Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 5;67(Pt 4):o777–o778. doi: 10.1107/S1600536811007331

2-Phenyl-8,9,10,11-tetra­hydro-1-benzo­thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine

Shridhar I Panchamukhi a, Nikhath Fathima b, I M Khazi a, Noor Shahina Begum b,*
PMCID: PMC3099952  PMID: 21754069

Abstract

In the title compound, C17H14N4S, the benzothieno moiety is fused at one end of the pyramidine ring while the triazole ring with a phenyl substituent is fused at the other side. The triazole ring is almost planar [maximum deviation = 0.0028 (3) Å] while the cyclo­hexane ring adopts a half-chair conformation. In the crystal, pairs of inter­molecular C—H⋯N hydrogen bonds form centrosymmetric head-to-head dimers, corresponding to an R 2 2(8) graph-set motif. Further C—H⋯N inter­actions generate a zigzag chain of mol­ecules along the c axis. The supra­molecular assembly is consolidated by π–π stacking inter­actions [centroid–centroid distance = 3.445 (4) Å].

Related literature

For the biological activity of thio­phenes, benzothio­phenes, pyrimidines and triazolopyrimidines, see: Shishoo & Jain (1992); Bradbury & Rivett (1991); Elslager et al. (1981); Yunosov et al. (1966); Blain et al. (1982). For related structures, see: Akkurt et al. (2008); Buzykin et al. (2008); Harrison et al. (2006); Lipson et al. (2006); Belcher & Squattrito (2006). For hydrogen-bond motifs, see: Bernstein et al. 1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-67-0o777-scheme1.jpg

Experimental

Crystal data

  • C17H14N4S

  • M r = 306.38

  • Monoclinic, Inline graphic

  • a = 8.6239 (16) Å

  • b = 20.512 (4) Å

  • c = 8.5952 (16) Å

  • β = 111.975 (3)°

  • V = 1410.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.960, T max = 0.964

  • 8272 measured reflections

  • 3042 independent reflections

  • 2345 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.202

  • S = 1.25

  • 3042 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007331/pb2056sup1.cif

e-67-0o777-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007331/pb2056Isup2.hkl

e-67-0o777-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.93 2.50 3.413 (3) 166
C11—H11B⋯N2ii 0.97 2.82 3.653 (5) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data-collection facility under the IRHPA–DST program.

supplementary crystallographic information

Comment

The Chemistry of thiophenes and benzothiophenes is well documented in the literature and has drawn much attention because of their wide spectrum of biological activities (Shishoo et al., 1992). Pyrimidines and triazolopyrimidines are also associated with diverse biological activities (Bradbury et al., 1991; Elslager et al., 1981). In view of the pharmacological significance of thiophene and pyrimidine derivatives in well known drugs such as coramine (Yunosov et al., 1966), antipyrine (Blain et al., 1982) and also in continuation of our work on biologicallyactive nitrogen and sulfur heterocycles. In the title compound, the benzothieno moiety is fused at one end of the pyramidine ring and the triazole ring with a phenyl substituent is fused at the other side. The fused triazole-pyrimidine-benzotheino and the phenyl ring is coplanar with the dihedral angle 2.584 (3)°. The triazole ring is essentially planar similar to those reported earlier (Belcher & Squattrito, 2006; Buzykin et al., 2008) with maximum deviation of atomsfrom their mean statistical planes being 0.0028 (3) Å. The N(1), atom of the triazole ring is in planar trigonal configuration similar to those reported earlier (Lipson et al., 2006). The N(1)—N(2) bond length in the triazole ring is shorter {1.362 (4)Å} than the distance characteristic of a single N—N bond (1.47 Å). The N—C and N—N distances in the triazole ring vary from 1.36 (2) Å to 1.38 (4) Å respectively. The cyclohexene ring is in half-chair conformation. The plane calculation shows that the atoms C10 and C11 deviate from the mean plane C7/C8/C9/C12 constituting the ring by -0.358 (4)Å and 0.302 (4) Å,respectively, indicating that the conformation of the ring is that of a half-chair, with the atoms C10 and C11 being displaced by this overall planarity of the rest of the ring. The ring puckering parameters for the cyclohexene ring in the title compound are Q(2) = 0.3816 (3)Å, φ(2) = 23.08 (5)° and θ= 129.07 (4)° respectively. In most of the benzotheino ring systems the cyclohexyl ring adopts half-chair conformation (Akkurt et al., 2008; Harrison et al., 2006). The crystal structure is stabilized by two C—H···N intermolecular interactions. One of the C—H···N interaction links the molecules into head-head centrosymmetric dimers corresponding to graph set notation R22(8) (Bernstein et al., 1995) (Fig 2), while the other C—H···N interaction interaction generates chain of molecules in a zig-zag tape like pattern along c axis (Fig 2). Additionally, the supramolecular assembly is further stabilized by π–π stacking interaction between the pyrimidine and phenyl rings. The C2—C4 (-x - 1,1 - y,1 - z) disposed at a distance of 3.445 (4)Å.

Experimental

A solution of 2-Amino-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carbonitrile (1.78 g, 10 mmole) in triethylorthoformate (12 ml) was heated under reflux for 18 h; excess triethylorthoformate was removed under pressure. The residue was treated with petroleum ether. Solid that separated was filtered and recrystallized with petroleum ether to afford light brown crystals of N-(3-Cyano-4, 5, 6, 7-tetrahydro-benzo[b]thiophen-2-yl)-formimidic acid ethyl ester. 0.234 g, 1 mmole of this mixture and benzoic acid hydrazide (0.136 g, 1 mmole) was stirred at room temperature in toluene (5 ml) and then AcOH (0.06 g,1 mmole) was added and refluxed further till the completion of the reaction. The reaction mixture was then washed with water and dried over sodium sulfate. Toluene was removed under pressure to get analytically pure product. Yield 74%; mp; 196–198° C.

Refinement

The H atoms were placed at calculated positions in the riding model approximation with aromatic C—H = 0.97 Å, heterocyclic C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(N/C).

Figures

Fig. 1.

Fig. 1.

ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

Crystal data

C17H14N4S F(000) = 640
Mr = 306.38 Dx = 1.443 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3042 reflections
a = 8.6239 (16) Å θ = 2.6–27.0°
b = 20.512 (4) Å µ = 0.23 mm1
c = 8.5952 (16) Å T = 296 K
β = 111.975 (3)° Block, white
V = 1410.0 (5) Å3 0.18 × 0.16 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer 3042 independent reflections
Radiation source: fine-focus sealed tube 2345 reflections with I > 2σ(I)
graphite Rint = 0.057
ω scans θmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −10→11
Tmin = 0.960, Tmax = 0.964 k = −26→19
8272 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202 H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.1054P)2] where P = (Fo2 + 2Fc2)/3
3042 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.72 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1145 (3) 0.57323 (12) 0.5033 (3) 0.0166 (6)
C2 −0.2370 (3) 0.52330 (12) 0.4477 (3) 0.0160 (6)
C3 −0.4107 (3) 0.44589 (13) 0.3912 (3) 0.0163 (6)
C4 −0.5006 (3) 0.38839 (13) 0.4128 (3) 0.0177 (6)
C5 −0.3157 (3) 0.56670 (13) 0.1641 (4) 0.0205 (6)
H5 −0.3857 0.5635 0.0517 0.025*
C6 −0.1062 (3) 0.61456 (13) 0.3786 (4) 0.0189 (6)
C7 0.0023 (3) 0.58943 (13) 0.6675 (3) 0.0174 (6)
C8 0.0944 (3) 0.64270 (13) 0.6629 (3) 0.0185 (6)
C9 0.2214 (4) 0.67497 (14) 0.8139 (4) 0.0228 (6)
H9A 0.2104 0.7220 0.8025 0.027*
H9B 0.3332 0.6631 0.8226 0.027*
C10 0.1936 (4) 0.65306 (15) 0.9725 (4) 0.0297 (7)
H10A 0.2879 0.6667 1.0710 0.036*
H10B 0.0940 0.6739 0.9760 0.036*
C11 0.1742 (4) 0.57928 (15) 0.9757 (4) 0.0292 (7)
H11A 0.1642 0.5667 1.0803 0.035*
H11B 0.2735 0.5586 0.9710 0.035*
C12 0.0201 (4) 0.55527 (13) 0.8282 (3) 0.0197 (6)
H12A 0.0296 0.5087 0.8144 0.024*
H12B −0.0793 0.5629 0.8529 0.024*
C13 −0.6266 (3) 0.35972 (13) 0.2766 (4) 0.0187 (6)
H13 −0.6562 0.3776 0.1699 0.022*
C14 −0.7074 (4) 0.30477 (14) 0.3003 (4) 0.0216 (6)
H14 −0.7920 0.2862 0.2091 0.026*
C15 −0.6648 (4) 0.27684 (14) 0.4573 (4) 0.0213 (6)
H15 −0.7186 0.2393 0.4715 0.026*
C16 −0.5407 (4) 0.30559 (15) 0.5931 (4) 0.0232 (7)
H16 −0.5118 0.2875 0.6994 0.028*
C17 −0.4598 (3) 0.36091 (13) 0.5716 (4) 0.0211 (6)
H17 −0.3773 0.3800 0.6638 0.025*
N1 −0.3331 (3) 0.52294 (11) 0.2782 (3) 0.0170 (5)
N2 −0.4455 (3) 0.47305 (11) 0.2407 (3) 0.0190 (5)
N3 −0.2852 (3) 0.47484 (10) 0.5218 (3) 0.0173 (5)
N4 −0.2022 (3) 0.61279 (11) 0.2114 (3) 0.0202 (5)
S1 0.04561 (9) 0.67369 (3) 0.46182 (9) 0.0205 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0188 (14) 0.0123 (13) 0.0200 (14) 0.0057 (10) 0.0089 (11) 0.0046 (10)
C2 0.0157 (14) 0.0168 (13) 0.0145 (13) 0.0021 (10) 0.0044 (11) −0.0027 (10)
C3 0.0148 (13) 0.0135 (13) 0.0187 (14) 0.0013 (10) 0.0039 (11) −0.0001 (10)
C4 0.0193 (14) 0.0158 (13) 0.0182 (14) 0.0036 (11) 0.0072 (11) 0.0012 (11)
C5 0.0211 (15) 0.0189 (14) 0.0198 (15) −0.0025 (11) 0.0057 (12) 0.0000 (11)
C6 0.0203 (15) 0.0161 (13) 0.0201 (15) 0.0041 (11) 0.0075 (12) 0.0011 (11)
C7 0.0173 (14) 0.0171 (14) 0.0169 (14) 0.0017 (11) 0.0055 (11) −0.0026 (11)
C8 0.0173 (14) 0.0144 (13) 0.0216 (15) 0.0029 (11) 0.0048 (12) −0.0019 (11)
C9 0.0213 (15) 0.0206 (15) 0.0240 (16) −0.0038 (11) 0.0058 (12) −0.0015 (11)
C10 0.0335 (18) 0.0271 (16) 0.0208 (16) −0.0066 (14) 0.0015 (14) −0.0032 (13)
C11 0.0303 (18) 0.0312 (17) 0.0210 (16) −0.0031 (14) 0.0037 (14) 0.0018 (13)
C12 0.0223 (15) 0.0164 (14) 0.0181 (14) −0.0019 (11) 0.0049 (12) −0.0027 (11)
C13 0.0188 (15) 0.0186 (14) 0.0174 (14) −0.0007 (11) 0.0054 (11) −0.0009 (11)
C14 0.0193 (15) 0.0258 (15) 0.0204 (15) −0.0018 (12) 0.0081 (12) −0.0041 (12)
C15 0.0245 (15) 0.0165 (14) 0.0254 (16) 0.0010 (11) 0.0123 (13) 0.0011 (11)
C16 0.0215 (16) 0.0263 (16) 0.0201 (15) −0.0030 (12) 0.0059 (12) 0.0042 (12)
C17 0.0174 (15) 0.0238 (15) 0.0194 (15) −0.0007 (12) 0.0039 (12) 0.0028 (12)
N1 0.0164 (12) 0.0163 (11) 0.0172 (12) −0.0049 (9) 0.0047 (10) −0.0015 (9)
N2 0.0189 (12) 0.0180 (12) 0.0182 (12) −0.0019 (9) 0.0048 (10) −0.0020 (9)
N3 0.0186 (12) 0.0141 (11) 0.0192 (12) 0.0012 (9) 0.0071 (10) 0.0012 (9)
N4 0.0206 (13) 0.0204 (12) 0.0178 (12) 0.0017 (10) 0.0050 (10) 0.0032 (9)
S1 0.0209 (4) 0.0173 (4) 0.0224 (4) −0.0018 (3) 0.0071 (3) 0.0017 (3)

Geometric parameters (Å, °)

C1—C6 1.389 (4) C9—H9A 0.9700
C1—C2 1.420 (4) C9—H9B 0.9700
C1—C7 1.433 (4) C10—C11 1.524 (4)
C2—N3 1.329 (3) C10—H10A 0.9700
C2—N1 1.380 (3) C10—H10B 0.9700
C3—N2 1.336 (4) C11—C12 1.535 (4)
C3—N3 1.369 (3) C11—H11A 0.9700
C3—C4 1.461 (4) C11—H11B 0.9700
C4—C17 1.395 (4) C12—H12A 0.9700
C4—C13 1.395 (4) C12—H12B 0.9700
C5—N4 1.311 (4) C13—C14 1.380 (4)
C5—N1 1.379 (3) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.383 (4)
C6—N4 1.365 (4) C14—H14 0.9300
C6—S1 1.731 (3) C15—C16 1.386 (4)
C7—C8 1.360 (4) C15—H15 0.9300
C7—C12 1.504 (4) C16—C17 1.380 (4)
C8—C9 1.503 (4) C16—H16 0.9300
C8—S1 1.739 (3) C17—H17 0.9300
C9—C10 1.537 (4) N1—N2 1.363 (3)
C6—C1—C2 115.3 (3) H10A—C10—H10B 108.0
C6—C1—C7 113.5 (2) C10—C11—C12 111.8 (3)
C2—C1—C7 131.2 (2) C10—C11—H11A 109.3
N3—C2—N1 109.3 (2) C12—C11—H11A 109.3
N3—C2—C1 134.9 (3) C10—C11—H11B 109.3
N1—C2—C1 115.8 (2) C12—C11—H11B 109.3
N2—C3—N3 115.8 (2) H11A—C11—H11B 107.9
N2—C3—C4 121.5 (2) C7—C12—C11 111.6 (2)
N3—C3—C4 122.7 (2) C7—C12—H12A 109.3
C17—C4—C13 118.9 (2) C11—C12—H12A 109.3
C17—C4—C3 119.9 (3) C7—C12—H12B 109.3
C13—C4—C3 121.2 (3) C11—C12—H12B 109.3
N4—C5—N1 121.0 (3) H12A—C12—H12B 108.0
N4—C5—H5 119.5 C14—C13—C4 119.9 (3)
N1—C5—H5 119.5 C14—C13—H13 120.1
N4—C6—C1 127.6 (3) C4—C13—H13 120.1
N4—C6—S1 121.4 (2) C15—C14—C13 121.2 (3)
C1—C6—S1 111.0 (2) C15—C14—H14 119.4
C8—C7—C1 111.1 (2) C13—C14—H14 119.4
C8—C7—C12 122.8 (2) C14—C15—C16 119.0 (3)
C1—C7—C12 126.1 (2) C14—C15—H15 120.5
C7—C8—C9 125.0 (3) C16—C15—H15 120.5
C7—C8—S1 113.3 (2) C17—C16—C15 120.5 (3)
C9—C8—S1 121.7 (2) C17—C16—H16 119.8
C8—C9—C10 109.4 (2) C15—C16—H16 119.8
C8—C9—H9A 109.8 C16—C17—C4 120.5 (3)
C10—C9—H9A 109.8 C16—C17—H17 119.7
C8—C9—H9B 109.8 C4—C17—H17 119.7
C10—C9—H9B 109.8 N2—N1—C5 125.3 (2)
H9A—C9—H9B 108.2 N2—N1—C2 110.3 (2)
C11—C10—C9 111.2 (3) C5—N1—C2 124.5 (2)
C11—C10—H10A 109.4 C3—N2—N1 101.6 (2)
C9—C10—H10A 109.4 C2—N3—C3 103.0 (2)
C11—C10—H10B 109.4 C5—N4—C6 115.7 (2)
C9—C10—H10B 109.4 C6—S1—C8 91.09 (13)
C6—C1—C2—N3 179.6 (3) C3—C4—C13—C14 178.9 (2)
C7—C1—C2—N3 −1.3 (5) C4—C13—C14—C15 −0.6 (4)
C6—C1—C2—N1 −0.9 (3) C13—C14—C15—C16 1.2 (4)
C7—C1—C2—N1 178.1 (3) C14—C15—C16—C17 −0.6 (4)
N2—C3—C4—C17 179.3 (2) C15—C16—C17—C4 −0.5 (4)
N3—C3—C4—C17 0.2 (4) C13—C4—C17—C16 1.1 (4)
N2—C3—C4—C13 −0.1 (4) C3—C4—C17—C16 −178.3 (3)
N3—C3—C4—C13 −179.3 (2) N4—C5—N1—N2 −179.1 (2)
C2—C1—C6—N4 0.6 (4) N4—C5—N1—C2 0.3 (4)
C7—C1—C6—N4 −178.7 (3) N3—C2—N1—N2 −0.4 (3)
C2—C1—C6—S1 179.33 (19) C1—C2—N1—N2 −180.0 (2)
C7—C1—C6—S1 0.1 (3) N3—C2—N1—C5 −179.9 (2)
C6—C1—C7—C8 0.5 (3) C1—C2—N1—C5 0.5 (4)
C2—C1—C7—C8 −178.5 (3) N3—C3—N2—N1 0.3 (3)
C6—C1—C7—C12 178.1 (2) C4—C3—N2—N1 −179.0 (2)
C2—C1—C7—C12 −1.0 (5) C5—N1—N2—C3 179.5 (2)
C1—C7—C8—C9 176.4 (2) C2—N1—N2—C3 0.1 (3)
C12—C7—C8—C9 −1.2 (4) N1—C2—N3—C3 0.5 (3)
C1—C7—C8—S1 −1.0 (3) C1—C2—N3—C3 180.0 (3)
C12—C7—C8—S1 −178.6 (2) N2—C3—N3—C2 −0.5 (3)
C7—C8—C9—C10 −17.3 (4) C4—C3—N3—C2 178.7 (2)
S1—C8—C9—C10 159.9 (2) N1—C5—N4—C6 −0.7 (4)
C8—C9—C10—C11 47.7 (3) C1—C6—N4—C5 0.3 (4)
C9—C10—C11—C12 −62.6 (4) S1—C6—N4—C5 −178.4 (2)
C8—C7—C12—C11 −11.0 (4) N4—C6—S1—C8 178.3 (2)
C1—C7—C12—C11 171.7 (3) C1—C6—S1—C8 −0.5 (2)
C10—C11—C12—C7 42.0 (3) C7—C8—S1—C6 0.9 (2)
C17—C4—C13—C14 −0.6 (4) C9—C8—S1—C6 −176.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···N2i 0.93 2.50 3.413 (3) 166
C11—H11B···N2ii 0.97 2.82 3.653 (5) 144

Symmetry codes: (i) −x−1, −y+1, −z; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2056).

References

  1. Akkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869. [DOI] [PMC free article] [PubMed]
  2. Belcher, L. K. A. & Squattrito, P. J. (2006). J. Chem. Crystallogr. 36, 175–180.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & and Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Blain, P. G., Mucklow, J. C., Woo, P. D., Roberts, D. F. & Rawlins, M. D. (1982). Br. Med. J. (Clin. Res. Ed.), 284, 150–152. [DOI] [PMC free article] [PubMed]
  5. Bradbury, R. H. & Rivett, J. E. (1991). J. Med. Chem. 34, 151–157. [DOI] [PubMed]
  6. Bruker. (1998). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconcin, USA.
  7. Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Azancheev, N. M., Avvakumova, L. V., Rizvanov, I. Kh., Gubaidullin, A. T., Litvinov, I. A. & Syakaev, V. V. (2008). Russ. J. Gen. Chem. 78, 461–479.
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Elslager, E. F., Hess, C., Johnson, J., Ortwine, D., Chu, V. & Werbel, L. M. (1981). J. Med. Chem. 24, 127—140. [DOI] [PubMed]
  10. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  11. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  12. Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.
  13. Lipson, V. V., Desenko, S. M., Borodina, V. V., Shirobokova, M. G., Shishkin, O. V. & Zubatyuk, R. I. (2006). Russ. Chem. Bull. 55, 1224–1228.
  14. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  15. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  16. Shishoo, C. J. & Jain, K. S. J. (1992). J. Heterocycl. Chem. 29, 883–893.
  17. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  18. Yunosov, M. S., Akramov, S. T. & Yunusov, S. Yu. (1966). Chem. Nat. Compd, 2, 279–281.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007331/pb2056sup1.cif

e-67-0o777-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007331/pb2056Isup2.hkl

e-67-0o777-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES