Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 26;67(Pt 4):m499–m500. doi: 10.1107/S1600536811009949

catena-Poly[copper(II)-{μ3-4,4′-dibromo-2,2′-[butane-1,4-diylbis(nitrilo­methanyl­yl­idene)]diphenolato-κ4 N,O:N′,O′:O′}]

Hadi Kargar a,*, Reza Kia b
PMCID: PMC3099995  PMID: 21754007

Abstract

The asymmetric unit of the title coordination polymer, [Cu(C18H16Br2N2O2)]n, consists of a Schiff base complex in which a crystallographic twofold rotation axis bis­ects the central C—C bonds of the n-butyl spacers of the designated Schiff base ligands, making symmetry-related dimer units, which are twisted around CuII atoms in a bis-bidentate coordination mode. In the crystal, these dimeric units are connected through Cu—O bonds, forming one-dimensional coordination polymers, which propagate along [001]. The CuII atom adopts a square-based pyramidal coordination geometry, being coordinated by two N and two O atoms of symmetry-related ligands and by a third O atom of a neighboring complex. Furthermore, inter­molecular π–π inter­actions [centroid–centroid distance = 3.786 (2) Å] and C—H⋯O inter­actions stabilize the crystal packing.

Related literature

For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006); Eddaoudi et al. (2001); Dietzel et al. (2005). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes see: Granovski et al. (1993); Elmali et al. (2000). For the crystal structure of the chloro derivative, see: Kargar & Kia (2011).graphic file with name e-67-0m499-scheme1.jpg

Experimental

Crystal data

  • [Cu(C18H16Br2N2O2)]

  • M r = 515.69

  • Monoclinic, Inline graphic

  • a = 24.0964 (9) Å

  • b = 10.5885 (3) Å

  • c = 15.3528 (5) Å

  • β = 117.354 (3)°

  • V = 3479.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.86 mm−1

  • T = 100 K

  • 0.41 × 0.32 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.197, T max = 0.439

  • 36229 measured reflections

  • 6017 independent reflections

  • 4887 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.139

  • S = 1.19

  • 6017 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 2.19 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009949/su2263sup1.cif

e-67-0m499-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009949/su2263Isup2.hkl

e-67-0m499-Isup2.hkl (294.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2 0.97 2.28 2.973 (5) 128

Acknowledgments

HK thans PNU for support of this work. RK thanks the Science and Research Branch, Islamic Azad University.

supplementary crystallographic information

Comment

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006; Eddaoudi et al., 2001; Dietzel et al., 2005). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The crystal structure of the chloro derivative, Poly[N,N'-Bis(5-chlorosalicylidene)-1,4-butanediaminato copper(II)], has been descibed in the previous paper (Kargar & Kia, 2011).

The molecular structure of the title complex (Fig. 1) consists of symmetry-related dimers in which the Schiff base ligands are twisted around CuII centers in a bis-bidentate coordinnation mode, having a crystallographic twofold rotation axis which passes through the central C—C bonds of the n-butyl spacers [C9—C9Ai and C18—C18Ai; symmetry code: (i) -x + 1, y, -z + 1/2].

In the crystal the dimer units are connected through Cu—O bonds, forming one-diensional coordination polymer running along the c axis (Fig. 2), in which the CuII atom adopts a square-based pyramidal coordination geometry. The CuII atoms are supported by the two nitrogen and oxygen atoms of the symmetry-related ligands and a third oxygen atom of neighboring complexes. The lengths of the intermolecular Cu1—O1i bonds [2.394 (3) Å Å; symetry code (i) -x, -y + 1, -z] is significantly shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. There are different non-bonded internuclear Cu···Cu distances. The longer one is separated by the butyl spacers [4.718 Å], and the shorter one is in the centrosymmetric Cu2O2 rectangular unit [3.314 Å]. Furthermore, intermolecular π-π interactions stabilize the crystal packings with centroid to centroid distances of 3.786 (2)Å [Cg1 and Cg2 are the centroids of the rings (C1–C6) and (C10–C15)]. There are also C—H···O interactions present (Table 1).

Experimental

The title complex was synthesized by the template method of mixing an ethanolic solution (50 ml) of 5-bromosalicylaldeyde (4 mmol), 1,4-butanediamine (2 mmol), and CuCl2.4H2O (2.1 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting green solid was crystallized from ethanol, giving single crystals suitable for X-ray diffraction.

Refinement

All H-atoms were positioned geometrically and constrained to ride on the parent atoms using the riding-model approximation: C—H = 0.93 - 0.97 Å with Uiso(H) = 1.2Ueq(C). In case of the large maximum residual density, located < 1 Å from the Br atoms, it was not possible to find any sign of twinning or missed atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, showing 40% probability displacement ellipsoids and the atomic numbering [H-atoms have been omitted for clarity; symmetry code for A suffix: -x + 1, -y, -z + 1].

Fig. 2.

Fig. 2.

The crystal packing, viewed down the b-axis, of the title complex, showing the one-dimensional coordination chain propagating along [001] (H-atoms have been omitted for clarity).

Crystal data

[Cu(C18H16Br2N2O2)] F(000) = 2024
Mr = 515.69 Dx = 1.969 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9961 reflections
a = 24.0964 (9) Å θ = 2.4–34.8°
b = 10.5885 (3) Å µ = 5.86 mm1
c = 15.3528 (5) Å T = 100 K
β = 117.354 (3)° Block, green
V = 3479.2 (2) Å3 0.41 × 0.32 × 0.17 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6017 independent reflections
Radiation source: fine-focus sealed tube 4887 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 32.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −35→35
Tmin = 0.197, Tmax = 0.439 k = −15→15
36229 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0486P)2 + 32.1161P] where P = (Fo2 + 2Fc2)/3
6017 reflections (Δ/σ)max = 0.001
226 parameters Δρmax = 2.19 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.47745 (2) −0.03938 (5) 0.38413 (4) 0.01976 (11)
Br1 0.819293 (19) 0.00198 (4) 0.58443 (3) 0.02766 (11)
Br2 0.134787 (18) 0.00911 (4) 0.11824 (3) 0.02394 (10)
O1 0.54761 (13) 0.0506 (3) 0.4822 (2) 0.0236 (6)
O2 0.40617 (13) −0.1341 (3) 0.2998 (2) 0.0252 (6)
N1 0.53131 (15) −0.1956 (3) 0.4080 (2) 0.0198 (6)
N2 0.43372 (16) 0.1252 (3) 0.3280 (3) 0.0217 (6)
C1 0.60593 (18) 0.0376 (4) 0.4980 (3) 0.0218 (7)
C2 0.64637 (19) 0.1423 (4) 0.5324 (3) 0.0249 (8)
H2A 0.6310 0.2195 0.5405 0.030*
C3 0.70866 (19) 0.1318 (4) 0.5542 (3) 0.0247 (8)
H3A 0.7347 0.2021 0.5755 0.030*
C4 0.73222 (18) 0.0156 (4) 0.5442 (3) 0.0213 (7)
C5 0.69348 (17) −0.0878 (4) 0.5073 (3) 0.0209 (7)
H5A 0.7094 −0.1640 0.4987 0.025*
C6 0.62944 (17) −0.0775 (4) 0.4828 (3) 0.0194 (7)
C7 0.59134 (18) −0.1902 (4) 0.4466 (3) 0.0209 (7)
H7A 0.6123 −0.2657 0.4517 0.025*
C8 0.50307 (18) −0.3230 (4) 0.3790 (3) 0.0214 (7)
H8A 0.4702 −0.3323 0.3984 0.026*
H8B 0.5347 −0.3863 0.4138 0.026*
C9 0.47575 (17) −0.3465 (4) 0.2686 (3) 0.0208 (7)
H9A 0.4544 −0.4273 0.2533 0.025*
H9B 0.4449 −0.2817 0.2341 0.025*
C10 0.34829 (17) −0.0968 (4) 0.2555 (3) 0.0204 (7)
C11 0.30077 (18) −0.1890 (4) 0.2123 (3) 0.0223 (7)
H11A 0.3120 −0.2728 0.2115 0.027*
C12 0.23841 (18) −0.1575 (4) 0.1715 (3) 0.0224 (7)
H12A 0.2080 −0.2199 0.1450 0.027*
C13 0.22092 (17) −0.0308 (4) 0.1703 (3) 0.0194 (7)
C14 0.26555 (18) 0.0625 (4) 0.2037 (3) 0.0218 (7)
H14A 0.2534 0.1467 0.1980 0.026*
C15 0.32968 (18) 0.0317 (4) 0.2466 (3) 0.0209 (7)
C16 0.37388 (19) 0.1347 (4) 0.2777 (3) 0.0225 (7)
H16A 0.3576 0.2157 0.2597 0.027*
C17 0.47047 (19) 0.2436 (4) 0.3495 (3) 0.0229 (7)
H17A 0.4937 0.2543 0.4200 0.028*
H17B 0.4421 0.3145 0.3233 0.028*
C18 0.51627 (19) 0.2440 (4) 0.3057 (3) 0.0243 (8)
H18A 0.5427 0.3181 0.3289 0.029*
H18B 0.5429 0.1701 0.3289 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01465 (19) 0.0223 (2) 0.0209 (2) 0.00107 (16) 0.00695 (16) −0.00268 (18)
Br1 0.01623 (17) 0.0374 (2) 0.0292 (2) −0.00192 (15) 0.01023 (15) −0.00306 (17)
Br2 0.01591 (17) 0.0263 (2) 0.0279 (2) 0.00093 (13) 0.00856 (15) 0.00019 (15)
O1 0.0168 (12) 0.0281 (15) 0.0256 (14) −0.0010 (11) 0.0096 (11) −0.0052 (12)
O2 0.0177 (12) 0.0233 (14) 0.0292 (15) 0.0028 (10) 0.0062 (11) −0.0047 (12)
N1 0.0179 (14) 0.0220 (15) 0.0194 (14) 0.0005 (11) 0.0086 (12) 0.0001 (12)
N2 0.0222 (15) 0.0200 (15) 0.0246 (16) −0.0012 (12) 0.0123 (13) −0.0036 (13)
C1 0.0171 (15) 0.0266 (19) 0.0196 (16) −0.0004 (14) 0.0066 (13) −0.0041 (15)
C2 0.0224 (17) 0.0256 (19) 0.0271 (19) −0.0002 (15) 0.0117 (16) −0.0049 (16)
C3 0.0213 (17) 0.0268 (19) 0.0262 (19) −0.0051 (14) 0.0111 (15) −0.0053 (16)
C4 0.0159 (15) 0.031 (2) 0.0174 (16) −0.0006 (14) 0.0083 (13) −0.0012 (14)
C5 0.0178 (15) 0.0236 (18) 0.0198 (16) 0.0000 (13) 0.0075 (13) −0.0022 (14)
C6 0.0174 (15) 0.0227 (17) 0.0169 (15) 0.0002 (13) 0.0068 (13) −0.0002 (13)
C7 0.0199 (16) 0.0220 (17) 0.0196 (16) 0.0022 (13) 0.0080 (14) −0.0004 (14)
C8 0.0186 (16) 0.0206 (17) 0.0245 (18) −0.0019 (13) 0.0095 (14) 0.0003 (14)
C9 0.0165 (15) 0.0222 (17) 0.0234 (17) −0.0019 (13) 0.0089 (14) −0.0014 (14)
C10 0.0187 (16) 0.0234 (18) 0.0183 (16) 0.0015 (13) 0.0078 (13) −0.0005 (14)
C11 0.0186 (16) 0.0224 (18) 0.0223 (18) 0.0013 (13) 0.0062 (14) −0.0005 (14)
C12 0.0184 (16) 0.0235 (18) 0.0222 (17) 0.0007 (13) 0.0067 (14) 0.0004 (15)
C13 0.0141 (14) 0.0234 (17) 0.0177 (16) 0.0025 (12) 0.0047 (12) 0.0018 (13)
C14 0.0179 (16) 0.0194 (17) 0.0268 (18) 0.0008 (13) 0.0091 (14) 0.0011 (14)
C15 0.0196 (16) 0.0221 (17) 0.0188 (16) 0.0018 (13) 0.0070 (13) −0.0004 (14)
C16 0.0219 (17) 0.0210 (17) 0.0254 (18) 0.0002 (14) 0.0115 (15) −0.0023 (15)
C17 0.0221 (17) 0.0208 (18) 0.0286 (19) −0.0033 (14) 0.0140 (15) −0.0034 (15)
C18 0.0213 (17) 0.0277 (19) 0.0270 (19) −0.0019 (14) 0.0138 (15) −0.0010 (15)

Geometric parameters (Å, °)

Cu1—O2 1.894 (3) C7—H7A 0.9300
Cu1—O1 1.922 (3) C8—C9 1.530 (6)
Cu1—N2 2.014 (4) C8—H8A 0.9700
Cu1—N1 2.029 (3) C8—H8B 0.9700
Cu1—O1i 2.393 (3) C9—C9ii 1.519 (7)
Br1—C4 1.901 (4) C9—H9A 0.9700
Br2—C13 1.898 (4) C9—H9B 0.9700
O1—C1 1.319 (5) C10—C11 1.416 (5)
O1—Cu1i 2.393 (3) C10—C15 1.420 (6)
O2—C10 1.301 (5) C11—C12 1.377 (5)
N1—C7 1.288 (5) C11—H11A 0.9300
N1—C8 1.484 (5) C12—C13 1.404 (6)
N2—C16 1.289 (5) C12—H12A 0.9300
N2—C17 1.481 (5) C13—C14 1.374 (5)
C1—C6 1.408 (6) C14—C15 1.412 (5)
C1—C2 1.409 (6) C14—H14A 0.9300
C2—C3 1.384 (6) C15—C16 1.444 (6)
C2—H2A 0.9300 C16—H16A 0.9300
C3—C4 1.393 (6) C17—C18 1.534 (5)
C3—H3A 0.9300 C17—H17A 0.9700
C4—C5 1.380 (6) C17—H17B 0.9700
C5—C6 1.414 (5) C18—C18ii 1.519 (8)
C5—H5A 0.9300 C18—H18A 0.9700
C6—C7 1.451 (6) C18—H18B 0.9700
O2—Cu1—O1 173.11 (14) C9—C8—H8A 109.1
O2—Cu1—N2 91.94 (13) N1—C8—H8B 109.1
O1—Cu1—N2 90.31 (14) C9—C8—H8B 109.1
O2—Cu1—N1 89.76 (13) H8A—C8—H8B 107.8
O1—Cu1—N1 90.18 (13) C9ii—C9—C8 113.8 (4)
N2—Cu1—N1 161.46 (14) C9ii—C9—H9A 108.8
O2—Cu1—O1i 93.04 (12) C8—C9—H9A 108.8
O1—Cu1—O1i 80.22 (12) C9ii—C9—H9B 108.8
N2—Cu1—O1i 96.98 (12) C8—C9—H9B 108.8
N1—Cu1—O1i 101.37 (12) H9A—C9—H9B 107.7
C1—O1—Cu1 124.9 (3) O2—C10—C11 118.6 (4)
C1—O1—Cu1i 120.3 (3) O2—C10—C15 123.8 (4)
Cu1—O1—Cu1i 99.78 (12) C11—C10—C15 117.6 (3)
C10—O2—Cu1 127.9 (3) C12—C11—C10 121.7 (4)
C7—N1—C8 116.2 (3) C12—C11—H11A 119.2
C7—N1—Cu1 122.4 (3) C10—C11—H11A 119.2
C8—N1—Cu1 121.3 (2) C11—C12—C13 119.7 (4)
C16—N2—C17 117.2 (4) C11—C12—H12A 120.2
C16—N2—Cu1 123.0 (3) C13—C12—H12A 120.2
C17—N2—Cu1 119.7 (3) C14—C13—C12 120.2 (3)
O1—C1—C6 122.4 (4) C14—C13—Br2 120.9 (3)
O1—C1—C2 118.8 (4) C12—C13—Br2 118.8 (3)
C6—C1—C2 118.8 (4) C13—C14—C15 120.6 (4)
C3—C2—C1 121.0 (4) C13—C14—H14A 119.7
C3—C2—H2A 119.5 C15—C14—H14A 119.7
C1—C2—H2A 119.5 C14—C15—C10 119.7 (4)
C2—C3—C4 119.7 (4) C14—C15—C16 117.6 (4)
C2—C3—H3A 120.2 C10—C15—C16 122.7 (3)
C4—C3—H3A 120.2 N2—C16—C15 126.2 (4)
C5—C4—C3 120.9 (4) N2—C16—H16A 116.9
C5—C4—Br1 120.7 (3) C15—C16—H16A 116.9
C3—C4—Br1 118.4 (3) N2—C17—C18 112.4 (3)
C4—C5—C6 119.9 (4) N2—C17—H17A 109.1
C4—C5—H5A 120.1 C18—C17—H17A 109.1
C6—C5—H5A 120.1 N2—C17—H17B 109.1
C1—C6—C5 119.7 (4) C18—C17—H17B 109.1
C1—C6—C7 122.9 (3) H17A—C17—H17B 107.9
C5—C6—C7 117.4 (4) C18ii—C18—C17 113.0 (4)
N1—C7—C6 126.3 (4) C18ii—C18—H18A 109.0
N1—C7—H7A 116.8 C17—C18—H18A 109.0
C6—C7—H7A 116.8 C18ii—C18—H18B 109.0
N1—C8—C9 112.6 (3) C17—C18—H18B 109.0
N1—C8—H8A 109.1 H18A—C18—H18B 107.8
N2—Cu1—O1—C1 −124.9 (3) O1—C1—C6—C5 −175.7 (4)
N1—Cu1—O1—C1 36.6 (3) C2—C1—C6—C5 3.5 (6)
O1i—Cu1—O1—C1 138.1 (4) O1—C1—C6—C7 1.4 (6)
N2—Cu1—O1—Cu1i 97.03 (13) C2—C1—C6—C7 −179.3 (4)
N1—Cu1—O1—Cu1i −101.51 (13) C4—C5—C6—C1 −1.3 (6)
O1i—Cu1—O1—Cu1i 0.0 C4—C5—C6—C7 −178.6 (4)
N2—Cu1—O2—C10 −21.9 (4) C8—N1—C7—C6 −178.3 (4)
N1—Cu1—O2—C10 176.6 (4) Cu1—N1—C7—C6 3.4 (6)
O1i—Cu1—O2—C10 75.2 (4) C1—C6—C7—N1 13.1 (6)
O2—Cu1—N1—C7 164.8 (3) C5—C6—C7—N1 −169.7 (4)
O1—Cu1—N1—C7 −22.1 (3) C7—N1—C8—C9 −101.6 (4)
N2—Cu1—N1—C7 69.4 (6) Cu1—N1—C8—C9 76.7 (4)
O1i—Cu1—N1—C7 −102.2 (3) N1—C8—C9—C9ii 64.2 (3)
O2—Cu1—N1—C8 −13.5 (3) Cu1—O2—C10—C11 −167.0 (3)
O1—Cu1—N1—C8 159.6 (3) Cu1—O2—C10—C15 13.7 (6)
N2—Cu1—N1—C8 −108.9 (5) O2—C10—C11—C12 174.4 (4)
O1i—Cu1—N1—C8 79.6 (3) C15—C10—C11—C12 −6.3 (6)
O2—Cu1—N2—C16 17.4 (3) C10—C11—C12—C13 1.5 (6)
O1—Cu1—N2—C16 −156.1 (3) C11—C12—C13—C14 4.2 (6)
N1—Cu1—N2—C16 112.4 (5) C11—C12—C13—Br2 −177.6 (3)
O1i—Cu1—N2—C16 −75.9 (3) C12—C13—C14—C15 −4.9 (6)
O2—Cu1—N2—C17 −166.6 (3) Br2—C13—C14—C15 177.0 (3)
O1—Cu1—N2—C17 19.9 (3) C13—C14—C15—C10 −0.1 (6)
N1—Cu1—N2—C17 −71.6 (5) C13—C14—C15—C16 178.4 (4)
O1i—Cu1—N2—C17 100.1 (3) O2—C10—C15—C14 −175.2 (4)
Cu1—O1—C1—C6 −31.8 (6) C11—C10—C15—C14 5.6 (6)
Cu1i—O1—C1—C6 98.5 (4) O2—C10—C15—C16 6.4 (6)
Cu1—O1—C1—C2 148.9 (3) C11—C10—C15—C16 −172.8 (4)
Cu1i—O1—C1—C2 −80.7 (4) C17—N2—C16—C15 178.4 (4)
O1—C1—C2—C3 177.1 (4) Cu1—N2—C16—C15 −5.6 (6)
C6—C1—C2—C3 −2.2 (6) C14—C15—C16—N2 171.5 (4)
C1—C2—C3—C4 −1.4 (7) C10—C15—C16—N2 −10.1 (7)
C2—C3—C4—C5 3.8 (6) C16—N2—C17—C18 −118.7 (4)
C2—C3—C4—Br1 −175.2 (3) Cu1—N2—C17—C18 65.1 (4)
C3—C4—C5—C6 −2.5 (6) N2—C17—C18—C18ii 65.9 (3)
Br1—C4—C5—C6 176.6 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···O2 0.97 2.28 2.973 (5) 128

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2263).

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dietzel, P. D. C., Morita, Y., Blom, R. & Fjellvag, H. (2005). Angew. Chem. Int. Ed. 44, 1483–1492. [DOI] [PubMed]
  5. Eddaoudi, M., Moler, D., Li, H., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. [DOI] [PubMed]
  6. Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. [DOI] [PubMed]
  7. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  8. Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024.
  9. Kargar, H. & Kia, R. (2011). Acta Cryst. E67, m497–m498. [DOI] [PMC free article] [PubMed]
  10. Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368. [DOI] [PubMed]
  11. Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667. [DOI] [PubMed]
  12. Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811009949/su2263sup1.cif

e-67-0m499-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009949/su2263Isup2.hkl

e-67-0m499-Isup2.hkl (294.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES