and D (Cu1/N2/C13/C14/O4, with a maximum deviation of -0.040 (1) Å for atom N2). The dihedral angles between them are 4.34 (6)° (A/B), 82.15 (6)° (A/C), 84.95 (6)° (A/D), 79.10 (6)° (B/C), 81.79 (6)° (B/D) and 3.58 (5)° (C/D). The independent triazole ring (N3/C15/N4/N5/C16) is essentially planar. All bond lengths are in agreement with another related structure (Ramos Silva et al., 2008). O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds play important roles in stabilizing the crystal structure by forming a two-dimensional-network, which is further extended to three-dimensional-network due to the intermolecular linkages made by water solvates (Table 2 and Fig. 2). The three-dimensional network is further strengthened by significant π–π interactions between (N1/C1–C5) pyridine (centroid Cg5) and triazole (N3/C15/N4/N5/C16) (centroid Cg7) rings [Cg5···Cg7vii distance = 3.6080 (8) Å; (vii) -1/2 + x, 1/2 - y, -z].

Experimental

Pyridine-2,6-dicarboxylic acid (dipicolinic acid, H2dipic) and 3,5-diamino-1,2,4-triazole (datrz) were purchased from Merck and Molekula, respectively. Copper (II) sulfate pentahydrate (CuSO4.5H2O) and HPLC grade methanol were Uni- Chem and M TEDIA products, respectively. Deionized water was also used in the procedures when needed.

Synthesis of (Hdatrz)+[Cu(Hdipic)(dipic)]-.3H2O 1 mmol (0.099 g) of 3,5-diamino-1,2,4-triazole(datrz) and 1 mmol of dipicolinic acid (0.167 g) were dissolved in a mixture of methanol/water solution (1:10, 11 ml). The resulting solution was heated to 600 °C with stirring. An aqueous solution (1 ml) containing 0.5 mmol (0.125 g) of CuSO4.5H2O was added to the stirred solution. The greenish suspension was allowed to stir further for 1 hr, and then filtered while hot. The filtrate was kept at room temperature. Well shaped blue crystals of the title compound were formed by slow evaporation of the solution after 5 days. Percentage yield based on copper is 51.67%.

Refinement

H atoms on C atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride, with Uiso(H) = 1.2Ueq(C). The H atoms on the oxygen and nitrogen atoms were located in a difference Fourier maps and refined isotropically; refined distances are O—H = 0.78 (3)–0.91 (3) Å and N—H = 0.76 (2)–0.92 (2) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title crystal, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bonds are shown by dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing a three-dimensional molecular network. Only hydrogen atoms involved in hydrogen bonding are shown.

Crystal data

(C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O Dx = 1.754 Mg m3
Mr = 548.92 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 9982 reflections
a = 11.3091 (2) Å θ = 2.4–34.3°
b = 14.9442 (3) Å µ = 1.13 mm1
c = 24.6045 (5) Å T = 100 K
V = 4158.29 (14) Å3 Block, blue
Z = 8 0.54 × 0.20 × 0.07 mm
F(000) = 2248

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 9184 independent reflections
Radiation source: fine-focus sealed tube 6619 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 35.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→18
Tmin = 0.583, Tmax = 0.921 k = −24→24
55434 measured reflections l = −35→39

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.6423P] where P = (Fo2 + 2Fc2)/3
9184 reflections (Δ/σ)max = 0.001
368 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.215732 (15) 0.157389 (11) 0.147781 (7) 0.00961 (5)
O1 0.08015 (9) 0.08189 (7) 0.18273 (4) 0.0134 (2)
O2 0.36032 (9) 0.18850 (7) 0.10156 (4) 0.01296 (19)
O3 0.07633 (9) 0.24435 (7) 0.10732 (4) 0.01269 (19)
O4 0.35335 (9) 0.12522 (7) 0.21908 (4) 0.0141 (2)
O5 −0.02108 (10) −0.04545 (7) 0.16838 (5) 0.0178 (2)
O6 0.49003 (10) 0.12228 (8) 0.04550 (5) 0.0209 (2)
O7 −0.02109 (9) 0.37240 (7) 0.12527 (4) 0.0146 (2)
O8 0.43168 (10) 0.20192 (7) 0.28899 (4) 0.0153 (2)
N1 0.22886 (10) 0.04926 (8) 0.10717 (5) 0.0101 (2)
N2 0.21368 (10) 0.26548 (8) 0.19377 (5) 0.0093 (2)
N3 0.74524 (12) 0.52025 (8) 0.08876 (5) 0.0135 (2)
N4 0.57456 (11) 0.54813 (8) 0.04709 (5) 0.0132 (2)
N5 0.61177 (11) 0.45979 (8) 0.03913 (5) 0.0131 (2)
N6 0.66479 (13) 0.66858 (9) 0.09430 (6) 0.0173 (3)
N7 0.77259 (13) 0.36686 (10) 0.06458 (7) 0.0211 (3)
C1 0.06033 (13) 0.00591 (9) 0.15837 (6) 0.0122 (2)
C2 0.14997 (12) −0.01609 (9) 0.11494 (6) 0.0102 (2)
C3 0.15723 (12) −0.09465 (9) 0.08511 (6) 0.0120 (2)
H3A 0.1014 −0.1397 0.0895 0.014*
C4 0.25034 (13) −0.10441 (9) 0.04841 (6) 0.0126 (3)
H4A 0.2568 −0.1565 0.0280 0.015*
C5 0.33380 (12) −0.03646 (9) 0.04217 (6) 0.0125 (3)
H5A 0.3973 −0.0430 0.0185 0.015*
C6 0.31922 (12) 0.04136 (9) 0.07243 (6) 0.0110 (2)
C7 0.39802 (13) 0.12317 (10) 0.07216 (6) 0.0128 (3)
C8 0.05761 (12) 0.31610 (9) 0.13374 (6) 0.0109 (2)
C9 0.14039 (12) 0.33297 (9) 0.18110 (6) 0.0096 (2)
C10 0.14068 (12) 0.41254 (9) 0.21033 (6) 0.0121 (2)
H10A 0.0887 0.4585 0.2013 0.015*
C11 0.21941 (12) 0.42253 (9) 0.25307 (6) 0.0127 (2)
H11A 0.2219 0.4757 0.2727 0.015*
C12 0.29478 (12) 0.35219 (9) 0.26639 (6) 0.0122 (2)
H12A 0.3481 0.3574 0.2950 0.015*
C13 0.28853 (12) 0.27413 (9) 0.23597 (6) 0.0108 (2)
C14 0.36167 (12) 0.19255 (9) 0.24695 (6) 0.0116 (2)
C15 0.65778 (12) 0.58205 (9) 0.07748 (6) 0.0123 (3)
C16 0.71346 (12) 0.44283 (10) 0.06413 (6) 0.0125 (2)
O1W 0.54413 (15) 0.26343 (9) 0.16261 (7) 0.0380 (4)
O2W 0.64627 (12) 0.10349 (10) 0.18324 (6) 0.0293 (3)
O3W 0.08779 (10) 0.22067 (8) −0.00591 (5) 0.0171 (2)
H1O8 0.467 (2) 0.1503 (17) 0.2979 (11) 0.054 (8)*
H1N3 0.7969 (19) 0.5288 (15) 0.1077 (9) 0.032 (6)*
H1N5 0.5722 (17) 0.4258 (14) 0.0218 (9) 0.023 (5)*
H1N6 0.7083 (18) 0.6739 (15) 0.1215 (10) 0.028 (6)*
H2N6 0.5929 (19) 0.6983 (14) 0.0952 (8) 0.026 (5)*
H1N7 0.7412 (19) 0.3244 (14) 0.0499 (8) 0.022 (5)*
H2N7 0.837 (2) 0.3643 (15) 0.0799 (9) 0.033 (6)*
H1W1 0.491 (2) 0.2500 (19) 0.1436 (11) 0.049 (8)*
H2W1 0.546 (2) 0.3146 (17) 0.1640 (10) 0.031 (6)*
H1W2 0.611 (3) 0.157 (2) 0.1794 (14) 0.076 (10)*
H2W2 0.618 (3) 0.0882 (19) 0.2141 (13) 0.067 (9)*
H1W3 0.054 (2) 0.2667 (17) −0.0225 (10) 0.044 (7)*
H2W3 0.082 (2) 0.2265 (15) 0.0251 (11) 0.037 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01071 (8) 0.00748 (8) 0.01064 (8) 0.00011 (6) 0.00135 (6) −0.00198 (6)
O1 0.0145 (5) 0.0100 (4) 0.0157 (5) −0.0004 (4) 0.0043 (4) −0.0022 (4)
O2 0.0146 (5) 0.0096 (4) 0.0147 (5) −0.0009 (4) 0.0026 (4) −0.0022 (4)
O3 0.0147 (5) 0.0113 (4) 0.0122 (5) −0.0003 (4) −0.0010 (4) −0.0022 (4)
O4 0.0171 (5) 0.0100 (4) 0.0151 (5) 0.0020 (4) −0.0017 (4) −0.0012 (4)
O5 0.0169 (5) 0.0141 (5) 0.0223 (6) −0.0037 (4) 0.0070 (4) −0.0014 (4)
O6 0.0181 (5) 0.0179 (5) 0.0268 (6) −0.0039 (4) 0.0116 (5) −0.0058 (5)
O7 0.0134 (5) 0.0142 (5) 0.0163 (5) 0.0027 (4) −0.0024 (4) 0.0013 (4)
O8 0.0183 (5) 0.0120 (5) 0.0157 (5) 0.0036 (4) −0.0069 (4) −0.0006 (4)
N1 0.0104 (5) 0.0095 (5) 0.0104 (5) 0.0004 (4) 0.0003 (4) −0.0007 (4)
N2 0.0095 (5) 0.0088 (5) 0.0096 (5) 0.0003 (4) 0.0006 (4) 0.0002 (4)
N3 0.0120 (5) 0.0125 (5) 0.0160 (6) −0.0003 (4) −0.0038 (5) −0.0010 (5)
N4 0.0125 (5) 0.0118 (5) 0.0155 (6) 0.0013 (4) −0.0004 (4) −0.0013 (4)
N5 0.0123 (5) 0.0108 (5) 0.0161 (6) 0.0001 (4) −0.0026 (4) −0.0020 (4)
N6 0.0174 (6) 0.0127 (6) 0.0217 (7) 0.0010 (5) −0.0021 (5) −0.0050 (5)
N7 0.0168 (7) 0.0120 (6) 0.0346 (8) 0.0021 (5) −0.0115 (6) −0.0028 (5)
C1 0.0141 (6) 0.0089 (6) 0.0136 (6) 0.0012 (5) 0.0017 (5) 0.0002 (5)
C2 0.0099 (6) 0.0090 (6) 0.0118 (6) 0.0008 (5) 0.0003 (4) −0.0003 (4)
C3 0.0134 (6) 0.0089 (6) 0.0139 (6) −0.0001 (5) −0.0004 (5) −0.0001 (5)
C4 0.0142 (6) 0.0109 (6) 0.0127 (6) 0.0019 (5) −0.0017 (5) −0.0017 (5)
C5 0.0126 (6) 0.0124 (6) 0.0125 (6) 0.0022 (5) 0.0008 (5) −0.0021 (5)
C6 0.0115 (6) 0.0101 (6) 0.0113 (6) 0.0013 (5) 0.0009 (5) −0.0005 (5)
C7 0.0143 (6) 0.0113 (6) 0.0128 (6) −0.0008 (5) 0.0013 (5) −0.0011 (5)
C8 0.0112 (6) 0.0110 (6) 0.0105 (6) −0.0016 (5) 0.0007 (5) 0.0023 (5)
C9 0.0097 (5) 0.0086 (6) 0.0106 (6) −0.0001 (4) 0.0007 (4) −0.0001 (4)
C10 0.0122 (6) 0.0087 (6) 0.0155 (7) 0.0017 (5) 0.0005 (5) −0.0010 (5)
C11 0.0141 (6) 0.0090 (6) 0.0150 (6) 0.0004 (5) 0.0008 (5) −0.0026 (5)
C12 0.0134 (6) 0.0111 (6) 0.0122 (6) −0.0001 (5) −0.0018 (5) −0.0018 (5)
C13 0.0108 (6) 0.0106 (6) 0.0108 (6) 0.0014 (5) −0.0004 (5) −0.0005 (4)
C14 0.0118 (6) 0.0116 (6) 0.0114 (6) −0.0001 (5) 0.0003 (5) 0.0019 (5)
C15 0.0119 (6) 0.0116 (6) 0.0136 (6) 0.0010 (5) 0.0008 (5) 0.0003 (5)
C16 0.0116 (6) 0.0112 (6) 0.0146 (7) −0.0005 (5) −0.0020 (5) 0.0000 (5)
O1W 0.0469 (9) 0.0118 (6) 0.0554 (10) −0.0030 (6) −0.0334 (8) 0.0027 (6)
O2W 0.0308 (7) 0.0313 (7) 0.0256 (7) 0.0163 (6) 0.0061 (6) 0.0020 (6)
O3W 0.0232 (6) 0.0141 (5) 0.0140 (6) 0.0026 (4) 0.0017 (4) −0.0017 (4)

Geometric parameters (Å, °)

Cu1—N1 1.9057 (12) N6—H2N6 0.93 (2)
Cu1—N2 1.9723 (12) N7—C16 1.318 (2)
Cu1—O2 2.0453 (10) N7—H1N7 0.81 (2)
Cu1—O1 2.0889 (10) N7—H2N7 0.82 (2)
Cu1—O3 2.2727 (10) C1—C2 1.509 (2)
Cu1—O4 2.3939 (10) C2—C3 1.3870 (19)
O1—C1 1.3034 (17) C3—C4 1.395 (2)
O2—C7 1.2877 (17) C3—H3A 0.9300
O3—C8 1.2716 (17) C4—C5 1.395 (2)
O4—C14 1.2213 (17) C4—H4A 0.9300
O5—C1 1.2237 (17) C5—C6 1.3907 (19)
O6—C7 1.2301 (17) C5—H5A 0.9300
O7—C8 1.2425 (17) C6—C7 1.513 (2)
O8—C14 1.3102 (17) C8—C9 1.516 (2)
O8—H1O8 0.90 (3) C9—C10 1.3896 (19)
N1—C2 1.3365 (17) C10—C11 1.386 (2)
N1—C6 1.3375 (18) C10—H10A 0.9300
N2—C9 1.3422 (17) C11—C12 1.3925 (19)
N2—C13 1.3459 (17) C11—H11A 0.9300
N3—C16 1.3547 (19) C12—C13 1.3878 (19)
N3—C15 1.3813 (19) C12—H12A 0.9300
N3—H1N3 0.76 (2) C13—C14 1.4978 (19)
N4—C15 1.3045 (18) O1W—H1W1 0.78 (3)
N4—N5 1.3994 (17) O1W—H2W1 0.77 (2)
N5—C16 1.3285 (18) O2W—H1W2 0.90 (3)
N5—H1N5 0.80 (2) O2W—H2W2 0.85 (3)
N6—C15 1.3602 (19) O3W—H1W3 0.89 (3)
N6—H1N6 0.83 (2) O3W—H2W3 0.77 (3)
N1—Cu1—N2 174.99 (5) C2—C3—C4 118.42 (13)
N1—Cu1—O2 80.73 (4) C2—C3—H3A 120.8
N2—Cu1—O2 98.17 (4) C4—C3—H3A 120.8
N1—Cu1—O1 79.34 (4) C3—C4—C5 120.39 (13)
N2—Cu1—O1 101.40 (4) C3—C4—H4A 119.8
O2—Cu1—O1 159.80 (4) C5—C4—H4A 119.8
N1—Cu1—O3 108.01 (4) C6—C5—C4 118.01 (13)
N2—Cu1—O3 76.99 (4) C6—C5—H5A 121.0
O2—Cu1—O3 100.43 (4) C4—C5—H5A 121.0
O1—Cu1—O3 88.85 (4) N1—C6—C5 120.44 (13)
N1—Cu1—O4 99.40 (4) N1—C6—C7 112.42 (12)
N2—Cu1—O4 75.63 (4) C5—C6—C7 127.13 (13)
O2—Cu1—O4 86.18 (4) O6—C7—O2 126.01 (14)
O1—Cu1—O4 93.85 (4) O6—C7—C6 119.46 (13)
O3—Cu1—O4 152.47 (4) O2—C7—C6 114.53 (12)
C1—O1—Cu1 114.05 (9) O7—C8—O3 127.20 (13)
C7—O2—Cu1 113.87 (9) O7—C8—C9 117.30 (13)
C8—O3—Cu1 111.94 (9) O3—C8—C9 115.50 (12)
C14—O4—Cu1 107.22 (9) N2—C9—C10 121.43 (13)
C14—O8—H1O8 111.8 (17) N2—C9—C8 115.77 (12)
C2—N1—C6 122.47 (12) C10—C9—C8 122.80 (12)
C2—N1—Cu1 119.51 (9) C11—C10—C9 119.10 (13)
C6—N1—Cu1 118.00 (9) C11—C10—H10A 120.4
C9—N2—C13 119.69 (12) C9—C10—H10A 120.4
C9—N2—Cu1 119.31 (9) C10—C11—C12 119.38 (13)
C13—N2—Cu1 120.92 (9) C10—C11—H11A 120.3
C16—N3—C15 106.92 (12) C12—C11—H11A 120.3
C16—N3—H1N3 128.6 (17) C13—C12—C11 118.45 (13)
C15—N3—H1N3 124.2 (17) C13—C12—H12A 120.8
C15—N4—N5 103.28 (11) C11—C12—H12A 120.8
C16—N5—N4 112.06 (12) N2—C13—C12 121.93 (12)
C16—N5—H1N5 127.6 (14) N2—C13—C14 114.09 (12)
N4—N5—H1N5 120.4 (14) C12—C13—C14 123.97 (12)
C15—N6—H1N6 111.6 (15) O4—C14—O8 125.31 (13)
C15—N6—H2N6 114.3 (13) O4—C14—C13 121.79 (13)
H1N6—N6—H2N6 117.0 (19) O8—C14—C13 112.90 (12)
C16—N7—H1N7 116.6 (15) N4—C15—N6 125.87 (13)
C16—N7—H2N7 119.6 (16) N4—C15—N3 111.84 (13)
H1N7—N7—H2N7 124 (2) N6—C15—N3 122.19 (13)
O5—C1—O1 125.68 (13) N7—C16—N5 127.42 (14)
O5—C1—C2 120.75 (13) N7—C16—N3 126.69 (13)
O1—C1—C2 113.57 (12) N5—C16—N3 105.89 (13)
N1—C2—C3 120.22 (12) H1W1—O1W—H2W1 107 (3)
N1—C2—C1 112.99 (12) H1W2—O2W—H2W2 100 (3)
C3—C2—C1 126.79 (12) H1W3—O3W—H2W3 109 (2)
N1—Cu1—O1—C1 −6.84 (10) N1—C2—C3—C4 1.9 (2)
N2—Cu1—O1—C1 178.21 (10) C1—C2—C3—C4 −176.87 (13)
O2—Cu1—O1—C1 −16.30 (18) C2—C3—C4—C5 0.1 (2)
O3—Cu1—O1—C1 101.73 (10) C3—C4—C5—C6 −1.6 (2)
O4—Cu1—O1—C1 −105.69 (10) C2—N1—C6—C5 0.6 (2)
N1—Cu1—O2—C7 −5.71 (10) Cu1—N1—C6—C5 179.32 (10)
N2—Cu1—O2—C7 169.34 (10) C2—N1—C6—C7 −178.28 (12)
O1—Cu1—O2—C7 3.71 (18) Cu1—N1—C6—C7 0.41 (15)
O3—Cu1—O2—C7 −112.48 (10) C4—C5—C6—N1 1.3 (2)
O4—Cu1—O2—C7 94.47 (10) C4—C5—C6—C7 −179.91 (14)
N1—Cu1—O3—C8 176.48 (9) Cu1—O2—C7—O6 −171.91 (13)
N2—Cu1—O3—C8 −3.90 (9) Cu1—O2—C7—C6 7.35 (15)
O2—Cu1—O3—C8 −99.97 (9) N1—C6—C7—O6 173.99 (13)
O1—Cu1—O3—C8 98.08 (9) C5—C6—C7—O6 −4.8 (2)
O4—Cu1—O3—C8 1.95 (14) N1—C6—C7—O2 −5.33 (18)
N1—Cu1—O4—C14 174.94 (10) C5—C6—C7—O2 175.84 (14)
N2—Cu1—O4—C14 −4.45 (9) Cu1—O3—C8—O7 −172.04 (12)
O2—Cu1—O4—C14 95.00 (10) Cu1—O3—C8—C9 7.09 (14)
O1—Cu1—O4—C14 −105.24 (9) C13—N2—C9—C10 0.7 (2)
O3—Cu1—O4—C14 −10.33 (14) Cu1—N2—C9—C10 −176.17 (10)
N2—Cu1—N1—C2 103.6 (6) C13—N2—C9—C8 −178.69 (12)
O2—Cu1—N1—C2 −178.65 (11) Cu1—N2—C9—C8 4.45 (16)
O1—Cu1—N1—C2 4.64 (10) O7—C8—C9—N2 171.23 (12)
O3—Cu1—N1—C2 −80.62 (11) O3—C8—C9—N2 −7.99 (18)
O4—Cu1—N1—C2 96.82 (10) O7—C8—C9—C10 −8.1 (2)
N2—Cu1—N1—C6 −75.1 (6) O3—C8—C9—C10 172.64 (13)
O2—Cu1—N1—C6 2.62 (10) N2—C9—C10—C11 0.7 (2)
O1—Cu1—N1—C6 −174.09 (11) C8—C9—C10—C11 −179.93 (13)
O3—Cu1—N1—C6 100.66 (10) C9—C10—C11—C12 −1.2 (2)
O4—Cu1—N1—C6 −81.90 (10) C10—C11—C12—C13 0.3 (2)
N1—Cu1—N2—C9 175.3 (5) C9—N2—C13—C12 −1.7 (2)
O2—Cu1—N2—C9 98.28 (10) Cu1—N2—C13—C12 175.13 (10)
O1—Cu1—N2—C9 −86.74 (10) C9—N2—C13—C14 177.65 (12)
O3—Cu1—N2—C9 −0.61 (10) Cu1—N2—C13—C14 −5.54 (16)
O4—Cu1—N2—C9 −177.83 (11) C11—C12—C13—N2 1.2 (2)
N1—Cu1—N2—C13 −1.5 (6) C11—C12—C13—C14 −178.06 (13)
O2—Cu1—N2—C13 −78.54 (11) Cu1—O4—C14—O8 −177.73 (12)
O1—Cu1—N2—C13 96.45 (11) Cu1—O4—C14—C13 3.18 (16)
O3—Cu1—N2—C13 −177.43 (11) N2—C13—C14—O4 0.74 (19)
O4—Cu1—N2—C13 5.36 (10) C12—C13—C14—O4 −179.95 (14)
C15—N4—N5—C16 0.02 (16) N2—C13—C14—O8 −178.46 (12)
Cu1—O1—C1—O5 −172.99 (12) C12—C13—C14—O8 0.9 (2)
Cu1—O1—C1—C2 7.53 (15) N5—N4—C15—N6 176.70 (14)
C6—N1—C2—C3 −2.3 (2) N5—N4—C15—N3 0.33 (16)
Cu1—N1—C2—C3 179.01 (10) C16—N3—C15—N4 −0.57 (17)
C6—N1—C2—C1 176.63 (12) C16—N3—C15—N6 −177.08 (14)
Cu1—N1—C2—C1 −2.03 (16) N4—N5—C16—N7 −179.65 (15)
O5—C1—C2—N1 176.49 (13) N4—N5—C16—N3 −0.36 (16)
O1—C1—C2—N1 −4.00 (17) C15—N3—C16—N7 179.84 (15)
O5—C1—C2—C3 −4.6 (2) C15—N3—C16—N5 0.54 (16)
O1—C1—C2—C3 174.87 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O8—H1O8···O1i 0.90 (3) 1.71 (2) 2.5536 (15) 157 (2)
N3—H1N3···O2Wii 0.76 (2) 2.26 (2) 2.9081 (19) 144 (2)
N5—H1N5···O3Wiii 0.80 (2) 2.23 (2) 2.8310 (17) 132.3 (18)
N5—H1N5···N4iv 0.80 (2) 2.40 (2) 2.9925 (18) 131.2 (19)
N6—H1N6···O2Wii 0.83 (2) 2.47 (2) 3.209 (2) 147.6 (19)
N6—H2N6···O3v 0.93 (2) 2.06 (2) 2.9699 (17) 168.7 (19)
N7—H1N7···O3Wiii 0.81 (2) 2.15 (2) 2.8570 (19) 145 (2)
N7—H2N7···O7vi 0.82 (2) 1.96 (2) 2.7714 (18) 170 (2)
O1W—H1W1···O2 0.79 (2) 2.03 (3) 2.7985 (19) 168 (3)
O1W—H2W1···O5v 0.77 (3) 2.11 (3) 2.8715 (17) 171 (2)
O2W—H1W2···O1W 0.90 (3) 1.81 (3) 2.703 (2) 173 (3)
O2W—H2W2···O1i 0.85 (3) 2.58 (3) 3.3968 (18) 162 (3)
O3W—H1W3···O6vii 0.89 (3) 1.90 (3) 2.7712 (17) 169 (2)
O3W—H2W3···O3 0.77 (3) 2.04 (3) 2.8113 (16) 177 (2)
C5—H5A···O6viii 0.93 2.35 3.2042 (18) 153
C12—H12A···O7i 0.93 2.47 3.3960 (17) 176

Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+3/2, y+1/2, z; (iii) x+1/2, −y+1/2, −z; (iv) −x+1, −y+1, −z; (v) −x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x−1/2, −y+1/2, −z; (viii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2693).

References

  1. Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.
  2. Aghajani, Z., Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran Chem. Soc. 6, 373–385.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Kuzelka, J., Farrll, J. R. & Lippard, S. J. (2003). Inorg. Chem. 42, 8652–8656. [DOI] [PubMed]
  6. Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perepectives, Weinheim: VCH.
  7. MacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 24, 1203–1209.
  8. Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. [DOI] [PubMed]
  12. Wang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353–1359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011147/is2693sup1.cif

e-67-0m509-sup1.cif (26.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011147/is2693Isup2.hkl

e-67-0m509-Isup2.hkl (440.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES