Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):m468. doi: 10.1107/S1600536811009251

cis-Bis(2,2′-bipyridine-κ2 N,N′)dichloridocobalt(II) trihydrate

K Arun Kumar a, M Amuthaselvi a, A Dayalan a,*
PMCID: PMC3099996  PMID: 21753983

Abstract

In the title complex, [CoCl2(C10H8N2)2]·3H2O, the Co(II) ion is situated on a twofold rotation axis and exhibits a slightly distorted octa­hedral geometry and is chelated by four N atoms of the two bidentate 2,2′-bipyridine ligands and two Cl ions. The crystal packing is stabilized by hydrogen bonding formed between chloride ions and adjacent water mol­ecules. One of the two independent water molecules in the asymmetric unit is disordered over two sets of sites, each on a twofold rotation axis, in a 0.734 (17):0.269 (17) ratio.

Related literature

For the anti­bacterial activity of similar complexes, see: Senthilkumar & Arunachalam (2008). For similar complexes applied in the immunoassay of carcinoma anti­gen-125, see: Shihong et al. (2009). For the application of similar complexes as biosensors, see: Ying et al. (2006).graphic file with name e-67-0m468-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C10H8N2)2]·3H2O

  • M r = 496.25

  • Monoclinic, Inline graphic

  • a = 18.3644 (8) Å

  • b = 13.1902 (8) Å

  • c = 10.8854 (6) Å

  • β = 120.030 (4)°

  • V = 2282.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.721, T max = 0.823

  • 18022 measured reflections

  • 2123 independent reflections

  • 1731 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.143

  • S = 1.19

  • 2123 reflections

  • 152 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009251/bq2282sup1.cif

e-67-0m468-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009251/bq2282Isup2.hkl

e-67-0m468-Isup2.hkl (104.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.86 (6) 2.43 (5) 3.250 (4) 160 (5)
O1—H1B⋯Cl1i 0.85 (3) 2.37 (4) 3.218 (4) 172 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to Rev. Fr. Dr B. Jeyaraj, S. J., Principal, Loyola College (Autonomous), Chennai-34, India, for providing the necessary facilities and the Head, SAIF, IIT Madras, Chennai-36, India, for recording the X-ray data.

supplementary crystallographic information

Comment

2,2-Bipyridine and 1,10-phenanthroline have been extensively used to form different complexes with transition metal ions in their various oxidation states. Tris(2,2'-bipyridine)cobalt(III) complexed with bovine serum albumin has been reported as biosensors (Ying et al., 2006). Bipyridine cobalt complexes were found to have considerable antibacterial activities (Senthilkumar & Arunachalam, 2008). The use of tris(bipyridine)cobalt(II) for immunoassay of carcinoma antigen-125 has been reported recently (Shihong et al., 2009).

The cobalt(II) ion has site symmetry 2 and assumes octahedral geometry with two symmetry related 2,2'- bipyridine ligands and two chloride ions. Cobalt(II) is linked to two 2,2'- bipyridine bidentate ligands via four nitrogen atoms and two chloride ions. The two 2,2'- bipyridine ligands are in cis position with mutually perpendicular to each other. The hydrated water molecules in the crystal packing helps the stabilization of crystal packing by forming hydrogen bonding between adjacent chloride ions.

Experimental

The complex was prepared by adding a solution of 2,2'- bipyridine (0.01 mole) in 60 ml of acetone, to a solution of cobalt(II) chloride (0.005 mole) in 60 ml of acetone. The resulting solution was stirred for two hours, filtered and dried over vacuum desiccator to get red colour complex (yield 90%). The dark red colored crystals, suitable for x-ray analysis, were obtained by slow evaporation from alcoholic solution.

Refinement

There is 1.5 water molecules per asymmetric unit. The H atoms of water oxygen O1 could be located in difference Fourier map. These H atoms were restrained to be at a distance of 0.85 Å from O1. The inter hydrogen distance was restrained to be 1.388 Å so as to retain the tetrahedral H—O—H angle. The other half molecule was disordered in two positions (O2 and O3). Their occupancies were refined initially as free variables and later the sum of the occupancies restrained as 0.5. The H atoms of disordered water molecules could not be located. The aromatic H atoms were constrained as riding atoms with d(C—H) = 0.93 Å and Uiso(H) = 1.2Uequ(C).

Figures

Fig. 1.

Fig. 1.

ORTEP of [Co(bpy)2(Cl)2].3H2O drawn with 50% displacement ellipsoid level. Water molecules have been omitted for clarity.

Fig. 2.

Fig. 2.

The crystal packing of [Co(bpy)2(Cl)2].3H2O viewed along the c axis.

Crystal data

[CoCl2(C10H8N2)2]·3H2O F(000) = 1020
Mr = 496.25 Dx = 1.444 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2yc Cell parameters from 6958 reflections
a = 18.3644 (8) Å θ = 2.4–25.4°
b = 13.1902 (8) Å µ = 1.01 mm1
c = 10.8854 (6) Å T = 293 K
β = 120.030 (4)° Block, red
V = 2282.8 (2) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2123 independent reflections
Radiation source: fine-focus sealed tube 1731 reflections with I > 2σ(I)
graphite Rint = 0.051
ω and φ scans θmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −22→19
Tmin = 0.721, Tmax = 0.823 k = −15→15
18022 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0754P)2 + 3.251P] where P = (Fo2 + 2Fc2)/3
S = 1.19 (Δ/σ)max < 0.001
2123 reflections Δρmax = 0.67 e Å3
152 parameters Δρmin = −0.64 e Å3
4 restraints Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0015 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.9376 (3) 0.3673 (3) 0.5122 (5) 0.0632 (11)
H1 0.9858 0.3506 0.5089 0.076*
C2 0.8848 (3) 0.4410 (4) 0.4210 (6) 0.0774 (14)
H2 0.8973 0.4740 0.3583 0.093*
C3 0.8134 (3) 0.4643 (4) 0.4254 (6) 0.0772 (14)
H3 0.7768 0.5140 0.3658 0.093*
C4 0.7964 (3) 0.4142 (3) 0.5176 (5) 0.0610 (11)
H4 0.7476 0.4288 0.5202 0.073*
C5 0.8517 (2) 0.3418 (2) 0.6070 (4) 0.0428 (8)
C6 0.8377 (2) 0.2843 (2) 0.7097 (3) 0.0394 (8)
C7 0.7668 (2) 0.2959 (3) 0.7214 (4) 0.0518 (9)
H7 0.7247 0.3408 0.6623 0.062*
C8 0.7588 (2) 0.2405 (4) 0.8212 (5) 0.0599 (10)
H8 0.7120 0.2486 0.8319 0.072*
C9 0.8211 (2) 0.1730 (3) 0.9046 (4) 0.0576 (10)
H9 0.8171 0.1344 0.9725 0.069*
C10 0.8893 (2) 0.1635 (3) 0.8859 (4) 0.0472 (8)
H10 0.9310 0.1172 0.9419 0.057*
N1 0.92249 (18) 0.3194 (2) 0.6043 (3) 0.0449 (7)
N2 0.89867 (17) 0.2174 (2) 0.7915 (3) 0.0392 (6)
O1 0.8926 (3) −0.0960 (3) 0.7511 (4) 0.0902 (12)
Cl1 0.92474 (5) 0.07552 (7) 0.56901 (9) 0.0448 (3)
Co1 1.0000 0.20323 (5) 0.7500 0.0367 (3)
O2 1.0000 −0.2593 (12) 0.7500 0.169 (6) 0.734 (17)
O3 1.0000 −0.4227 0.7500 0.174 (19) 0.269 (17)
H1A 0.911 (4) −0.046 (3) 0.724 (5) 0.11 (2)*
H1B 0.904 (4) −0.085 (4) 0.836 (3) 0.11 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.043 (2) 0.068 (3) 0.071 (3) −0.0005 (18) 0.023 (2) 0.021 (2)
C2 0.061 (3) 0.076 (3) 0.083 (3) 0.003 (2) 0.027 (2) 0.042 (3)
C3 0.057 (3) 0.062 (3) 0.088 (3) 0.011 (2) 0.018 (2) 0.036 (2)
C4 0.046 (2) 0.050 (2) 0.070 (3) 0.0110 (17) 0.016 (2) 0.0131 (19)
C5 0.0330 (17) 0.0354 (17) 0.0441 (18) −0.0011 (13) 0.0074 (14) −0.0034 (14)
C6 0.0301 (17) 0.0368 (17) 0.0399 (17) 0.0027 (12) 0.0089 (14) −0.0068 (14)
C7 0.0332 (19) 0.059 (2) 0.051 (2) 0.0130 (15) 0.0122 (16) −0.0016 (17)
C8 0.045 (2) 0.077 (3) 0.064 (2) 0.014 (2) 0.032 (2) 0.001 (2)
C9 0.049 (2) 0.074 (3) 0.053 (2) 0.0112 (19) 0.0282 (19) 0.007 (2)
C10 0.0359 (18) 0.055 (2) 0.0461 (19) 0.0082 (16) 0.0174 (15) 0.0074 (17)
N1 0.0331 (15) 0.0416 (16) 0.0487 (16) −0.0004 (12) 0.0120 (13) 0.0027 (13)
N2 0.0265 (14) 0.0427 (16) 0.0394 (14) 0.0044 (11) 0.0098 (11) 0.0005 (12)
O1 0.101 (3) 0.110 (3) 0.064 (2) −0.057 (2) 0.044 (2) −0.018 (2)
Cl1 0.0335 (5) 0.0513 (6) 0.0415 (5) −0.0071 (3) 0.0128 (4) −0.0062 (3)
Co1 0.0238 (4) 0.0402 (4) 0.0382 (4) 0.000 0.0097 (3) 0.000
O2 0.133 (10) 0.217 (14) 0.117 (8) 0.000 0.032 (7) 0.000
O3 0.20 (3) 0.28 (5) 0.11 (2) 0.000 0.12 (2) 0.000

Geometric parameters (Å, °)

C1—N1 1.327 (5) C8—C9 1.373 (6)
C1—C2 1.381 (6) C8—H8 0.9300
C1—H1 0.9300 C9—C10 1.373 (5)
C2—C3 1.370 (7) C9—H9 0.9300
C2—H2 0.9300 C10—N2 1.329 (5)
C3—C4 1.362 (6) C10—H10 0.9300
C3—H3 0.9300 N1—Co1 2.151 (3)
C4—C5 1.379 (5) N2—Co1 2.132 (3)
C4—H4 0.9300 O1—H1A 0.86 (6)
C5—N1 1.348 (4) O1—H1B 0.85 (3)
C5—C6 1.476 (5) Cl1—Co1 2.4298 (9)
C6—N2 1.351 (4) Co1—N2i 2.132 (3)
C6—C7 1.378 (5) Co1—N1i 2.151 (3)
C7—C8 1.377 (6) Co1—Cl1i 2.4298 (9)
C7—H7 0.9300
N1—C1—C2 122.8 (4) C8—C9—H9 120.6
N1—C1—H1 118.6 N2—C10—C9 123.1 (3)
C2—C1—H1 118.6 N2—C10—H10 118.4
C3—C2—C1 118.2 (4) C9—C10—H10 118.4
C3—C2—H2 120.9 C1—N1—C5 118.7 (3)
C1—C2—H2 120.9 C1—N1—Co1 125.8 (3)
C4—C3—C2 119.5 (4) C5—N1—Co1 115.4 (2)
C4—C3—H3 120.2 C10—N2—C6 118.2 (3)
C2—C3—H3 120.2 C10—N2—Co1 125.5 (2)
C3—C4—C5 119.8 (4) C6—N2—Co1 116.2 (2)
C3—C4—H4 120.1 H1A—O1—H1B 109 (5)
C5—C4—H4 120.1 N2—Co1—N2i 169.92 (15)
N1—C5—C4 120.9 (4) N2—Co1—N1i 96.14 (11)
N1—C5—C6 116.1 (3) N2i—Co1—N1i 76.58 (11)
C4—C5—C6 123.0 (3) N2—Co1—N1 76.58 (11)
N2—C6—C7 121.4 (3) N2i—Co1—N1 96.14 (11)
N2—C6—C5 115.7 (3) N1i—Co1—N1 89.19 (16)
C7—C6—C5 122.9 (3) N2—Co1—Cl1 91.72 (8)
C8—C7—C6 119.5 (3) N2i—Co1—Cl1 95.26 (8)
C8—C7—H7 120.2 N1i—Co1—Cl1 171.64 (8)
C6—C7—H7 120.2 N1—Co1—Cl1 89.88 (8)
C9—C8—C7 118.9 (3) N2—Co1—Cl1i 95.26 (8)
C9—C8—H8 120.6 N2i—Co1—Cl1i 91.72 (8)
C7—C8—H8 120.6 N1i—Co1—Cl1i 89.88 (8)
C10—C9—C8 118.8 (4) N1—Co1—Cl1i 171.64 (8)
C10—C9—H9 120.6 Cl1—Co1—Cl1i 92.22 (5)
N1—C1—C2—C3 −0.8 (8) C7—C6—N2—C10 −0.9 (5)
C1—C2—C3—C4 −0.5 (8) C5—C6—N2—C10 180.0 (3)
C2—C3—C4—C5 1.0 (8) C7—C6—N2—Co1 176.4 (3)
C3—C4—C5—N1 −0.3 (6) C5—C6—N2—Co1 −2.7 (4)
C3—C4—C5—C6 −180.0 (4) C10—N2—Co1—N2i −136.3 (3)
N1—C5—C6—N2 1.5 (4) C6—N2—Co1—N2i 46.6 (2)
C4—C5—C6—N2 −178.8 (3) C10—N2—Co1—N1i −93.0 (3)
N1—C5—C6—C7 −177.5 (3) C6—N2—Co1—N1i 89.9 (2)
C4—C5—C6—C7 2.2 (5) C10—N2—Co1—N1 179.3 (3)
N2—C6—C7—C8 1.9 (5) C6—N2—Co1—N1 2.2 (2)
C5—C6—C7—C8 −179.1 (3) C10—N2—Co1—Cl1 89.8 (3)
C6—C7—C8—C9 −1.5 (6) C6—N2—Co1—Cl1 −87.3 (2)
C7—C8—C9—C10 0.3 (7) C10—N2—Co1—Cl1i −2.6 (3)
C8—C9—C10—N2 0.7 (6) C6—N2—Co1—Cl1i −179.7 (2)
C2—C1—N1—C5 1.5 (6) C1—N1—Co1—N2 −179.5 (3)
C2—C1—N1—Co1 179.7 (4) C5—N1—Co1—N2 −1.3 (2)
C4—C5—N1—C1 −1.0 (5) C1—N1—Co1—N2i 7.5 (3)
C6—C5—N1—C1 178.7 (3) C5—N1—Co1—N2i −174.3 (2)
C4—C5—N1—Co1 −179.3 (3) C1—N1—Co1—N1i 83.9 (3)
C6—C5—N1—Co1 0.4 (4) C5—N1—Co1—N1i −97.9 (3)
C9—C10—N2—C6 −0.4 (5) C1—N1—Co1—Cl1 −87.7 (3)
C9—C10—N2—Co1 −177.4 (3) C5—N1—Co1—Cl1 90.5 (2)

Symmetry codes: (i) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Cl1 0.86 (6) 2.43 (5) 3.250 (4) 160 (5)
O1—H1B···Cl1ii 0.85 (3) 2.37 (4) 3.218 (4) 172 (4)

Symmetry codes: (ii) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2282).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bruker (2004). SADABS, APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Senthilkumar, R. & Arunachalam, M. (2008). Biophys. Chem. 136, 136–144.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shihong, C., Ruo, Y., Yaqin, C., Ligen, M., Wenjuan, L. & Yang, X. (2009). Electrochim. Acta, 54, 7242–7247.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Ying, Z., Ruo, Y., Yaqin, C., Aili, S., Ying, Z. & Jiuzhi, Y. (2006). Biomaterials, 27, 5420–5429.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009251/bq2282sup1.cif

e-67-0m468-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009251/bq2282Isup2.hkl

e-67-0m468-Isup2.hkl (104.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES