Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):o769. doi: 10.1107/S1600536811006684

Methyl 1-(2,6-difluoro­benz­yl)-1H-1,2,3-triazole-4-carboxyl­ate

Su-Lan Dong a,*, Xiao-Chun Cheng a
PMCID: PMC3099962  PMID: 21754063

Abstract

In the title compound, C11H9F2N3O2, the triazole ring is planar, with an r.m.s. deviation of 0.0048 Å, and makes a dihedral angle of 77.3 (1)° with the benzene ring. In the crystal, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For the synthetic procedure and applications of the title compound, see: Arroyo (2007). The title compound is an inter­mediate in the preparation of the anti­convulsant drug rufinamide [systematic name 1-(2,6-difluoro­benz­yl)-1H-1,2,3-triazole-4-carboxamide], see: Meier (1986). For bond-length data, see: Allen et al. (1987). graphic file with name e-67-0o769-scheme1.jpg

Experimental

Crystal data

  • C11H9F2N3O2

  • M r = 253.21

  • Monoclinic, Inline graphic

  • a = 8.4570 (17) Å

  • b = 5.4140 (11) Å

  • c = 12.125 (2) Å

  • β = 92.28 (3)°

  • V = 554.72 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.962, T max = 0.987

  • 2187 measured reflections

  • 1146 independent reflections

  • 1035 reflections with I > 2σ(I)

  • R int = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.088

  • S = 1.04

  • 1146 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006684/bq2275sup1.cif

e-67-0o769-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006684/bq2275Isup2.hkl

e-67-0o769-Isup2.hkl (56.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯N3i 0.97 2.62 3.538 (4) 157
C8—H8A⋯O1ii 0.93 2.35 3.243 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support. They also acknowledge the contract grant sponsors: the Natural Science Foundation of Jiangsu Province of China (BK2008195) and the Science Research Foundation of Huaiyin Institute of Technology (2517045).

supplementary crystallographic information

Comment

The title compound C11H9F2N3O2, (I), was synthesized by the reaction of 2,6-fluorobenzyl azide and methyl propiolate (Arroyo, 2007), and it is an important organic intermediate which is useful in preparing medicine rufinamide (Meier, 1986).

The molecular structure of (I) is shown in Fig. 1, the bond lengths and angles are within normal ranges (Allen et al., 1987). For synthetic procedure, see: Meier, 1986. For background to the applications, see: Arroyo, 2007.

Ring A (C1—C6) and B (C8/C9/N1/N2/N3) are planar with r.m.s. deviations of 0.0048 ° and 0.0022 °, respectively, and the dihedral angle between them is 77.3 (1) ° (Fig.1).

As can be seen from the packing diagram (Fig.2), the crystal packing is stabilized by intermolecular C—H···O and C—H···N hydrogen bonds along the b axis.

Experimental

A mixture of 2,6-fluorobenzyl azide (390 g, 1.66 mol), methyl propiolate (165 g, 1.97 mol) and methanol (2 L) was stirred and refluxed for 10 h. Removing of the solvent under reduced pressure gave a yellowish soil. The soil could be recrystallized using a mixture of petroleum ether and methanol (4:1) and product to be a white and spiculate soil (yield; 299 g, 51.8%, m.p. 413 K). Crystals of (I) suitable for x-ray diffraction were obtained by slow evaporation from methylalcohol (AR) (10 ml).

Refinement

H atoms were positioned geometrically and constrained with C—H = 0.96, 0.97 and 0.93 Å for methyl H, methylene H and all the other H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = x Ueq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal structure of (I). Dashed lines indicate C—H···N and the C—H···O hydrogen bonds.

Crystal data

C11H9F2N3O2 F(000) = 260
Mr = 253.21 Dx = 1.516 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 25 reflections
a = 8.4570 (17) Å θ = 10–14°
b = 5.4140 (11) Å µ = 0.13 mm1
c = 12.125 (2) Å T = 298 K
β = 92.28 (3)° Spiculate, colorless
V = 554.72 (18) Å3 0.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer 1035 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
graphite θmax = 25.4°, θmin = 1.7°
ω/2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = −6→6
Tmin = 0.962, Tmax = 0.987 l = −14→14
2187 measured reflections 3 standard reflections every 200 reflections
1146 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.0317P] where P = (Fo2 + 2Fc2)/3
1146 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.13 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.4481 (2) 0.4288 (4) 0.80667 (14) 0.0340 (5)
F1 0.67849 (18) 0.9724 (4) 0.74993 (14) 0.0589 (5)
O1 0.3504 (3) 0.2067 (5) 0.47974 (15) 0.0642 (6)
C1 0.7743 (3) 0.7947 (5) 0.7942 (2) 0.0409 (6)
F2 0.74809 (18) 0.2564 (4) 0.96110 (13) 0.0595 (5)
N2 0.3697 (2) 0.2386 (5) 0.85061 (16) 0.0424 (5)
O2 0.2160 (2) −0.0844 (5) 0.56720 (16) 0.0613 (6)
C2 0.9334 (3) 0.8063 (6) 0.7754 (2) 0.0500 (7)
H2B 0.9745 0.9332 0.7336 0.060*
N3 0.3078 (2) 0.1088 (5) 0.76968 (17) 0.0436 (5)
C3 1.0299 (3) 0.6249 (7) 0.8204 (2) 0.0527 (7)
H3B 1.1377 0.6284 0.8080 0.063*
C4 0.9699 (3) 0.4388 (7) 0.8831 (2) 0.0517 (7)
H4A 1.0354 0.3168 0.9137 0.062*
C5 0.8097 (3) 0.4382 (5) 0.89946 (19) 0.0409 (6)
C6 0.7066 (3) 0.6141 (5) 0.85681 (19) 0.0361 (5)
C7 0.5322 (3) 0.6069 (5) 0.87801 (19) 0.0373 (6)
H7A 0.5179 0.5633 0.9546 0.045*
H7B 0.4873 0.7699 0.8655 0.045*
C8 0.4362 (3) 0.4207 (6) 0.69632 (18) 0.0374 (5)
H8A 0.4792 0.5303 0.6466 0.045*
C9 0.3472 (3) 0.2167 (5) 0.67313 (19) 0.0368 (6)
C10 0.3059 (3) 0.1160 (6) 0.5631 (2) 0.0438 (6)
C11 0.1788 (5) −0.2037 (8) 0.4633 (3) 0.0797 (11)
H11A 0.1137 −0.3457 0.4753 0.120*
H11B 0.2749 −0.2545 0.4304 0.120*
H11C 0.1229 −0.0904 0.4149 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0291 (9) 0.0382 (11) 0.0349 (9) 0.0038 (10) 0.0041 (7) 0.0054 (10)
F1 0.0558 (9) 0.0504 (10) 0.0709 (10) 0.0116 (9) 0.0070 (8) 0.0213 (9)
O1 0.0899 (15) 0.0602 (15) 0.0430 (10) −0.0071 (15) 0.0099 (10) −0.0047 (11)
C1 0.0411 (13) 0.0375 (15) 0.0441 (13) 0.0042 (12) 0.0002 (10) −0.0002 (12)
F2 0.0514 (9) 0.0533 (11) 0.0742 (11) 0.0048 (9) 0.0064 (8) 0.0239 (10)
N2 0.0395 (10) 0.0474 (14) 0.0406 (11) −0.0038 (11) 0.0050 (9) 0.0102 (11)
O2 0.0674 (12) 0.0578 (14) 0.0587 (11) −0.0161 (13) 0.0018 (10) −0.0111 (12)
C2 0.0450 (14) 0.0477 (17) 0.0580 (15) −0.0094 (14) 0.0106 (12) −0.0005 (15)
N3 0.0398 (11) 0.0470 (13) 0.0442 (11) −0.0052 (11) 0.0038 (9) 0.0076 (11)
C3 0.0364 (13) 0.0589 (19) 0.0630 (17) −0.0032 (15) 0.0059 (12) −0.0071 (16)
C4 0.0367 (13) 0.0536 (18) 0.0644 (16) 0.0064 (15) −0.0027 (12) −0.0005 (17)
C5 0.0380 (12) 0.0394 (15) 0.0451 (12) 0.0027 (13) 0.0018 (10) 0.0046 (13)
C6 0.0335 (11) 0.0396 (13) 0.0353 (11) 0.0012 (12) 0.0013 (9) −0.0037 (11)
C7 0.0361 (11) 0.0383 (14) 0.0377 (11) 0.0041 (12) 0.0033 (9) −0.0012 (11)
C8 0.0381 (11) 0.0386 (13) 0.0361 (11) 0.0020 (12) 0.0076 (9) 0.0045 (12)
C9 0.0316 (10) 0.0386 (14) 0.0403 (12) 0.0033 (11) 0.0042 (9) 0.0014 (12)
C10 0.0438 (13) 0.0389 (14) 0.0489 (15) 0.0073 (13) 0.0051 (11) −0.0037 (13)
C11 0.098 (3) 0.068 (3) 0.073 (2) −0.016 (2) −0.0032 (19) −0.025 (2)

Geometric parameters (Å, °)

N1—C8 1.339 (3) C3—C4 1.372 (4)
N1—N2 1.346 (3) C3—H3B 0.9300
N1—C7 1.461 (3) C4—C5 1.377 (3)
F1—C1 1.355 (3) C4—H4A 0.9300
O1—C10 1.198 (3) C5—C6 1.378 (4)
C1—C2 1.375 (4) C6—C7 1.507 (3)
C1—C6 1.376 (4) C7—H7A 0.9700
F2—C5 1.353 (3) C7—H7B 0.9700
N2—N3 1.300 (3) C8—C9 1.360 (4)
O2—C10 1.327 (4) C8—H8A 0.9300
O2—C11 1.439 (4) C9—C10 1.471 (4)
C2—C3 1.376 (5) C11—H11A 0.9600
C2—H2B 0.9300 C11—H11B 0.9600
N3—C9 1.362 (3) C11—H11C 0.9600
C8—N1—N2 110.6 (2) C1—C6—C7 122.9 (2)
C8—N1—C7 129.0 (2) N1—C7—C6 111.9 (2)
N2—N1—C7 120.43 (18) N1—C7—H7A 109.2
F1—C1—C2 118.4 (3) C6—C7—H7A 109.2
F1—C1—C6 117.9 (2) N1—C7—H7B 109.2
C2—C1—C6 123.7 (3) C6—C7—H7B 109.2
N3—N2—N1 107.75 (18) H7A—C7—H7B 107.9
C10—O2—C11 116.1 (3) N1—C8—C9 104.6 (2)
C1—C2—C3 118.1 (3) N1—C8—H8A 127.7
C1—C2—H2B 120.9 C9—C8—H8A 127.7
C3—C2—H2B 120.9 C8—C9—N3 108.9 (2)
N2—N3—C9 108.2 (2) C8—C9—C10 126.8 (2)
C4—C3—C2 121.1 (2) N3—C9—C10 124.3 (2)
C4—C3—H3B 119.4 O1—C10—O2 124.5 (3)
C2—C3—H3B 119.4 O1—C10—C9 122.8 (3)
C3—C4—C5 118.0 (3) O2—C10—C9 112.7 (2)
C3—C4—H4A 121.0 O2—C11—H11A 109.5
C5—C4—H4A 121.0 O2—C11—H11B 109.5
F2—C5—C6 117.3 (2) H11A—C11—H11B 109.5
F2—C5—C4 118.9 (2) O2—C11—H11C 109.5
C6—C5—C4 123.8 (3) H11A—C11—H11C 109.5
C5—C6—C1 115.3 (2) H11B—C11—H11C 109.5
C5—C6—C7 121.8 (2)
C8—N1—N2—N3 0.0 (3) C8—N1—C7—C6 −59.3 (3)
C7—N1—N2—N3 −179.3 (2) N2—N1—C7—C6 119.9 (2)
F1—C1—C2—C3 −179.8 (2) C5—C6—C7—N1 −79.4 (3)
C6—C1—C2—C3 1.1 (4) C1—C6—C7—N1 100.6 (3)
N1—N2—N3—C9 0.1 (3) N2—N1—C8—C9 −0.2 (3)
C1—C2—C3—C4 −0.7 (5) C7—N1—C8—C9 179.1 (2)
C2—C3—C4—C5 0.3 (4) N1—C8—C9—N3 0.2 (3)
C3—C4—C5—F2 180.0 (2) N1—C8—C9—C10 −176.5 (2)
C3—C4—C5—C6 −0.3 (4) N2—N3—C9—C8 −0.2 (3)
F2—C5—C6—C1 −179.7 (2) N2—N3—C9—C10 176.6 (2)
C4—C5—C6—C1 0.6 (4) C11—O2—C10—O1 3.4 (4)
F2—C5—C6—C7 0.4 (4) C11—O2—C10—C9 −176.1 (3)
C4—C5—C6—C7 −179.3 (3) C8—C9—C10—O1 1.0 (4)
F1—C1—C6—C5 179.9 (2) N3—C9—C10—O1 −175.3 (3)
C2—C1—C6—C5 −1.0 (4) C8—C9—C10—O2 −179.4 (2)
F1—C1—C6—C7 −0.2 (4) N3—C9—C10—O2 4.3 (3)
C2—C1—C6—C7 178.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7B···N3i 0.97 2.62 3.538 (4) 157
C8—H8A···O1ii 0.93 2.35 3.243 (3) 162

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2275).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arroyo, S. (2007). Neurotherapeutics, A4, 155–162. [DOI] [PMC free article] [PubMed]
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Meier, R. (1986). Eur. Patent No. 0199262.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811006684/bq2275sup1.cif

e-67-0o769-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006684/bq2275Isup2.hkl

e-67-0o769-Isup2.hkl (56.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES