Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):o757. doi: 10.1107/S1600536811006623

1,2-Dihydro-9H-carbazole-4(3H)-thione

W Adam Phelan a, Maria Ngu-Schwemlein a,, Frank R Fronczek a,*, Mark L McLaughlin a,§, Steven F Watkins a
PMCID: PMC3099987  PMID: 21754054

Abstract

The crystal structure of the title compound, C12H11NS, features parallel chains of alternating N—H⋯S hydrogen-bonded mirror-image conformers along [10Inline graphic]. The mol­ecular conformation is that of an envelope, with all of the framework atoms except one close to a mean plane (rms deviation 0.054 Å); one C atom of the cyclo­hexene­thione ring forms the envelope flap, which makes a dihedral angle of 48.6 (1)° with the rest of the mol­ecule. There is a π–π* inter­action between pairs of enanti­omers in adjacent chains; the distance between parallel planes is 3.466 (1) Å.

Related literature

For related structures, see: Hökelek et al. (1998); Ianelli et al. (1994); Çaylak et al. (2007); Rodriguez et al. (1989). Hückel calculations were performed using Chem3DPro (Cambridgesoft, 2009).graphic file with name e-67-0o757-scheme1.jpg

Experimental

Crystal data

  • C12H11NS

  • M r = 201.28

  • Monoclinic, Inline graphic

  • a = 8.6353 (14) Å

  • b = 12.1395 (15) Å

  • c = 9.5808 (14) Å

  • β = 104.599 (10)°

  • V = 971.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 90 K

  • 0.38 × 0.33 × 0.15 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.900, T max = 0.958

  • 6145 measured reflections

  • 3305 independent reflections

  • 2915 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.087

  • S = 1.04

  • 3305 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006623/fl2336sup1.cif

e-67-0o757-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006623/fl2336Isup2.hkl

e-67-0o757-Isup2.hkl (158.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯S1i 0.88 2.45 3.3187 (9) 172

Symmetry code: (i) Inline graphic.

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

The title compound (1, Fig.1) is the sulfur analog of substituted carbazole 1,2,3-trihydrocarbazol-4(9H)-one (2) (Rodriguez et al., 1989). Both 1 and 2 show the same molecular conformation (envelope, with flap angles 48.6 (1)° for 1 and 48.2 (1)° for 2) and similar H-bonded chains (Table 1) of alternating enantiomers (N···S = 3.319 (1) Å, N—H···S = 172.0 (1)°, and N···S═C = 98.0 (1)° for 1, N···O = 2.829 (1) Å, N—H···O = 162.3 (1)° and H···O═C = 117.5 (1)° for 2).

In 1, all H-bonded chains are parallel, extending along the [101] crystallographic direction, and adjacent chains 5.583 (1) Å apart are arranged in corrugated sheets parallel to the (010) crystallographic plane (Fig. 22)). The mean planes of adjacent sheets are 5.099 (1) Å apart, but enantiomers in adjacent sheets have parallel π-nodal planes and are only 3.466 (1) Å apart, indicative of a π-π* interaction. Extended Hückel calculations (Chem3DPro, Cambridgesoft, 2009) suggest that the π-HOMO and π*-LUMO orbitals in 1 are larger and closer in energy than those in 2. This may explain why molecules of 2 show no π-type interaction and are thus packed in a different pattern: H-bonded chains 5.359 (1) Å apart extend along the [011] and [011] directions in alternating sheets, so adjacent sheets are rotated by 76.5 (1)°. The distance between adjacent sheets is 4.979 (1) Å and the only interactions between them are C—H···C van der Waals and C—H···O contacts.

Experimental

A solution of 1,2-dihydrocarbazol-4(3H)-one (5.4 mmol) in anhydrous 1,2-dimethoxyethane (30 ml) was stirred at room temperature for 15 min. Upon dissolution, the solution was chilled in an ice-water bath. Lawesson reagent, 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide, (2.9 mmol) was added to the vigorously stirred cold solution. The resulting mixture was stirred for 5 min and then allowed to warm to room temperature. After stirring for an additional 10 min, the white suspension dissolved, and the reaction mixture turned deep orange. The reaction mixture was poured into 150 ml of chilled water and the orange suspension was extracted with CHCl3 (3 x 80 ml). Evaporation under reduced pressure left a deep orange residue, which was purified on a silica column (100 g). The orange band was eluted with ethyl acetate. Evaporation of the solvent in vacuo gave the title compound as a yellow powder (92%). Recrystallization from dichloromethane yielded yellow needles, m.p. 173–175°C.

Refinement

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–0.99 Å, N—H 0.88 Å, Uiso=1.2Ueq, and thereafter refined as riding.

Figures

Fig. 1.

Fig. 1.

View of 1 (50% probability displacement ellipsoids).

Fig. 2.

Fig. 2.

The unit cell, illustrating hydrogen bonds.

Crystal data

C12H11NS F(000) = 424
Mr = 201.28 Dx = 1.376 Mg m3
Monoclinic, P21/n Melting point: 447(1) K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 8.6353 (14) Å Cell parameters from 3145 reflections
b = 12.1395 (15) Å θ = 2.8–31.8°
c = 9.5808 (14) Å µ = 0.29 mm1
β = 104.599 (10)° T = 90 K
V = 971.9 (2) Å3 Prism, yellow
Z = 4 0.38 × 0.33 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer 2915 reflections with I > 2σ(I)
ω and φ scans Rint = 0.018
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) θmax = 31.8°, θmin = 2.8°
Tmin = 0.900, Tmax = 0.958 h = −12→12
6145 measured reflections k = −17→15
3305 independent reflections l = −14→14

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0381P)2 + 0.4607P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033 (Δ/σ)max = 0.001
wR(F2) = 0.087 Δρmax = 0.42 e Å3
S = 1.03 Δρmin = −0.30 e Å3
3305 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parameters Extinction coefficient: 0.007 (2)
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.73572 (3) 0.09251 (2) 0.17793 (3) 0.01632 (8)
N9 0.40190 (10) 0.23264 (7) 0.49231 (9) 0.01459 (16)
H9 0.3596 0.2739 0.5486 0.018*
C1 0.64126 (13) 0.35282 (8) 0.50486 (11) 0.01640 (19)
H1A 0.6442 0.3693 0.6067 0.02*
H1B 0.5975 0.4178 0.4456 0.02*
C2 0.81014 (12) 0.32729 (9) 0.49014 (11) 0.01613 (19)
H2A 0.8612 0.2724 0.5639 0.019*
H2B 0.8756 0.3953 0.5072 0.019*
C3 0.80512 (12) 0.28219 (8) 0.33970 (11) 0.01504 (18)
H3A 0.766 0.3409 0.2677 0.018*
H3B 0.9153 0.2631 0.3355 0.018*
C4 0.69952 (12) 0.18152 (8) 0.29869 (10) 0.01239 (17)
C5 0.40380 (12) −0.00895 (8) 0.27655 (10) 0.01451 (18)
H5 0.4724 −0.0398 0.2234 0.017*
C6 0.26491 (13) −0.06343 (9) 0.28577 (11) 0.0179 (2)
H6 0.2394 −0.1325 0.2389 0.021*
C7 0.16174 (13) −0.01841 (9) 0.36297 (12) 0.0196 (2)
H7 0.0665 −0.0567 0.3655 0.024*
C8 0.19647 (13) 0.08102 (9) 0.43570 (11) 0.0181 (2)
H8 0.1273 0.1116 0.4885 0.022*
C10 0.53890 (12) 0.25494 (8) 0.45510 (10) 0.01313 (17)
C11 0.56930 (11) 0.17216 (8) 0.36283 (10) 0.01191 (17)
C12 0.44039 (11) 0.09230 (8) 0.34726 (10) 0.01234 (17)
C13 0.33703 (12) 0.13394 (8) 0.42784 (10) 0.01382 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01819 (13) 0.01449 (12) 0.01981 (13) −0.00184 (8) 0.01132 (9) −0.00327 (8)
N9 0.0156 (4) 0.0158 (4) 0.0144 (4) 0.0018 (3) 0.0077 (3) −0.0002 (3)
C1 0.0194 (5) 0.0149 (4) 0.0159 (4) −0.0014 (4) 0.0063 (4) −0.0029 (3)
C2 0.0162 (4) 0.0168 (4) 0.0150 (4) −0.0032 (4) 0.0031 (3) −0.0016 (3)
C3 0.0149 (4) 0.0145 (4) 0.0167 (4) −0.0031 (3) 0.0059 (3) −0.0012 (3)
C4 0.0128 (4) 0.0125 (4) 0.0123 (4) 0.0008 (3) 0.0041 (3) 0.0011 (3)
C5 0.0149 (4) 0.0145 (4) 0.0141 (4) −0.0005 (3) 0.0035 (3) 0.0017 (3)
C6 0.0182 (5) 0.0169 (5) 0.0175 (4) −0.0039 (4) 0.0027 (4) 0.0026 (4)
C7 0.0156 (5) 0.0230 (5) 0.0204 (5) −0.0045 (4) 0.0049 (4) 0.0056 (4)
C8 0.0140 (4) 0.0235 (5) 0.0182 (4) 0.0001 (4) 0.0068 (4) 0.0046 (4)
C10 0.0140 (4) 0.0142 (4) 0.0115 (4) 0.0012 (3) 0.0039 (3) 0.0012 (3)
C11 0.0120 (4) 0.0126 (4) 0.0115 (4) 0.0001 (3) 0.0037 (3) 0.0005 (3)
C12 0.0117 (4) 0.0142 (4) 0.0115 (4) 0.0006 (3) 0.0035 (3) 0.0026 (3)
C13 0.0136 (4) 0.0160 (4) 0.0126 (4) 0.0011 (3) 0.0046 (3) 0.0026 (3)

Geometric parameters (Å, °)

C1—C10 1.4860 (14) C5—H5 0.95
C1—C2 1.5318 (14) C6—C7 1.4042 (16)
C1—H1A 0.99 C6—H6 0.95
C1—H1B 0.99 C7—C8 1.3882 (16)
C2—C3 1.5322 (14) C7—H7 0.95
C2—H2A 0.99 C8—C13 1.3920 (14)
C2—H2B 0.99 C8—H8 0.95
C3—C4 1.5162 (14) C10—N9 1.3463 (12)
C3—H3A 0.99 C10—C11 1.4061 (13)
C3—H3B 0.99 C11—C12 1.4553 (13)
C4—C11 1.4154 (13) C12—C13 1.4127 (13)
C4—S1 1.6692 (10) C13—N9 1.3988 (13)
C5—C6 1.3917 (14) N9—H9 0.88
C5—C12 1.4006 (13)
C10—C1—C2 108.17 (8) C5—C6—C7 121.32 (10)
C10—C1—H1A 110.1 C5—C6—H6 119.3
C2—C1—H1A 110.1 C7—C6—H6 119.3
C10—C1—H1B 110.1 C8—C7—C6 121.15 (10)
C2—C1—H1B 110.1 C8—C7—H7 119.4
H1A—C1—H1B 108.4 C6—C7—H7 119.4
C1—C2—C3 110.92 (8) C7—C8—C13 117.08 (10)
C1—C2—H2A 109.5 C7—C8—H8 121.5
C3—C2—H2A 109.5 C13—C8—H8 121.5
C1—C2—H2B 109.5 N9—C10—C11 109.79 (9)
C3—C2—H2B 109.5 N9—C10—C1 124.55 (9)
H2A—C2—H2B 108 C11—C10—C1 125.66 (9)
C4—C3—C2 113.85 (8) C10—C11—C4 120.68 (9)
C4—C3—H3A 108.8 C10—C11—C12 106.34 (8)
C2—C3—H3A 108.8 C4—C11—C12 132.83 (9)
C4—C3—H3B 108.8 C5—C12—C13 118.80 (9)
C2—C3—H3B 108.8 C5—C12—C11 135.05 (9)
H3A—C3—H3B 107.7 C13—C12—C11 106.14 (8)
C11—C4—C3 116.35 (8) C8—C13—N9 128.98 (9)
C11—C4—S1 123.85 (7) C8—C13—C12 122.96 (10)
C3—C4—S1 119.73 (7) N9—C13—C12 108.06 (8)
C6—C5—C12 118.64 (9) C10—N9—C13 109.64 (8)
C6—C5—H5 120.7 C10—N9—H9 125.2
C12—C5—H5 120.7 C13—N9—H9 125.2
C10—C1—C2—C3 49.84 (11) C6—C5—C12—C13 1.45 (14)
C1—C2—C3—C4 −55.67 (11) C6—C5—C12—C11 −179.79 (10)
C2—C3—C4—C11 28.23 (12) C10—C11—C12—C5 −177.03 (10)
C2—C3—C4—S1 −154.52 (8) C4—C11—C12—C5 7.46 (19)
C12—C5—C6—C7 0.52 (15) C10—C11—C12—C13 1.84 (10)
C5—C6—C7—C8 −1.47 (16) C4—C11—C12—C13 −173.67 (10)
C6—C7—C8—C13 0.35 (15) C7—C8—C13—N9 −178.60 (10)
C2—C1—C10—N9 158.35 (9) C7—C8—C13—C12 1.70 (15)
C2—C1—C10—C11 −21.72 (13) C5—C12—C13—C8 −2.64 (14)
N9—C10—C11—C4 174.61 (9) C11—C12—C13—C8 178.27 (9)
C1—C10—C11—C4 −5.33 (15) C5—C12—C13—N9 177.61 (8)
N9—C10—C11—C12 −1.56 (11) C11—C12—C13—N9 −1.47 (10)
C1—C10—C11—C12 178.50 (9) C11—C10—N9—C13 0.66 (11)
C3—C4—C11—C10 2.22 (13) C1—C10—N9—C13 −179.40 (9)
S1—C4—C11—C10 −174.91 (7) C8—C13—N9—C10 −179.18 (10)
C3—C4—C11—C12 177.20 (10) C12—C13—N9—C10 0.55 (11)
S1—C4—C11—C12 0.08 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N9—H9···S1i 0.88 2.45 3.3187 (9) 172

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2336).

References

  1. Cambridgesoft (2009). Chem3DPro Cambridgesoft Corporation, Cambridge, MA, USA.
  2. Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.
  6. Ianelli, S., Nardelli, M., Belletti, D., Caubère, C., Caubère, P. & Jamart-Grégoire, B. (1994). Acta Cryst. C50, 1919–1922. [DOI] [PubMed]
  7. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Rodriguez, J. G., Temprano, F., Esteban-Calderon, C. & Martinez-Ripoll, M. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 2117–2122.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811006623/fl2336sup1.cif

e-67-0o757-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811006623/fl2336Isup2.hkl

e-67-0o757-Isup2.hkl (158.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES