Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Aug 25;21(17):4039–4045. doi: 10.1093/nar/21.17.4039

Non-universal decoding of the leucine codon CUG in several Candida species.

T Ohama 1, T Suzuki 1, M Mori 1, S Osawa 1, T Ueda 1, K Watanabe 1, T Nakase 1
PMCID: PMC309997  PMID: 8371978

Abstract

It has been reported that CUG, a universal leucine codon, is read as serine in an asporogenic yeast, Candida cylindracea. The distribution of this non-universal genetic code in various yeast species was studied using an in vitro translation assay system with a synthetic messenger RNA containing CUG codons in-frame. It was found that CUG is used as a serine codon in six out of the fourteen species examined, while it is used for leucine in the remaining eight. The tRNA species responsible for the translation of codon CUG as serine was detected in all the six species in which CUG is translated as serine. The grouping according to the CUG codon assignments in these yeast species shows a good correlation with physiological classification by the chain lengths of the isoprenoid moiety of ubiquinone and the cell-wall sugar contained in the yeasts. The six Candida species examined in which CUG is used as serine belong to one distinct group in Hemiascomycetes.

Full text

PDF
4039

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aota S., Gojobori T., Ishibashi F., Maruyama T., Ikemura T. Codon usage tabulated from the GenBank Genetic Sequence Data. Nucleic Acids Res. 1988;16 (Suppl):r315–r402. doi: 10.1093/nar/16.suppl.r315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrell B. G., Bankier A. T., Drouin J. A different genetic code in human mitochondria. Nature. 1979 Nov 8;282(5735):189–194. doi: 10.1038/282189a0. [DOI] [PubMed] [Google Scholar]
  3. Chanda P. K., Kung H. F. In vitro synthesis of biologically active human leukocyte interferon in a RNA-dependent system from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 May;80(9):2569–2573. doi: 10.1073/pnas.80.9.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donis-Keller H. Phy M: an RNase activity specific for U and A residues useful in RNA sequence analysis. Nucleic Acids Res. 1980 Jul 25;8(14):3133–3142. doi: 10.1093/nar/8.14.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Germann U. A., Müller G., Hunziker P. E., Lerch K. Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. J Biol Chem. 1988 Jan 15;263(2):885–896. [PubMed] [Google Scholar]
  6. Hofbauer R., Fessl F., Hamilton B., Ruis H. Preparation of a mRNA-dependent cell-free translation system from whole cells of Saccharomyces cerevisiae. Eur J Biochem. 1982 Feb;122(1):199–203. doi: 10.1111/j.1432-1033.1982.tb05867.x. [DOI] [PubMed] [Google Scholar]
  7. Hussain I., Leibowitz M. J. Translation of homologous and heterologous messenger RNAs in a yeast cell-free system. Gene. 1986;46(1):13–23. doi: 10.1016/0378-1119(86)90162-9. [DOI] [PubMed] [Google Scholar]
  8. Kalb V. F., Woods C. W., Turi T. G., Dey C. R., Sutter T. R., Loper J. C. Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA. 1987 Dec;6(6):529–537. doi: 10.1089/dna.1987.6.529. [DOI] [PubMed] [Google Scholar]
  9. Kano A., Andachi Y., Ohama T., Osawa S. Novel anticodon composition of transfer RNAs in Micrococcus luteus, a bacterium with a high genomic G + C content. Correlation with codon usage. J Mol Biol. 1991 Sep 20;221(2):387–401. doi: 10.1016/0022-2836(91)80061-x. [DOI] [PubMed] [Google Scholar]
  10. Kawaguchi Y., Honda H., Taniguchi-Morimura J., Iwasaki S. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature. 1989 Sep 14;341(6238):164–166. doi: 10.1038/341164a0. [DOI] [PubMed] [Google Scholar]
  11. Kinsella B. T., Hogan S., Larkin A., Cantwell B. A. Primary structure and processing of the Candida tsukubaensis alpha-glucosidase. Homology with the rabbit intestinal sucrase-isomaltase complex and human lysosomal alpha-glucosidase. Eur J Biochem. 1991 Dec 5;202(2):657–664. doi: 10.1111/j.1432-1033.1991.tb16420.x. [DOI] [PubMed] [Google Scholar]
  12. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuchino Y., Hanyu N., Nishimura S. Analysis of modified nucleosides and nucleotide sequence of tRNA. Methods Enzymol. 1987;155:379–396. doi: 10.1016/0076-6879(87)55026-1. [DOI] [PubMed] [Google Scholar]
  14. Oba T., Andachi Y., Muto A., Osawa S. CGG: an unassigned or nonsense codon in Mycoplasma capricolum. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):921–925. doi: 10.1073/pnas.88.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Osawa S., Jukes T. H. Evolution of the genetic code as affected by anticodon content. Trends Genet. 1988 Jul;4(7):191–198. doi: 10.1016/0168-9525(88)90075-3. [DOI] [PubMed] [Google Scholar]
  16. Osawa S., Jukes T. H., Watanabe K., Muto A. Recent evidence for evolution of the genetic code. Microbiol Rev. 1992 Mar;56(1):229–264. doi: 10.1128/mr.56.1.229-264.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Santos M. A., Keith G., Tuite M. F. Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5'-CAG-3' (leucine) anticodon. EMBO J. 1993 Feb;12(2):607–616. doi: 10.1002/j.1460-2075.1993.tb05693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schrag J. D., Li Y. G., Wu S., Cygler M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature. 1991 Jun 27;351(6329):761–764. doi: 10.1038/351761a0. [DOI] [PubMed] [Google Scholar]
  19. Shimada Y., Sugihara A., Iizumi T., Tominaga Y. cDNA cloning and characterization of Geotrichum candidum lipase II. J Biochem. 1990 May;107(5):703–707. doi: 10.1093/oxfordjournals.jbchem.a123112. [DOI] [PubMed] [Google Scholar]
  20. Suzuki T., Ueda T., Ohama T., Osawa S., Watanabe K. The gene for serine tRNA having anticodon sequence CAG in a pathogenic yeast, Candida albicans. Nucleic Acids Res. 1993 Jan 25;21(2):356–356. doi: 10.1093/nar/21.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tuite M. F., Plesset J. mRNA-dependent yeast cell-free translation systems: theory and practice. Yeast. 1986 Mar;2(1):35–52. doi: 10.1002/yea.320020103. [DOI] [PubMed] [Google Scholar]
  22. Yamao F., Andachi Y., Muto A., Ikemura T., Osawa S. Levels of tRNAs in bacterial cells as affected by amino acid usage in proteins. Nucleic Acids Res. 1991 Nov 25;19(22):6119–6122. doi: 10.1093/nar/19.22.6119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yokogawa T., Suzuki T., Ueda T., Mori M., Ohama T., Kuchino Y., Yoshinari S., Motoki I., Nishikawa K., Osawa S. Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7408–7411. doi: 10.1073/pnas.89.16.7408. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES