Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):o751. doi: 10.1107/S1600536811007124

1′,1′′-Dimethyl-4′-(naphthalen-1-yl)-1,2,3,4-tetra­hydro­naphthalene-2-spiro-3′-pyrrolidine-2′-spiro-3′′-indoline-1,2′′-dione

S Selvanayagam a,*, K Ravikumar b, P Saravanan c, R Raghunathan c
PMCID: PMC3099991  PMID: 21754048

Abstract

In the title compound, C32H28N2O2, the pyrrolidine ring adopts an envelope conformation, whereas the cyclo­hexa­none ring in the tetra­hydro­naphthalene fused-ring system adopts a half-chair conformation. The oxindole ring system is oriented at an angle of 48.2 (1)° with respect to the naphthyl ring system. An intra­molecular C—H⋯O close contact is observed. In the crystal, mol­ecules associate via two C—H⋯O hydrogen bonds, forming R 2 2(14) and R 2 2(10) dimers.

Related literature

For general background to pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003). For related structures, see: Selvanayagam et al. (2011); Gans & Shalloway (2001). For ring-puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983).graphic file with name e-67-0o751-scheme1.jpg

Experimental

Crystal data

  • C32H28N2O2

  • M r = 472.56

  • Monoclinic, Inline graphic

  • a = 8.7529 (8) Å

  • b = 18.0411 (16) Å

  • c = 15.4489 (13) Å

  • β = 98.181 (2)°

  • V = 2414.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • 27968 measured reflections

  • 5745 independent reflections

  • 4389 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.141

  • S = 1.04

  • 5745 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007124/ng5125sup1.cif

e-67-0o751-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007124/ng5125Isup2.hkl

e-67-0o751-Isup2.hkl (281.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1 0.97 2.48 3.143 (2) 126
C13—H13B⋯O1i 0.97 2.58 3.482 (2) 156
C32—H32A⋯O1ii 0.96 2.59 3.364 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme. SS also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

supplementary crystallographic information

Comment

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2A) receptor antagonist (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of pyrrolidine, tetrahydro naphthalin and naphthyl group systems are comparable with the related reported structure (Selvanayagam et al., 2011). Fig. 2 shows a superposition of the pyrrolidine ring of (I) with this related reported structure, using Qmol (Gans & Shalloway, 2001); the r.m.s. deviation is 0.363 Å.

The sum of the angles at N1 of the pyrrolidine ring [334.8°] and N2 of the oxindole ring [359.9°] are in accordance with sp3 and sp2 hybridizations. The short contacts H3···H23 (2.06 Å) and H4B···H30 (2 Å) result in substantial widening of the C21—C22—C23 and C21—C30—C29 bond angles [123.6 (2)° and 122.3 (2)°, respectively].

Pyrrolidine ring is in an envelope conformation, with puckering parameters q2 = 0.409 (1) Å and φ = -175.1 (2) °, and with atom N1 deviating -0.603 (2) Å from the least-squares plane passing through the remaining four atoms (C1-C4) of that ring (Cremer & Pople, 1975). The cyclohexanone ring in the tetrahydro naphthalin ring system has a half-chair conformation with the lowest asymmetry parameters of ΔC2(C2-C12) = 0.084 (1)° (Nardelli, 1983). The best plane of pyrrolidine ring system make a dihedral angles of 76.9 (1) and 68.9 (1)°, respectively with respect to the oxindole ring and naphtyl group systems.

The molecular structure is influenced by an intramolecular C—H···O close contacts. Atom O1 acts as a trifurcated acceptor for three intramolecular C—H···O contacts. In the molecular packing, C—H···O hydrogen bonds involving atoms C13 and O1 link inversion-related molecules to form R22 (14) graph-set dimer (Fig. 3 and Table 1). In addition to this another graph-set dimer of R22(10) forms in the unit cell involving C32 and O1 atoms via C-H···O hydrogen bonds (Fig. 4).

Experimental

To a mixture of N-methyl isatin (1mmol), sarcosine (1mmol) and 2-napthalidene- 1,2,3,4-tetrahydronaphthalene-1-ones (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo. The crude product was subjected to column chromatography using petroleum ether-ethyl acetate as eluent. Single crystals were grown by slow evaporation from methanol.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level

Fig. 2.

Fig. 2.

Superposition of (I) (violet) with the similar reported structure of Selvanayagam et al. (2011) (cyan).

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along the a axis; H-bonds are shown as dashed lines forms a R22(14) dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted

Fig. 4.

Fig. 4.

Molecular packing of the title compound, viewed down the b axis; H-bonds are shown as dashed lines forms a R22(10) dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted

Crystal data

C32H28N2O2 F(000) = 1000
Mr = 472.56 Dx = 1.300 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 17402 reflections
a = 8.7529 (8) Å θ = 2.3–27.8°
b = 18.0411 (16) Å µ = 0.08 mm1
c = 15.4489 (13) Å T = 292 K
β = 98.181 (2)° Block, colourless
V = 2414.7 (4) Å3 0.24 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4389 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
graphite θmax = 28.0°, θmin = 1.8°
ω scans h = −11→11
27968 measured reflections k = −23→23
5745 independent reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.5875P] where P = (Fo2 + 2Fc2)/3
5745 reflections (Δ/σ)max = 0.001
327 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.19542 (14) 0.03811 (7) 0.02474 (7) 0.0503 (3)
O2 0.51135 (15) 0.18921 (7) 0.29060 (8) 0.0526 (3)
N1 0.17919 (14) 0.13236 (7) 0.18988 (8) 0.0394 (3)
N2 0.20315 (16) −0.04854 (7) 0.13326 (9) 0.0447 (3)
C1 0.28805 (16) 0.07193 (8) 0.17953 (9) 0.0352 (3)
C2 0.43644 (16) 0.11610 (8) 0.16072 (9) 0.0341 (3)
C3 0.36697 (17) 0.19082 (8) 0.11804 (10) 0.0375 (3)
H3 0.4055 0.2308 0.1583 0.045*
C4 0.19270 (19) 0.18552 (9) 0.12043 (11) 0.0440 (4)
H4A 0.1507 0.2333 0.1336 0.053*
H4B 0.1390 0.1680 0.0649 0.053*
C5 0.22581 (17) 0.02033 (9) 0.10128 (10) 0.0393 (3)
C6 0.24558 (18) −0.05153 (9) 0.22415 (11) 0.0410 (4)
C7 0.2350 (2) −0.11139 (10) 0.27874 (13) 0.0528 (4)
H7 0.2003 −0.1573 0.2567 0.063*
C8 0.2781 (2) −0.10037 (11) 0.36793 (13) 0.0558 (5)
H8 0.2723 −0.1397 0.4063 0.067*
C9 0.3292 (2) −0.03231 (10) 0.40053 (12) 0.0517 (4)
H9 0.3571 −0.0261 0.4605 0.062*
C10 0.33951 (19) 0.02735 (9) 0.34430 (10) 0.0436 (4)
H10 0.3735 0.0733 0.3665 0.052*
C11 0.29901 (17) 0.01766 (8) 0.25571 (10) 0.0377 (3)
C12 0.53834 (18) 0.07288 (9) 0.10482 (10) 0.0386 (3)
H12A 0.4776 0.0604 0.0492 0.046*
H12B 0.6227 0.1044 0.0930 0.046*
C13 0.60428 (18) 0.00205 (9) 0.14878 (10) 0.0431 (4)
H13A 0.5209 −0.0326 0.1530 0.052*
H13B 0.6743 −0.0206 0.1132 0.052*
C14 0.68899 (17) 0.01682 (9) 0.23853 (10) 0.0417 (4)
C15 0.8018 (2) −0.03200 (11) 0.27723 (13) 0.0542 (4)
H15 0.8222 −0.0751 0.2480 0.065*
C16 0.8835 (2) −0.01708 (13) 0.35840 (14) 0.0660 (6)
H16 0.9577 −0.0505 0.3836 0.079*
C17 0.8563 (2) 0.04692 (13) 0.40262 (12) 0.0637 (5)
H17 0.9136 0.0571 0.4567 0.076*
C18 0.7440 (2) 0.09559 (11) 0.36647 (11) 0.0524 (4)
H18 0.7249 0.1385 0.3965 0.063*
C19 0.65839 (17) 0.08082 (9) 0.28461 (10) 0.0401 (4)
C20 0.53440 (17) 0.13366 (9) 0.24958 (10) 0.0382 (3)
C21 0.41452 (18) 0.21033 (9) 0.03005 (10) 0.0406 (4)
C22 0.55816 (19) 0.24838 (8) 0.02709 (11) 0.0427 (4)
C23 0.6600 (2) 0.26977 (10) 0.10265 (12) 0.0518 (4)
H23 0.6329 0.2604 0.1577 0.062*
C24 0.7977 (2) 0.30391 (12) 0.09610 (16) 0.0671 (6)
H24 0.8623 0.3179 0.1465 0.080*
C25 0.8418 (3) 0.31796 (13) 0.01394 (18) 0.0758 (7)
H25 0.9361 0.3405 0.0100 0.091*
C26 0.7475 (3) 0.29878 (12) −0.05961 (16) 0.0697 (6)
H26 0.7779 0.3087 −0.1137 0.084*
C27 0.6039 (2) 0.26398 (9) −0.05623 (12) 0.0514 (4)
C28 0.5078 (3) 0.24300 (11) −0.13333 (12) 0.0621 (5)
H28 0.5378 0.2531 −0.1875 0.075*
C29 0.3724 (3) 0.20835 (11) −0.12918 (12) 0.0635 (5)
H29 0.3092 0.1952 −0.1804 0.076*
C30 0.3263 (2) 0.19202 (10) −0.04740 (12) 0.0531 (4)
H30 0.2327 0.1680 −0.0461 0.064*
C31 0.02001 (18) 0.10912 (10) 0.19308 (12) 0.0496 (4)
H31A −0.0432 0.1520 0.1976 0.074*
H31B 0.0168 0.0777 0.2430 0.074*
H31C −0.0180 0.0823 0.1407 0.074*
C32 0.1366 (3) −0.10906 (10) 0.07871 (14) 0.0646 (6)
H32A 0.0785 −0.0895 0.0263 0.097*
H32B 0.0696 −0.1375 0.1100 0.097*
H32C 0.2176 −0.1403 0.0637 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0545 (7) 0.0563 (7) 0.0389 (6) −0.0025 (6) 0.0017 (5) −0.0018 (5)
O2 0.0589 (8) 0.0525 (7) 0.0462 (7) 0.0012 (6) 0.0059 (6) −0.0133 (5)
N1 0.0365 (7) 0.0373 (7) 0.0465 (7) 0.0007 (5) 0.0127 (6) 0.0009 (6)
N2 0.0472 (8) 0.0365 (7) 0.0483 (8) −0.0041 (6) −0.0007 (6) −0.0035 (6)
C1 0.0357 (7) 0.0356 (8) 0.0349 (7) −0.0018 (6) 0.0076 (6) −0.0006 (6)
C2 0.0347 (7) 0.0349 (7) 0.0336 (7) −0.0014 (6) 0.0078 (6) 0.0007 (6)
C3 0.0393 (8) 0.0339 (7) 0.0398 (8) −0.0011 (6) 0.0074 (6) 0.0011 (6)
C4 0.0404 (8) 0.0389 (8) 0.0540 (10) 0.0030 (7) 0.0109 (7) 0.0065 (7)
C5 0.0349 (7) 0.0417 (8) 0.0414 (8) 0.0003 (6) 0.0055 (6) −0.0030 (6)
C6 0.0383 (8) 0.0369 (8) 0.0477 (9) 0.0009 (6) 0.0060 (7) 0.0013 (7)
C7 0.0543 (10) 0.0360 (9) 0.0670 (12) −0.0017 (7) 0.0053 (9) 0.0053 (8)
C8 0.0585 (11) 0.0490 (10) 0.0606 (11) 0.0035 (8) 0.0110 (9) 0.0193 (9)
C9 0.0549 (10) 0.0589 (11) 0.0424 (9) 0.0032 (8) 0.0101 (8) 0.0100 (8)
C10 0.0478 (9) 0.0441 (9) 0.0407 (8) −0.0018 (7) 0.0127 (7) −0.0006 (7)
C11 0.0358 (7) 0.0373 (8) 0.0412 (8) −0.0002 (6) 0.0098 (6) 0.0032 (6)
C12 0.0403 (8) 0.0439 (8) 0.0330 (7) 0.0014 (7) 0.0096 (6) −0.0012 (6)
C13 0.0420 (8) 0.0433 (9) 0.0455 (9) 0.0052 (7) 0.0112 (7) −0.0032 (7)
C14 0.0347 (7) 0.0479 (9) 0.0440 (8) −0.0020 (7) 0.0103 (6) 0.0086 (7)
C15 0.0466 (9) 0.0540 (11) 0.0623 (11) 0.0049 (8) 0.0088 (8) 0.0130 (9)
C16 0.0513 (11) 0.0806 (15) 0.0640 (13) 0.0110 (10) 0.0009 (9) 0.0251 (11)
C17 0.0533 (11) 0.0942 (16) 0.0406 (9) −0.0003 (10) −0.0035 (8) 0.0144 (10)
C18 0.0491 (10) 0.0690 (12) 0.0391 (9) −0.0066 (9) 0.0060 (7) 0.0030 (8)
C19 0.0352 (8) 0.0506 (9) 0.0352 (8) −0.0050 (7) 0.0076 (6) 0.0051 (7)
C20 0.0379 (8) 0.0431 (8) 0.0351 (8) −0.0056 (6) 0.0105 (6) −0.0010 (6)
C21 0.0448 (9) 0.0344 (8) 0.0432 (8) 0.0011 (6) 0.0084 (7) 0.0069 (6)
C22 0.0469 (9) 0.0325 (8) 0.0506 (9) 0.0018 (7) 0.0134 (7) 0.0079 (7)
C23 0.0502 (10) 0.0502 (10) 0.0562 (10) −0.0067 (8) 0.0115 (8) 0.0060 (8)
C24 0.0557 (12) 0.0652 (13) 0.0798 (14) −0.0152 (10) 0.0076 (10) 0.0036 (11)
C25 0.0618 (13) 0.0721 (14) 0.0978 (18) −0.0219 (11) 0.0264 (13) 0.0141 (13)
C26 0.0814 (15) 0.0554 (12) 0.0805 (15) −0.0124 (11) 0.0400 (13) 0.0132 (11)
C27 0.0641 (11) 0.0369 (9) 0.0573 (11) 0.0010 (8) 0.0227 (9) 0.0107 (7)
C28 0.0898 (15) 0.0540 (11) 0.0460 (10) 0.0008 (10) 0.0212 (10) 0.0144 (8)
C29 0.0851 (15) 0.0614 (12) 0.0419 (10) −0.0082 (11) 0.0014 (9) 0.0077 (9)
C30 0.0572 (11) 0.0540 (10) 0.0474 (10) −0.0074 (8) 0.0049 (8) 0.0083 (8)
C31 0.0378 (8) 0.0542 (10) 0.0597 (11) −0.0030 (7) 0.0165 (8) 0.0017 (8)
C32 0.0726 (13) 0.0447 (10) 0.0697 (13) −0.0067 (9) −0.0137 (10) −0.0104 (9)

Geometric parameters (Å, °)

O1—C5 1.2175 (19) C14—C15 1.393 (2)
O2—C20 1.2179 (19) C14—C19 1.402 (2)
N1—C4 1.456 (2) C15—C16 1.379 (3)
N1—C31 1.4626 (19) C15—H15 0.9300
N1—C1 1.4715 (19) C16—C17 1.379 (3)
N2—C5 1.362 (2) C16—H16 0.9300
N2—C6 1.401 (2) C17—C18 1.376 (3)
N2—C32 1.450 (2) C17—H17 0.9300
C1—C11 1.523 (2) C18—C19 1.401 (2)
C1—C5 1.561 (2) C18—H18 0.9300
C1—C2 1.585 (2) C19—C20 1.487 (2)
C2—C12 1.539 (2) C21—C30 1.369 (2)
C2—C20 1.544 (2) C21—C22 1.439 (2)
C2—C3 1.584 (2) C22—C23 1.418 (2)
C3—C21 1.519 (2) C22—C27 1.429 (2)
C3—C4 1.534 (2) C23—C24 1.370 (3)
C3—H3 0.9800 C23—H23 0.9300
C4—H4A 0.9700 C24—C25 1.401 (3)
C4—H4B 0.9700 C24—H24 0.9300
C6—C7 1.381 (2) C25—C26 1.351 (3)
C6—C11 1.396 (2) C25—H25 0.9300
C7—C8 1.390 (3) C26—C27 1.413 (3)
C7—H7 0.9300 C26—H26 0.9300
C8—C9 1.378 (3) C27—C28 1.409 (3)
C8—H8 0.9300 C28—C29 1.349 (3)
C9—C10 1.394 (2) C28—H28 0.9300
C9—H9 0.9300 C29—C30 1.411 (3)
C10—C11 1.375 (2) C29—H29 0.9300
C10—H10 0.9300 C30—H30 0.9300
C12—C13 1.522 (2) C31—H31A 0.9600
C12—H12A 0.9700 C31—H31B 0.9600
C12—H12B 0.9700 C31—H31C 0.9600
C13—C14 1.500 (2) C32—H32A 0.9600
C13—H13A 0.9700 C32—H32B 0.9600
C13—H13B 0.9700 C32—H32C 0.9600
C4—N1—C31 113.04 (13) C15—C14—C19 118.54 (16)
C4—N1—C1 106.63 (11) C15—C14—C13 120.75 (16)
C31—N1—C1 115.21 (13) C19—C14—C13 120.70 (14)
C5—N2—C6 111.54 (13) C16—C15—C14 120.73 (19)
C5—N2—C32 122.92 (15) C16—C15—H15 119.6
C6—N2—C32 125.49 (15) C14—C15—H15 119.6
N1—C1—C11 111.27 (12) C15—C16—C17 120.67 (18)
N1—C1—C5 111.46 (12) C15—C16—H16 119.7
C11—C1—C5 101.04 (12) C17—C16—H16 119.7
N1—C1—C2 101.98 (11) C18—C17—C16 119.80 (18)
C11—C1—C2 120.09 (12) C18—C17—H17 120.1
C5—C1—C2 111.26 (11) C16—C17—H17 120.1
C12—C2—C20 108.06 (12) C17—C18—C19 120.30 (19)
C12—C2—C3 114.61 (12) C17—C18—H18 119.8
C20—C2—C3 109.09 (12) C19—C18—H18 119.8
C12—C2—C1 113.80 (12) C18—C19—C14 119.92 (16)
C20—C2—C1 107.81 (11) C18—C19—C20 118.39 (15)
C3—C2—C1 103.18 (11) C14—C19—C20 121.69 (14)
C21—C3—C4 115.86 (13) O2—C20—C19 120.29 (14)
C21—C3—C2 115.60 (12) O2—C20—C2 121.28 (14)
C4—C3—C2 105.14 (12) C19—C20—C2 118.42 (13)
C21—C3—H3 106.5 C30—C21—C22 118.29 (15)
C4—C3—H3 106.5 C30—C21—C3 122.29 (15)
C2—C3—H3 106.5 C22—C21—C3 119.42 (14)
N1—C4—C3 104.12 (12) C23—C22—C27 117.62 (16)
N1—C4—H4A 110.9 C23—C22—C21 123.62 (15)
C3—C4—H4A 110.9 C27—C22—C21 118.73 (16)
N1—C4—H4B 110.9 C24—C23—C22 121.23 (18)
C3—C4—H4B 110.9 C24—C23—H23 119.4
H4A—C4—H4B 109.0 C22—C23—H23 119.4
O1—C5—N2 124.73 (15) C23—C24—C25 120.4 (2)
O1—C5—C1 126.79 (14) C23—C24—H24 119.8
N2—C5—C1 108.42 (13) C25—C24—H24 119.8
C7—C6—C11 122.27 (16) C26—C25—C24 120.1 (2)
C7—C6—N2 127.64 (15) C26—C25—H25 119.9
C11—C6—N2 110.07 (13) C24—C25—H25 119.9
C6—C7—C8 117.45 (16) C25—C26—C27 121.5 (2)
C6—C7—H7 121.3 C25—C26—H26 119.2
C8—C7—H7 121.3 C27—C26—H26 119.2
C9—C8—C7 121.21 (16) C28—C27—C26 121.06 (18)
C9—C8—H8 119.4 C28—C27—C22 119.87 (17)
C7—C8—H8 119.4 C26—C27—C22 119.06 (19)
C8—C9—C10 120.45 (17) C29—C28—C27 120.49 (17)
C8—C9—H9 119.8 C29—C28—H28 119.8
C10—C9—H9 119.8 C27—C28—H28 119.8
C11—C10—C9 119.44 (16) C28—C29—C30 120.26 (19)
C11—C10—H10 120.3 C28—C29—H29 119.9
C9—C10—H10 120.3 C30—C29—H29 119.9
C10—C11—C6 119.16 (15) C21—C30—C29 122.34 (18)
C10—C11—C1 131.76 (14) C21—C30—H30 118.8
C6—C11—C1 108.89 (13) C29—C30—H30 118.8
C13—C12—C2 112.84 (12) N1—C31—H31A 109.5
C13—C12—H12A 109.0 N1—C31—H31B 109.5
C2—C12—H12A 109.0 H31A—C31—H31B 109.5
C13—C12—H12B 109.0 N1—C31—H31C 109.5
C2—C12—H12B 109.0 H31A—C31—H31C 109.5
H12A—C12—H12B 107.8 H31B—C31—H31C 109.5
C14—C13—C12 111.68 (13) N2—C32—H32A 109.5
C14—C13—H13A 109.3 N2—C32—H32B 109.5
C12—C13—H13A 109.3 H32A—C32—H32B 109.5
C14—C13—H13B 109.3 N2—C32—H32C 109.5
C12—C13—H13B 109.3 H32A—C32—H32C 109.5
H13A—C13—H13B 107.9 H32B—C32—H32C 109.5
C4—N1—C1—C11 172.75 (12) C5—C1—C11—C6 −1.96 (15)
C31—N1—C1—C11 −60.95 (17) C2—C1—C11—C6 −124.64 (14)
C4—N1—C1—C5 −75.29 (15) C20—C2—C12—C13 57.40 (16)
C31—N1—C1—C5 51.01 (17) C3—C2—C12—C13 179.26 (12)
C4—N1—C1—C2 43.50 (14) C1—C2—C12—C13 −62.30 (17)
C31—N1—C1—C2 169.80 (12) C2—C12—C13—C14 −54.08 (17)
N1—C1—C2—C12 −151.75 (12) C12—C13—C14—C15 −156.85 (15)
C11—C1—C2—C12 84.77 (16) C12—C13—C14—C19 21.9 (2)
C5—C1—C2—C12 −32.81 (17) C19—C14—C15—C16 −1.1 (3)
N1—C1—C2—C20 88.40 (13) C13—C14—C15—C16 177.67 (17)
C11—C1—C2—C20 −35.07 (17) C14—C15—C16—C17 −0.7 (3)
C5—C1—C2—C20 −152.65 (12) C15—C16—C17—C18 1.6 (3)
N1—C1—C2—C3 −26.95 (13) C16—C17—C18—C19 −0.7 (3)
C11—C1—C2—C3 −150.43 (13) C17—C18—C19—C14 −1.1 (2)
C5—C1—C2—C3 91.99 (13) C17—C18—C19—C20 177.82 (16)
C12—C2—C3—C21 −1.88 (18) C15—C14—C19—C18 2.0 (2)
C20—C2—C3—C21 119.41 (14) C13—C14—C19—C18 −176.80 (14)
C1—C2—C3—C21 −126.16 (13) C15—C14—C19—C20 −176.92 (14)
C12—C2—C3—C4 127.22 (14) C13—C14—C19—C20 4.3 (2)
C20—C2—C3—C4 −111.49 (13) C18—C19—C20—O2 1.8 (2)
C1—C2—C3—C4 2.94 (15) C14—C19—C20—O2 −179.27 (14)
C31—N1—C4—C3 −169.85 (13) C18—C19—C20—C2 −178.04 (13)
C1—N1—C4—C3 −42.26 (16) C14—C19—C20—C2 0.9 (2)
C21—C3—C4—N1 151.51 (13) C12—C2—C20—O2 149.50 (14)
C2—C3—C4—N1 22.57 (16) C3—C2—C20—O2 24.30 (19)
C6—N2—C5—O1 −178.51 (15) C1—C2—C20—O2 −87.09 (17)
C32—N2—C5—O1 −1.1 (3) C12—C2—C20—C19 −30.67 (17)
C6—N2—C5—C1 −1.40 (17) C3—C2—C20—C19 −155.87 (13)
C32—N2—C5—C1 176.01 (15) C1—C2—C20—C19 92.74 (15)
N1—C1—C5—O1 60.76 (19) C4—C3—C21—C30 −28.9 (2)
C11—C1—C5—O1 179.05 (15) C2—C3—C21—C30 94.74 (19)
C2—C1—C5—O1 −52.3 (2) C4—C3—C21—C22 152.08 (14)
N1—C1—C5—N2 −116.28 (14) C2—C3—C21—C22 −84.27 (18)
C11—C1—C5—N2 2.01 (15) C30—C21—C22—C23 −179.50 (16)
C2—C1—C5—N2 130.63 (13) C3—C21—C22—C23 −0.4 (2)
C5—N2—C6—C7 178.27 (17) C30—C21—C22—C27 −1.3 (2)
C32—N2—C6—C7 1.0 (3) C3—C21—C22—C27 177.77 (14)
C5—N2—C6—C11 0.08 (18) C27—C22—C23—C24 −0.2 (3)
C32—N2—C6—C11 −177.24 (16) C21—C22—C23—C24 178.00 (18)
C11—C6—C7—C8 0.8 (3) C22—C23—C24—C25 −0.6 (3)
N2—C6—C7—C8 −177.22 (16) C23—C24—C25—C26 0.9 (4)
C6—C7—C8—C9 0.1 (3) C24—C25—C26—C27 −0.4 (4)
C7—C8—C9—C10 −0.3 (3) C25—C26—C27—C28 −178.8 (2)
C8—C9—C10—C11 −0.4 (3) C25—C26—C27—C22 −0.4 (3)
C9—C10—C11—C6 1.2 (2) C23—C22—C27—C28 179.18 (16)
C9—C10—C11—C1 175.58 (15) C21—C22—C27—C28 0.9 (2)
C7—C6—C11—C10 −1.4 (2) C23—C22—C27—C26 0.7 (3)
N2—C6—C11—C10 176.88 (14) C21—C22—C27—C26 −177.61 (16)
C7—C6—C11—C1 −177.00 (15) C26—C27—C28—C29 178.6 (2)
N2—C6—C11—C1 1.31 (17) C22—C27—C28—C29 0.1 (3)
N1—C1—C11—C10 −58.3 (2) C27—C28—C29—C30 −0.7 (3)
C5—C1—C11—C10 −176.78 (16) C22—C21—C30—C29 0.8 (3)
C2—C1—C11—C10 60.5 (2) C3—C21—C30—C29 −178.26 (17)
N1—C1—C11—C6 116.47 (14) C28—C29—C30—C21 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O2 0.98 2.25 2.783 (2) 113
C4—H4B···O1 0.97 2.49 3.045 (2) 116
C12—H12A···O1 0.97 2.48 3.143 (2) 126
C32—H32A···O1 0.96 2.52 2.852 (2) 100
C13—H13B···O1i 0.97 2.58 3.482 (2) 156
C32—H32A···O1ii 0.96 2.59 3.364 (2) 138

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5125).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. [DOI] [PubMed]
  5. Kaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457–465. [PubMed]
  6. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  7. Obniska, j., Pawłowski, M., Kołaczkowski, M., Czopek, A., Duszyńska, B., Kłodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557. [PubMed]
  8. Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283. [DOI] [PubMed]
  9. Selvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007124/ng5125sup1.cif

e-67-0o751-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007124/ng5125Isup2.hkl

e-67-0o751-Isup2.hkl (281.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES