Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):o1015–o1016. doi: 10.1107/S1600536811011159

A cocrystal of 3α-hy­droxy­tirucalla-8,24-dien-21-oic acid and 3β-fluoro­tirucalla-7,24-dien-21-oic acid (0.897:0.103)

S Yousuf a, R S T Kamdem b, P Wafo b, B T Ngadjui c, Hoong-Kun Fun d,*,
PMCID: PMC3099936  PMID: 21754032

Abstract

The title compound, 0.897C30H48O3.0.103C30H47O2F is a co-crystal of two triterpenes isolated from the resin of Canarium schweinfurthiiand Engl. Both triterpenes consists of four trans-fused rings having chair/half-chair/half-chair and envelope conformations. The mol­ecular conformations are stabilized by intra­molecular C—H⋯O hydrogen bonds, forming rings of S(7) graph-set motif. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O and C—H⋯O inter­actions, forming sheets parallel to (001). All atoms. excepting the axially-oriented hydroxyl group in the major component and the equatorially-oriented fluorine atom in the minor component, are overlapping.

Related literature

For the crystal structure of 3α-hy­droxy­tirucalla-7,24-diene-21-oic acid, see: Mora et al. (2001). For the crystal structure of 3α-hy­droxy­tirucalla-8,24-diene-21-oic acid, see: Yousuf et al. (2011). For the biological activity of canarium schweinfurthiiand, see: Atawodi (2010); Dongmo et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1015-scheme1.jpg

Experimental

Crystal data

  • 0.897C30H48O3·0.103C30H47O2F

  • M r = 455.88

  • Trigonal, Inline graphic

  • a = 11.2868 (9) Å

  • c = 36.446 (3) Å

  • V = 4020.9 (5) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.29 × 0.24 × 0.13 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.980, T max = 0.991

  • 27808 measured reflections

  • 4454 independent reflections

  • 4347 reflections with I > 2σ(I)

  • R int = 0.105

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.153

  • S = 1.18

  • 4454 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011159/rz2572sup1.cif

e-67-o1015-sup1.cif (29KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011159/rz2572Isup2.hkl

e-67-o1015-Isup2.hkl (218.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.87 1.81 2.654 (3) 165
O3—H3A⋯O2ii 0.84 2.04 2.818 (4) 154
C12—H12B⋯O1 0.99 2.56 3.262 (4) 128
C22—H22A⋯O3iii 0.99 2.40 3.300 (5) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RSTK thanks the H.E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities. HKF thanks the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

The title compound is a co-crystal of two triterpenes namely 3α-hydroxytirucalla-7,24-dien-21-oic acid (or epielemadienolic acid, I) as a major component (89.7%) and 3β-fluorotirucalla- 7,24-dien-21-oic acid (II) as minor component (10.3%). The co-crystal was isolated during the phytochemical investigation of the dichloromethane soluble part of the resins of the medicinally important plant Canarium schweinfurthii of Cameroon. The plant has been used for the treatment of a wide range of ailments including malaria, fever and diarrhea (Atawodi, 2010; Dongmo et al., 2010). The refinement of the crystal structure revealed I and II as major (89.7%) and minor (10.3%) component, respectively with the difference that in II the axially oriented hydroxyl group attached to C3 has been replaced by the equatorially oriented fluorine atom. The asymmetric unit of the co-crystal (Fig. 1) consists of the mixture of I (Fig. 2) and II (Fig. 3). The crystal structure of the major component I has already been reported and the space group (P3121) and cell parameters were found to be similar to those previously reported (Mora et al.. 2001, Yousuf et al., 2011). However the minor component II was found to be a new triterpene. In both components the molecular structure showed that the trans fused rings A/B/C and D adopt chair [Q= 0.550 (4) Å, θ = 7.1 (4)° and φ = 88 (3)°] / half-chair [Q= 0.530 (4) Å, θ = 49.5 (4)° and φ = 323.5 (6)°] / half-chair [Q= 0.652 (4) Å, θ = 100.4 (4)° and φ = 83.8 (3)°] and envelope [Q= 0.483 (2)Å and φ = 10.7 (4)°] conformations respectively. The chair and envelop conformations of rings C and D are stabilized by C12—H12B···O1 intramolecular hydrogen bond. In the crystal structure, the molecules are linked to form two-dimensional molecular sheets via O3—H3A···O2, O1—H1O1···O2 and C22—H22A···O3 intermolecular hydrogen bonds (symmetry codes as in Table 1) and arranged parallel to the (001) plane (Fig.2).The absolute configuration was assigned on the basis of our recently published triterpene crystal data (Yousuf et al., 2011).

Experimental

The resin (100 g) of Canarium schweinfurthii Engl. was collected in Yaounde, Cameroon, in May 2010 and identified by Professor Noumi, a botanist at the Department of Biology, University of Yaounde-1. A voucher specimen (HNC 25918.) was deposited at the National Herbarium of Cameroon in Yaounde. The resin (100 g) of C. schweinfurthii was allowed to dry under shade and extracted with dichloromethane. The extract (70 g) was subjected to column chromatography over silica gel (300 g, 60 × 5 cm) eluting with hexane followed by a mixture of n-hexane–EtOAc in order to increase polarity. The fractions eluted were monitored by thin layer chromatography and similar fractions were combined to give seven fraction FrA-FrG. Fraction FrA (200 mg), obtained on elution with a mixture of n-hexane-EtOAc (8:2 v/v), was subjected to further column chromatography over silica gel (70 g, 60 cm3 × 3, hexane-acetone equimolar solution) to yield crystals of the title compound. Recrystallization from n-hexane gave colourless crystals (60 mg).

Refinement

H atoms on the C of methyl, methylene, methine and oxygen were positioned geomatrically with C–H = 0.98–1.00 Å and O–H = 0.86 Å, respectively and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH2, CH) and 1.5Ueq(CH3, OH). A rotating group model was applied to the methyl groups. The crystal is a twin with twin law -1 0 0 0 - 1 0 0 0 1 and BASF = 0.1815 (16). Friedel pairs were merged in the last refinement cycles.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Fig. 2.

Fig. 2.

The molecular structure of the major component I, showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Fig. 3.

Fig. 3.

The molecular structure of the minor component II, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Fig. 4.

Fig. 4.

Crystal packing of the major component of the title compound, showing a two-dimensional molecular sheet parallel to the (001) plane. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.

Crystal data

0.897C30H48O3·0.103C30H47O2F Dx = 1.130 Mg m3
Mr = 455.88 Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121 Cell parameters from 10350 reflections
Hall symbol: p 31 2" θ = 2.1–30.1°
a = 11.2868 (9) Å µ = 0.07 mm1
c = 36.446 (3) Å T = 100 K
V = 4020.9 (5) Å3 Block, colourles
Z = 6 0.29 × 0.24 × 0.13 mm
F(000) = 1506

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 4454 independent reflections
Radiation source: fine-focus sealed tube 4347 reflections with I > 2σ(I)
graphite Rint = 0.105
φ and ω scans θmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.980, Tmax = 0.991 k = −13→15
27808 measured reflections l = −51→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0644P)2 + 1.6942P] where P = (Fo2 + 2Fc2)/3
4454 reflections (Δ/σ)max < 0.001
316 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.1191 (2) 0.0008 (2) 0.12753 (5) 0.0221 (4)
H1O1 0.1119 −0.0077 0.1511 0.033*
O2 −0.1057 (2) −0.0844 (2) 0.13357 (5) 0.0230 (4)
O3 0.6534 (3) 0.8965 (3) 0.10496 (7) 0.0330 (8) 0.898 (8)
H3A 0.7204 0.9158 0.1187 0.049* 0.898 (8)
F1 0.693 (3) 1.048 (3) 0.1287 (7) 0.042 (7) 0.102 (8)
C1 0.4098 (3) 0.7220 (4) 0.14860 (7) 0.0268 (7)
H1A 0.3651 0.6772 0.1720 0.032*
H1B 0.4651 0.6811 0.1403 0.032*
C2 0.5056 (4) 0.8752 (4) 0.15562 (8) 0.0335 (8)
H2A 0.4524 0.9153 0.1660 0.040*
H2B 0.5761 0.8875 0.1738 0.040*
C3 0.5750 (3) 0.9496 (4) 0.12011 (8) 0.0278 (7)
H3B 0.6369 1.0487 0.1257 0.033* 0.898 (8)
H3C 0.6079 0.8925 0.1103 0.033* 0.102 (8)
C4 0.4725 (3) 0.9373 (3) 0.09109 (9) 0.0249 (6)
C5 0.3685 (3) 0.7821 (3) 0.08498 (8) 0.0241 (6)
H5A 0.4249 0.7444 0.0746 0.029*
C6 0.2630 (5) 0.7560 (4) 0.05513 (13) 0.0500 (13)
H6A 0.2107 0.8014 0.0622 0.060*
H6B 0.3116 0.7979 0.0319 0.060*
C7 0.1654 (3) 0.6078 (3) 0.04875 (8) 0.0257 (6)
H7A 0.1104 0.5813 0.0273 0.031*
C8 0.1521 (3) 0.5079 (3) 0.07283 (8) 0.0217 (5)
C9 0.2374 (4) 0.5422 (3) 0.10692 (8) 0.0299 (7)
H9A 0.3193 0.5367 0.0989 0.036*
C10 0.2987 (3) 0.6922 (3) 0.11976 (8) 0.0206 (5)
C11 0.1746 (4) 0.4342 (3) 0.13671 (7) 0.0252 (6)
H11A 0.1766 0.4589 0.1617 0.030*
C12 0.1076 (4) 0.2838 (3) 0.12501 (7) 0.0277 (7)
H12A 0.0164 0.2323 0.1367 0.033*
H12B 0.1639 0.2453 0.1342 0.033*
C13 0.0908 (3) 0.2624 (3) 0.08335 (7) 0.0180 (5)
C14 0.0440 (3) 0.3596 (3) 0.06687 (7) 0.0176 (5)
C15 0.0125 (4) 0.3087 (3) 0.02691 (8) 0.0273 (6)
H15A 0.0967 0.3517 0.0119 0.033*
H15B −0.0549 0.3301 0.0159 0.033*
C16 −0.0472 (3) 0.1517 (3) 0.02956 (7) 0.0237 (6)
H16A 0.0009 0.1221 0.0124 0.028*
H16B −0.1458 0.1027 0.0234 0.028*
C17 −0.0255 (3) 0.1210 (3) 0.06995 (7) 0.0180 (5)
H17A −0.1100 0.1000 0.0840 0.022*
C18 0.2267 (3) 0.2887 (4) 0.06574 (10) 0.0294 (7)
H18A 0.2646 0.2420 0.0801 0.044*
H18B 0.2920 0.3872 0.0654 0.044*
H18C 0.2094 0.2536 0.0406 0.044*
C19 0.1860 (4) 0.7155 (4) 0.13545 (15) 0.0473 (11)
H19A 0.1395 0.6511 0.1556 0.071*
H19B 0.1197 0.7011 0.1161 0.071*
H19C 0.2267 0.8094 0.1447 0.071*
C20 −0.0046 (3) −0.0042 (3) 0.07384 (7) 0.0191 (5)
H20A 0.0854 0.0187 0.0627 0.023*
C21 −0.0021 (3) −0.0331 (3) 0.11447 (7) 0.0184 (5)
C22 −0.1189 (3) −0.1329 (3) 0.05494 (7) 0.0215 (5)
H22A −0.2073 −0.1581 0.0668 0.026*
H22B −0.1249 −0.1112 0.0289 0.026*
C23 −0.0965 (4) −0.2561 (4) 0.05649 (9) 0.0274 (6)
H23A −0.0041 −0.2285 0.0470 0.033*
H23B −0.1006 −0.2846 0.0824 0.033*
C24 −0.2013 (4) −0.3758 (4) 0.03450 (8) 0.0269 (6)
H24A −0.1861 −0.3718 0.0088 0.032*
C25 −0.3113 (4) −0.4852 (4) 0.04663 (8) 0.0288 (6)
C26 −0.3528 (5) −0.5105 (6) 0.08649 (10) 0.0518 (12)
H26A −0.2775 −0.4437 0.1018 0.078*
H26B −0.3741 −0.6031 0.0933 0.078*
H26C −0.4337 −0.5013 0.0903 0.078*
C27 −0.4081 (5) −0.5985 (4) 0.02111 (11) 0.0418 (9)
H27A −0.3788 −0.5722 −0.0043 0.063*
H27B −0.5010 −0.6138 0.0242 0.063*
H27C −0.4072 −0.6828 0.0269 0.063*
C28 0.5494 (4) 0.9980 (4) 0.05503 (9) 0.0338 (8)
H28A 0.6234 1.0919 0.0593 0.051*
H28B 0.4860 0.9982 0.0367 0.051*
H28C 0.5880 0.9425 0.0461 0.051*
C29 0.4101 (4) 1.0252 (4) 0.10225 (15) 0.0462 (10)
H29A 0.4819 1.1217 0.1028 0.069*
H29B 0.3689 0.9975 0.1267 0.069*
H29C 0.3397 1.0127 0.0844 0.069*
C30 −0.0905 (3) 0.3400 (3) 0.08398 (10) 0.0267 (6)
H30A −0.1171 0.4003 0.0716 0.040*
H30B −0.0763 0.3627 0.1102 0.040*
H30C −0.1631 0.2446 0.0810 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0217 (10) 0.0320 (12) 0.0167 (7) 0.0165 (9) 0.0016 (8) 0.0012 (8)
O2 0.0198 (10) 0.0313 (11) 0.0140 (7) 0.0099 (9) 0.0026 (7) 0.0030 (8)
O3 0.0163 (12) 0.053 (2) 0.0305 (13) 0.0177 (13) −0.0012 (10) −0.0023 (13)
F1 0.040 (13) 0.043 (14) 0.053 (14) 0.029 (11) −0.008 (11) −0.003 (10)
C1 0.0229 (14) 0.0342 (17) 0.0131 (10) 0.0067 (13) −0.0047 (10) −0.0013 (11)
C2 0.0304 (16) 0.0350 (18) 0.0138 (11) 0.0003 (15) −0.0012 (12) −0.0055 (12)
C3 0.0149 (12) 0.0386 (18) 0.0187 (11) 0.0049 (13) −0.0020 (11) −0.0049 (12)
C4 0.0150 (12) 0.0214 (14) 0.0306 (14) 0.0033 (11) −0.0048 (11) −0.0039 (12)
C5 0.0181 (13) 0.0188 (13) 0.0281 (13) 0.0037 (11) −0.0092 (11) −0.0005 (11)
C6 0.042 (2) 0.0203 (16) 0.064 (3) −0.0024 (15) −0.035 (2) 0.0129 (17)
C7 0.0215 (13) 0.0218 (14) 0.0230 (12) 0.0027 (12) −0.0109 (11) 0.0036 (12)
C8 0.0145 (12) 0.0195 (13) 0.0246 (12) 0.0036 (10) −0.0066 (10) 0.0032 (11)
C9 0.0392 (18) 0.0205 (14) 0.0191 (11) 0.0068 (14) −0.0115 (13) 0.0016 (11)
C10 0.0146 (12) 0.0222 (13) 0.0229 (11) 0.0078 (10) −0.0029 (10) −0.0015 (10)
C11 0.0350 (17) 0.0234 (13) 0.0114 (10) 0.0103 (13) 0.0001 (12) 0.0007 (10)
C12 0.045 (2) 0.0203 (13) 0.0131 (10) 0.0129 (14) −0.0069 (13) 0.0013 (10)
C13 0.0182 (12) 0.0217 (13) 0.0133 (9) 0.0093 (11) −0.0010 (9) 0.0026 (9)
C14 0.0158 (12) 0.0164 (12) 0.0139 (10) 0.0031 (10) −0.0026 (9) 0.0020 (10)
C15 0.0366 (17) 0.0253 (14) 0.0160 (11) 0.0125 (14) −0.0072 (12) 0.0045 (11)
C16 0.0257 (14) 0.0232 (14) 0.0157 (10) 0.0075 (12) −0.0049 (11) 0.0005 (11)
C17 0.0177 (12) 0.0189 (12) 0.0128 (9) 0.0056 (10) 0.0007 (9) 0.0007 (9)
C18 0.0154 (13) 0.0244 (16) 0.0435 (17) 0.0062 (12) 0.0006 (13) 0.0051 (14)
C19 0.0253 (17) 0.0253 (17) 0.090 (3) 0.0118 (15) 0.022 (2) 0.010 (2)
C20 0.0190 (12) 0.0225 (13) 0.0137 (9) 0.0088 (11) 0.0023 (9) 0.0024 (10)
C21 0.0219 (13) 0.0179 (12) 0.0159 (9) 0.0104 (11) 0.0010 (10) −0.0002 (9)
C22 0.0256 (14) 0.0227 (13) 0.0142 (9) 0.0107 (12) −0.0007 (10) −0.0005 (10)
C23 0.0264 (15) 0.0269 (16) 0.0289 (14) 0.0134 (13) 0.0018 (12) −0.0012 (12)
C24 0.0357 (18) 0.0276 (15) 0.0185 (11) 0.0166 (14) 0.0020 (12) −0.0010 (11)
C25 0.0286 (16) 0.0325 (16) 0.0245 (13) 0.0147 (14) −0.0019 (12) −0.0009 (12)
C26 0.033 (2) 0.068 (3) 0.0296 (16) 0.007 (2) 0.0078 (16) 0.0082 (19)
C27 0.040 (2) 0.036 (2) 0.0409 (18) 0.0125 (18) −0.0050 (17) −0.0098 (17)
C28 0.0324 (18) 0.0280 (16) 0.0263 (14) 0.0041 (14) −0.0089 (13) 0.0011 (13)
C29 0.0299 (19) 0.0209 (16) 0.084 (3) 0.0097 (15) 0.005 (2) 0.0034 (19)
C30 0.0164 (13) 0.0207 (14) 0.0383 (16) 0.0059 (12) 0.0006 (12) 0.0005 (13)

Geometric parameters (Å, °)

O1—C21 1.312 (4) C14—C30 1.552 (4)
O1—H1O1 0.8651 C15—C16 1.552 (5)
O2—C21 1.229 (3) C15—H15A 0.9900
O3—C3 1.406 (5) C15—H15B 0.9900
O3—H3A 0.8400 C16—C17 1.559 (4)
O3—H3C 0.5288 C16—H16A 0.9900
F1—C3 1.27 (3) C16—H16B 0.9900
C1—C2 1.534 (5) C17—C20 1.551 (4)
C1—C10 1.539 (4) C17—H17A 1.0000
C1—H1A 0.9900 C18—H18A 0.9800
C1—H1B 0.9900 C18—H18B 0.9800
C2—C3 1.529 (4) C18—H18C 0.9800
C2—H2A 0.9900 C19—H19A 0.9800
C2—H2B 0.9900 C19—H19B 0.9800
C3—C4 1.521 (4) C19—H19C 0.9800
C3—H3B 1.0000 C20—C21 1.519 (3)
C3—H3C 0.9601 C20—C22 1.541 (4)
C4—C29 1.532 (5) C20—H20A 1.0000
C4—C28 1.535 (5) C22—C23 1.533 (5)
C4—C5 1.562 (4) C22—H22A 0.9900
C5—C6 1.528 (4) C22—H22B 0.9900
C5—C10 1.568 (4) C23—C24 1.506 (5)
C5—H5A 1.0000 C23—H23A 0.9900
C6—C7 1.491 (5) C23—H23B 0.9900
C6—H6A 0.9900 C24—C25 1.314 (5)
C6—H6B 0.9900 C24—H24A 0.9500
C7—C8 1.376 (4) C25—C26 1.509 (5)
C7—H7A 0.9500 C25—C27 1.516 (5)
C8—C9 1.499 (4) C26—H26A 0.9800
C8—C14 1.516 (4) C26—H26B 0.9800
C9—C11 1.517 (4) C26—H26C 0.9800
C9—C10 1.547 (4) C27—H27A 0.9800
C9—H9A 1.0000 C27—H27B 0.9800
C10—C19 1.533 (5) C27—H27C 0.9800
C11—C12 1.534 (4) C28—H28A 0.9800
C11—H11A 0.9500 C28—H28B 0.9800
C12—C13 1.534 (4) C28—H28C 0.9800
C12—H12A 0.9900 C29—H29A 0.9800
C12—H12B 0.9900 C29—H29B 0.9800
C13—C18 1.548 (4) C29—H29C 0.9800
C13—C17 1.554 (4) C30—H30A 0.9800
C13—C14 1.556 (4) C30—H30B 0.9800
C14—C15 1.540 (4) C30—H30C 0.9800
C21—O1—H1O1 107.6 C14—C15—C16 104.7 (2)
C3—O3—H3A 109.5 C14—C15—H15A 110.8
C3—O3—H3C 26.1 C16—C15—H15A 110.8
H3A—O3—H3C 121.0 C14—C15—H15B 110.8
C2—C1—C10 113.4 (3) C16—C15—H15B 110.8
C2—C1—H1A 108.9 H15A—C15—H15B 108.9
C10—C1—H1A 108.9 C15—C16—C17 106.6 (2)
C2—C1—H1B 108.9 C15—C16—H16A 110.4
C10—C1—H1B 108.9 C17—C16—H16A 110.4
H1A—C1—H1B 107.7 C15—C16—H16B 110.4
C3—C2—C1 110.9 (2) C17—C16—H16B 110.4
C3—C2—H2A 109.5 H16A—C16—H16B 108.6
C1—C2—H2A 109.5 C20—C17—C13 118.1 (2)
C3—C2—H2B 109.5 C20—C17—C16 113.6 (2)
C1—C2—H2B 109.5 C13—C17—C16 102.4 (2)
H2A—C2—H2B 108.0 C20—C17—H17A 107.4
F1—C3—O3 82.0 (11) C13—C17—H17A 107.4
F1—C3—C4 131.7 (11) C16—C17—H17A 107.4
O3—C3—C4 107.4 (2) C13—C18—H18A 109.5
F1—C3—C2 107.2 (11) C13—C18—H18B 109.5
O3—C3—C2 110.9 (3) H18A—C18—H18B 109.5
C4—C3—C2 112.4 (3) C13—C18—H18C 109.5
F1—C3—H3B 30.0 H18A—C18—H18C 109.5
O3—C3—H3B 108.7 H18B—C18—H18C 109.5
C4—C3—H3B 108.7 C10—C19—H19A 109.5
C2—C3—H3B 108.7 C10—C19—H19B 109.5
F1—C3—H3C 95.1 H19A—C19—H19B 109.5
O3—C3—H3C 14.0 C10—C19—H19C 109.5
C4—C3—H3C 102.1 H19A—C19—H19C 109.5
C2—C3—H3C 102.2 H19B—C19—H19C 109.5
H3B—C3—H3C 122.6 C21—C20—C22 109.3 (2)
C3—C4—C29 109.3 (3) C21—C20—C17 108.2 (2)
C3—C4—C28 108.7 (3) C22—C20—C17 112.4 (2)
C29—C4—C28 106.2 (3) C21—C20—H20A 109.0
C3—C4—C5 108.2 (3) C22—C20—H20A 109.0
C29—C4—C5 115.7 (3) C17—C20—H20A 109.0
C28—C4—C5 108.6 (3) O2—C21—O1 122.7 (2)
C6—C5—C4 113.2 (3) O2—C21—C20 122.5 (3)
C6—C5—C10 111.1 (3) O1—C21—C20 114.8 (2)
C4—C5—C10 117.6 (2) C23—C22—C20 113.5 (3)
C6—C5—H5A 104.5 C23—C22—H22A 108.9
C4—C5—H5A 104.5 C20—C22—H22A 108.9
C10—C5—H5A 104.5 C23—C22—H22B 108.9
C7—C6—C5 113.2 (3) C20—C22—H22B 108.9
C7—C6—H6A 108.9 H22A—C22—H22B 107.7
C5—C6—H6A 108.9 C24—C23—C22 112.5 (3)
C7—C6—H6B 108.9 C24—C23—H23A 109.1
C5—C6—H6B 108.9 C22—C23—H23A 109.1
H6A—C6—H6B 107.7 C24—C23—H23B 109.1
C8—C7—C6 122.4 (3) C22—C23—H23B 109.1
C8—C7—H7A 118.8 H23A—C23—H23B 107.8
C6—C7—H7A 118.8 C25—C24—C23 127.8 (3)
C7—C8—C9 121.6 (3) C25—C24—H24A 116.1
C7—C8—C14 120.8 (2) C23—C24—H24A 116.1
C9—C8—C14 117.5 (2) C24—C25—C26 124.0 (3)
C8—C9—C11 113.8 (3) C24—C25—C27 122.0 (3)
C8—C9—C10 114.3 (3) C26—C25—C27 114.0 (3)
C11—C9—C10 115.9 (2) C25—C26—H26A 109.5
C8—C9—H9A 103.6 C25—C26—H26B 109.5
C11—C9—H9A 103.6 H26A—C26—H26B 109.5
C10—C9—H9A 103.6 C25—C26—H26C 109.5
C19—C10—C1 111.3 (3) H26A—C26—H26C 109.5
C19—C10—C9 110.2 (3) H26B—C26—H26C 109.5
C1—C10—C9 108.4 (3) C25—C27—H27A 109.5
C19—C10—C5 112.4 (3) C25—C27—H27B 109.5
C1—C10—C5 108.7 (2) H27A—C27—H27B 109.5
C9—C10—C5 105.6 (2) C25—C27—H27C 109.5
C9—C11—C12 117.6 (2) H27A—C27—H27C 109.5
C9—C11—H11A 121.2 H27B—C27—H27C 109.5
C12—C11—H11A 121.2 C4—C28—H28A 109.5
C11—C12—C13 113.8 (2) C4—C28—H28B 109.5
C11—C12—H12A 108.8 H28A—C28—H28B 109.5
C13—C12—H12A 108.8 C4—C28—H28C 109.5
C11—C12—H12B 108.8 H28A—C28—H28C 109.5
C13—C12—H12B 108.8 H28B—C28—H28C 109.5
H12A—C12—H12B 107.7 C4—C29—H29A 109.5
C12—C13—C18 110.3 (3) C4—C29—H29B 109.5
C12—C13—C17 116.6 (2) H29A—C29—H29B 109.5
C18—C13—C17 108.3 (2) C4—C29—H29C 109.5
C12—C13—C14 109.3 (2) H29A—C29—H29C 109.5
C18—C13—C14 111.0 (2) H29B—C29—H29C 109.5
C17—C13—C14 101.1 (2) C14—C30—H30A 109.5
C8—C14—C15 117.1 (2) C14—C30—H30B 109.5
C8—C14—C30 106.8 (3) H30A—C30—H30B 109.5
C15—C14—C30 107.4 (3) C14—C30—H30C 109.5
C8—C14—C13 110.7 (2) H30A—C30—H30C 109.5
C15—C14—C13 101.5 (2) H30B—C30—H30C 109.5
C30—C14—C13 113.4 (2)
C10—C1—C2—C3 −57.4 (4) C9—C11—C12—C13 −10.5 (5)
C1—C2—C3—F1 −148.0 (12) C11—C12—C13—C18 81.3 (4)
C1—C2—C3—O3 −60.1 (4) C11—C12—C13—C17 −154.6 (3)
C1—C2—C3—C4 60.2 (4) C11—C12—C13—C14 −40.9 (4)
F1—C3—C4—C29 −70.9 (16) C7—C8—C14—C15 35.8 (4)
O3—C3—C4—C29 −165.7 (3) C9—C8—C14—C15 −147.8 (3)
C2—C3—C4—C29 72.0 (4) C7—C8—C14—C30 −84.6 (4)
F1—C3—C4—C28 44.6 (16) C9—C8—C14—C30 91.8 (3)
O3—C3—C4—C28 −50.3 (4) C7—C8—C14—C13 151.4 (3)
C2—C3—C4—C28 −172.6 (3) C9—C8—C14—C13 −32.2 (4)
F1—C3—C4—C5 162.4 (15) C12—C13—C14—C8 63.1 (3)
O3—C3—C4—C5 67.5 (3) C18—C13—C14—C8 −58.8 (3)
C2—C3—C4—C5 −54.8 (4) C17—C13—C14—C8 −173.5 (2)
C3—C4—C5—C6 −177.7 (3) C12—C13—C14—C15 −171.9 (3)
C29—C4—C5—C6 59.3 (5) C18—C13—C14—C15 66.2 (3)
C28—C4—C5—C6 −59.9 (4) C17—C13—C14—C15 −48.5 (3)
C3—C4—C5—C10 50.5 (4) C12—C13—C14—C30 −57.0 (3)
C29—C4—C5—C10 −72.5 (4) C18—C13—C14—C30 −178.9 (3)
C28—C4—C5—C10 168.3 (3) C17—C13—C14—C30 66.4 (3)
C4—C5—C6—C7 178.8 (4) C8—C14—C15—C16 156.0 (3)
C10—C5—C6—C7 −46.3 (5) C30—C14—C15—C16 −83.9 (3)
C5—C6—C7—C8 14.2 (6) C13—C14—C15—C16 35.4 (3)
C6—C7—C8—C9 −1.1 (6) C14—C15—C16—C17 −9.2 (3)
C6—C7—C8—C14 175.2 (4) C12—C13—C17—C20 −73.7 (3)
C7—C8—C9—C11 157.2 (3) C18—C13—C17—C20 51.4 (3)
C14—C8—C9—C11 −19.2 (4) C14—C13—C17—C20 168.0 (2)
C7—C8—C9—C10 21.0 (5) C12—C13—C17—C16 160.6 (3)
C14—C8—C9—C10 −155.4 (3) C18—C13—C17—C16 −74.3 (3)
C2—C1—C10—C19 −74.9 (3) C14—C13—C17—C16 42.4 (3)
C2—C1—C10—C9 163.8 (3) C15—C16—C17—C20 −149.2 (3)
C2—C1—C10—C5 49.5 (3) C15—C16—C17—C13 −20.7 (3)
C8—C9—C10—C19 71.6 (4) C13—C17—C20—C21 66.8 (3)
C11—C9—C10—C19 −63.7 (4) C16—C17—C20—C21 −173.3 (2)
C8—C9—C10—C1 −166.4 (3) C13—C17—C20—C22 −172.4 (2)
C11—C9—C10—C1 58.4 (4) C16—C17—C20—C22 −52.5 (3)
C8—C9—C10—C5 −50.0 (4) C22—C20—C21—O2 −49.3 (4)
C11—C9—C10—C5 174.7 (3) C17—C20—C21—O2 73.4 (4)
C6—C5—C10—C19 −56.8 (4) C22—C20—C21—O1 130.6 (3)
C4—C5—C10—C19 75.9 (4) C17—C20—C21—O1 −106.7 (3)
C6—C5—C10—C1 179.5 (3) C21—C20—C22—C23 −63.1 (3)
C4—C5—C10—C1 −47.7 (4) C17—C20—C22—C23 176.8 (2)
C6—C5—C10—C9 63.4 (4) C20—C22—C23—C24 −174.0 (2)
C4—C5—C10—C9 −163.9 (3) C22—C23—C24—C25 −99.7 (4)
C8—C9—C11—C12 42.2 (5) C23—C24—C25—C26 −0.2 (7)
C10—C9—C11—C12 177.7 (3) C23—C24—C25—C27 −179.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O2i 0.87 1.81 2.654 (3) 165
O3—H3A···O2ii 0.84 2.04 2.818 (4) 154
C12—H12B···O1 0.99 2.56 3.262 (4) 128
C22—H22A···O3iii 0.99 2.40 3.300 (5) 151

Symmetry codes: (i) −x, −x+y, −z+1/3; (ii) x+1, y+1, z; (iii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2572).

References

  1. Atawodi, S. E. (2010). Adv. Biol. Res. 4, 314–322.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Dongmo, P. M., Tchoumbougnang, F., Ndongson, B., Agwannande, W., Sandjon, B., Zollo, P. H. A. & Menut, C. (2010). Agri. Biol. J. N. Am. 1 pp. 606–6011.
  5. Mora, A. J., Delgado, G., Díaz de Delgado, G., Usubillaga, A., Khouri, N. & Bahsas, A. (2001). Acta Cryst. C57, 638–640. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Yousuf, S., Kamdem, R. S. T., Ngadjui, B. T., Wafo, P. & Fun, H.-K. (2011). Acta Cryst. E67, o937–o938. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011159/rz2572sup1.cif

e-67-o1015-sup1.cif (29KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011159/rz2572Isup2.hkl

e-67-o1015-Isup2.hkl (218.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES