Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 31;67(Pt 4):o1017. doi: 10.1107/S1600536811011366

4-Chloro-N-(3-chloro­phen­yl)benzene­sulfonamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3099951  PMID: 21754033

Abstract

In the crystal of the title compound, C12H9Cl2NO2S, the mol­ecule is twisted at the S atom with a C—SO2—NH—C torsion angle of −58.4 (3)°. Furthermore, the N—H bond in this segment is anti to the meta-chloro group. The dihedral angle between the aromatic rings is 77.1 (1)°. The crystal structure features inversion-related dimers linked by N—H⋯O hydrogen bonds.

Related literature

For our study on the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2005); Shakuntala et al. (2011). For the effect of substituents on the oxidative strengths of N-chloro,N-aryl­sulfonamides, see: Gowda & Shetty (2004) and for the effect of substituents on the NQR spectra of N-(ar­yl)-amides, see: Gowda et al. (2000).graphic file with name e-67-o1017-scheme1.jpg

Experimental

Crystal data

  • C12H9Cl2NO2S

  • M r = 302.16

  • Monoclinic, Inline graphic

  • a = 9.378 (2) Å

  • b = 13.478 (3) Å

  • c = 10.251 (2) Å

  • β = 90.48°

  • V = 1295.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 K

  • 0.48 × 0.44 × 0.44 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.745, T max = 0.762

  • 4232 measured reflections

  • 2115 independent reflections

  • 1572 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.129

  • S = 1.08

  • 2115 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011366/ds2101sup1.cif

e-67-o1017-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011366/ds2101Isup2.hkl

e-67-o1017-Isup2.hkl (104KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.09 (2) 2.939 (4) 176 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As a part of studying the substituent effects on the structures and other aspects of this class of compounds (Gowda et al., 2000, 2004, 2005; Shakuntala et al., 2011), in the present work, the crystal structure of 4-chloro-N-(3-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -58.4 (3)°, compared to the value of -56.7 (2)° in 4-chloro-N-(2,3-dichlorophenyl)-benzenesulfonamide (II) (Shakuntala et al., 2011). The N—H bond and the meta- chloro group in the anilino benzene ring are anti to each other.

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 77.1 (1)°, compared to the value of 56.5 (1)° in (II).

Inermolecular N—H···O(S) hydrogen bonding interactions generates inversion related dimers which are further packed via van der Waals interactions in the crystal structure (Fig.2).

Experimental

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was added dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 3-chloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(3-chlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by FT-IR and NMR spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The weak diffraction of the crystal resulted in low theta value. However, the refinement went well

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C12H9Cl2NO2S F(000) = 616
Mr = 302.16 Dx = 1.549 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 959 reflections
a = 9.378 (2) Å θ = 2.9–27.8°
b = 13.478 (3) Å µ = 0.65 mm1
c = 10.251 (2) Å T = 293 K
β = 90.48° Prism, colourless
V = 1295.6 (5) Å3 0.48 × 0.44 × 0.44 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2115 independent reflections
Radiation source: fine-focus sealed tube 1572 reflections with I > 2σ(I)
graphite Rint = 0.014
Rotation method data acquisition using ω and phi scans. θmax = 24.7°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −11→10
Tmin = 0.745, Tmax = 0.762 k = −15→15
4232 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.047P)2 + 1.4846P] where P = (Fo2 + 2Fc2)/3
2115 reflections (Δ/σ)max = 0.006
166 parameters Δρmax = 0.54 e Å3
1 restraint Δρmin = −0.49 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1825 (3) −0.0615 (3) 0.0799 (3) 0.0508 (9)
C2 0.0654 (4) −0.0812 (4) 0.1546 (4) 0.0729 (12)
H2 0.0440 −0.0410 0.2255 0.087*
C3 −0.0207 (4) −0.1612 (4) 0.1236 (5) 0.0825 (14)
H3 −0.0999 −0.1755 0.1743 0.099*
C4 0.0106 (4) −0.2191 (3) 0.0188 (4) 0.0679 (11)
C5 0.1265 (4) −0.1999 (3) −0.0564 (4) 0.0689 (11)
H5 0.1468 −0.2399 −0.1278 0.083*
C6 0.2127 (4) −0.1211 (3) −0.0256 (4) 0.0596 (10)
H6 0.2923 −0.1078 −0.0763 0.072*
C7 0.4235 (4) −0.0627 (2) 0.3131 (4) 0.0505 (8)
C8 0.3302 (4) −0.0357 (3) 0.4113 (3) 0.0516 (8)
H8 0.2676 0.0172 0.4000 0.062*
C9 0.3323 (4) −0.0887 (3) 0.5251 (4) 0.0584 (9)
C10 0.4236 (5) −0.1658 (3) 0.5465 (5) 0.0743 (12)
H10 0.4237 −0.2000 0.6254 0.089*
C11 0.5151 (5) −0.1916 (3) 0.4491 (5) 0.0784 (13)
H11 0.5784 −0.2438 0.4620 0.094*
C12 0.5152 (4) −0.1415 (3) 0.3323 (4) 0.0631 (10)
H12 0.5769 −0.1607 0.2664 0.076*
O1 0.3569 (3) 0.07335 (19) −0.0026 (2) 0.0640 (7)
O2 0.2238 (3) 0.1039 (2) 0.1997 (3) 0.0728 (8)
N1 0.4324 (3) −0.0091 (2) 0.1956 (3) 0.0562 (8)
H1N 0.491 (3) −0.030 (3) 0.139 (3) 0.067*
Cl1 −0.09656 (14) −0.31895 (11) −0.01890 (13) 0.1052 (5)
Cl2 0.21587 (13) −0.05483 (10) 0.64754 (11) 0.0900 (4)
S1 0.29685 (10) 0.03746 (7) 0.11668 (9) 0.0552 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0405 (17) 0.060 (2) 0.052 (2) 0.0058 (15) −0.0001 (15) 0.0121 (18)
C2 0.052 (2) 0.108 (3) 0.059 (2) 0.000 (2) 0.0080 (19) −0.003 (2)
C3 0.047 (2) 0.124 (4) 0.077 (3) −0.018 (2) 0.006 (2) 0.021 (3)
C4 0.058 (2) 0.077 (3) 0.069 (3) −0.016 (2) −0.0094 (19) 0.016 (2)
C5 0.067 (2) 0.066 (3) 0.074 (3) −0.012 (2) 0.005 (2) −0.002 (2)
C6 0.055 (2) 0.062 (2) 0.062 (2) −0.0103 (18) 0.0159 (17) 0.003 (2)
C7 0.0478 (18) 0.0433 (18) 0.060 (2) −0.0041 (15) −0.0076 (16) −0.0038 (17)
C8 0.0511 (19) 0.0509 (19) 0.053 (2) 0.0036 (16) −0.0068 (16) −0.0009 (17)
C9 0.061 (2) 0.059 (2) 0.055 (2) −0.0050 (18) −0.0063 (18) 0.0001 (19)
C10 0.077 (3) 0.060 (3) 0.086 (3) −0.002 (2) −0.018 (2) 0.014 (2)
C11 0.075 (3) 0.049 (2) 0.112 (4) 0.012 (2) −0.018 (3) 0.005 (2)
C12 0.059 (2) 0.051 (2) 0.079 (3) 0.0060 (18) −0.003 (2) −0.013 (2)
O1 0.0741 (17) 0.0581 (15) 0.0598 (16) −0.0056 (13) 0.0076 (13) 0.0121 (12)
O2 0.090 (2) 0.0604 (16) 0.0680 (17) 0.0245 (15) 0.0041 (14) −0.0037 (14)
N1 0.0513 (18) 0.0630 (19) 0.054 (2) 0.0002 (15) 0.0007 (14) −0.0036 (16)
Cl1 0.0940 (9) 0.1148 (11) 0.1066 (10) −0.0559 (8) −0.0191 (7) 0.0267 (8)
Cl2 0.0911 (8) 0.1135 (10) 0.0657 (7) 0.0044 (7) 0.0125 (6) 0.0095 (7)
S1 0.0592 (5) 0.0493 (5) 0.0572 (6) 0.0048 (4) 0.0031 (4) 0.0025 (4)

Geometric parameters (Å, °)

C1—C2 1.370 (5) C7—N1 1.407 (5)
C1—C6 1.379 (5) C8—C9 1.367 (5)
C1—S1 1.751 (4) C8—H8 0.9300
C2—C3 1.383 (6) C9—C10 1.364 (5)
C2—H2 0.9300 C9—Cl2 1.732 (4)
C3—C4 1.362 (6) C10—C11 1.367 (6)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.362 (5) C11—C12 1.374 (6)
C4—Cl1 1.722 (4) C11—H11 0.9300
C5—C6 1.370 (5) C12—H12 0.9300
C5—H5 0.9300 O1—S1 1.434 (2)
C6—H6 0.9300 O2—S1 1.416 (3)
C7—C12 1.380 (5) N1—S1 1.627 (3)
C7—C8 1.387 (5) N1—H1N 0.846 (18)
C2—C1—C6 119.8 (4) C7—C8—H8 120.7
C2—C1—S1 121.3 (3) C10—C9—C8 122.7 (4)
C6—C1—S1 118.9 (3) C10—C9—Cl2 118.9 (3)
C1—C2—C3 119.5 (4) C8—C9—Cl2 118.4 (3)
C1—C2—H2 120.3 C9—C10—C11 118.2 (4)
C3—C2—H2 120.3 C9—C10—H10 120.9
C4—C3—C2 119.9 (4) C11—C10—H10 120.9
C4—C3—H3 120.0 C10—C11—C12 121.1 (4)
C2—C3—H3 120.0 C10—C11—H11 119.4
C3—C4—C5 121.1 (4) C12—C11—H11 119.4
C3—C4—Cl1 119.7 (3) C11—C12—C7 119.8 (4)
C5—C4—Cl1 119.2 (4) C11—C12—H12 120.1
C4—C5—C6 119.3 (4) C7—C12—H12 120.1
C4—C5—H5 120.4 C7—N1—S1 124.9 (2)
C6—C5—H5 120.4 C7—N1—H1N 117 (3)
C5—C6—C1 120.5 (3) S1—N1—H1N 107 (3)
C5—C6—H6 119.8 O2—S1—O1 119.65 (17)
C1—C6—H6 119.8 O2—S1—N1 108.95 (17)
C12—C7—C8 119.6 (4) O1—S1—N1 104.09 (16)
C12—C7—N1 118.4 (3) O2—S1—C1 108.23 (17)
C8—C7—N1 121.9 (3) O1—S1—C1 108.50 (16)
C9—C8—C7 118.5 (3) N1—S1—C1 106.73 (16)
C9—C8—H8 120.7
C6—C1—C2—C3 0.4 (6) C9—C10—C11—C12 −0.2 (6)
S1—C1—C2—C3 −178.8 (3) C10—C11—C12—C7 1.2 (6)
C1—C2—C3—C4 −0.6 (6) C8—C7—C12—C11 −1.1 (5)
C2—C3—C4—C5 0.4 (7) N1—C7—C12—C11 176.1 (3)
C2—C3—C4—Cl1 179.7 (3) C12—C7—N1—S1 143.4 (3)
C3—C4—C5—C6 0.0 (6) C8—C7—N1—S1 −39.5 (5)
Cl1—C4—C5—C6 −179.3 (3) C7—N1—S1—O2 58.2 (3)
C4—C5—C6—C1 −0.3 (6) C7—N1—S1—O1 −173.1 (3)
C2—C1—C6—C5 0.0 (6) C7—N1—S1—C1 −58.4 (3)
S1—C1—C6—C5 179.3 (3) C2—C1—S1—O2 −18.4 (4)
C12—C7—C8—C9 0.1 (5) C6—C1—S1—O2 162.4 (3)
N1—C7—C8—C9 −177.0 (3) C2—C1—S1—O1 −149.6 (3)
C7—C8—C9—C10 1.0 (6) C6—C1—S1—O1 31.2 (3)
C7—C8—C9—Cl2 179.9 (3) C2—C1—S1—N1 98.8 (3)
C8—C9—C10—C11 −0.9 (6) C6—C1—S1—N1 −80.5 (3)
Cl2—C9—C10—C11 −179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (2) 2.09 (2) 2.939 (4) 176 (4)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2101).

References

  1. Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.
  2. Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.
  3. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  5. Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o232. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011366/ds2101sup1.cif

e-67-o1017-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011366/ds2101Isup2.hkl

e-67-o1017-Isup2.hkl (104KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES