Abstract
In the title complex, [CoCl2(C10H8N2)2]·3H2O, the Co(II) ion is situated on a twofold rotation axis and exhibits a slightly distorted octahedral geometry and is chelated by four N atoms of the two bidentate 2,2′-bipyridine ligands and two Cl− ions. The crystal packing is stabilized by hydrogen bonding formed between chloride ions and adjacent water molecules. One of the two independent water molecules in the asymmetric unit is disordered over two sets of sites, each on a twofold rotation axis, in a 0.734 (17):0.269 (17) ratio.
Related literature
For the antibacterial activity of similar complexes, see: Senthilkumar & Arunachalam (2008 ▶). For similar complexes applied in the immunoassay of carcinoma antigen-125, see: Shihong et al. (2009 ▶). For the application of similar complexes as biosensors, see: Ying et al. (2006 ▶).
Experimental
Crystal data
[CoCl2(C10H8N2)2]·3H2O
M r = 496.25
Monoclinic,
a = 18.3644 (8) Å
b = 13.1902 (8) Å
c = 10.8854 (6) Å
β = 120.030 (4)°
V = 2282.8 (2) Å3
Z = 4
Mo Kα radiation
μ = 1.01 mm−1
T = 293 K
0.30 × 0.20 × 0.20 mm
Data collection
Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004 ▶) T min = 0.721, T max = 0.823
18022 measured reflections
2123 independent reflections
1731 reflections with I > 2σ(I)
R int = 0.051
Refinement
R[F 2 > 2σ(F 2)] = 0.045
wR(F 2) = 0.143
S = 1.19
2123 reflections
152 parameters
4 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.67 e Å−3
Δρmin = −0.65 e Å−3
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: APEX2 and SAINT (Bruker, 2004 ▶); data reduction: SAINT and XPREP (Bruker, 2004 ▶); program(s) used to solve structure: SIR92 (Altomare et al., 1993 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and Mercury (Bruno et al., 2002 ▶); software used to prepare material for publication: PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009251/bq2282sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009251/bq2282Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O1—H1A⋯Cl1 | 0.86 (6) | 2.43 (5) | 3.250 (4) | 160 (5) |
O1—H1B⋯Cl1i | 0.85 (3) | 2.37 (4) | 3.218 (4) | 172 (4) |
Symmetry code: (i) .
Acknowledgments
The authors are grateful to Rev. Fr. Dr B. Jeyaraj, S. J., Principal, Loyola College (Autonomous), Chennai-34, India, for providing the necessary facilities and the Head, SAIF, IIT Madras, Chennai-36, India, for recording the X-ray data.
supplementary crystallographic information
Comment
2,2-Bipyridine and 1,10-phenanthroline have been extensively used to form different complexes with transition metal ions in their various oxidation states. Tris(2,2'-bipyridine)cobalt(III) complexed with bovine serum albumin has been reported as biosensors (Ying et al., 2006). Bipyridine cobalt complexes were found to have considerable antibacterial activities (Senthilkumar & Arunachalam, 2008). The use of tris(bipyridine)cobalt(II) for immunoassay of carcinoma antigen-125 has been reported recently (Shihong et al., 2009).
The cobalt(II) ion has site symmetry 2 and assumes octahedral geometry with two symmetry related 2,2'- bipyridine ligands and two chloride ions. Cobalt(II) is linked to two 2,2'- bipyridine bidentate ligands via four nitrogen atoms and two chloride ions. The two 2,2'- bipyridine ligands are in cis position with mutually perpendicular to each other. The hydrated water molecules in the crystal packing helps the stabilization of crystal packing by forming hydrogen bonding between adjacent chloride ions.
Experimental
The complex was prepared by adding a solution of 2,2'- bipyridine (0.01 mole) in 60 ml of acetone, to a solution of cobalt(II) chloride (0.005 mole) in 60 ml of acetone. The resulting solution was stirred for two hours, filtered and dried over vacuum desiccator to get red colour complex (yield 90%). The dark red colored crystals, suitable for x-ray analysis, were obtained by slow evaporation from alcoholic solution.
Refinement
There is 1.5 water molecules per asymmetric unit. The H atoms of water oxygen O1 could be located in difference Fourier map. These H atoms were restrained to be at a distance of 0.85 Å from O1. The inter hydrogen distance was restrained to be 1.388 Å so as to retain the tetrahedral H—O—H angle. The other half molecule was disordered in two positions (O2 and O3). Their occupancies were refined initially as free variables and later the sum of the occupancies restrained as 0.5. The H atoms of disordered water molecules could not be located. The aromatic H atoms were constrained as riding atoms with d(C—H) = 0.93 Å and Uiso(H) = 1.2Uequ(C).
Figures
Fig. 1.
ORTEP of [Co(bpy)2(Cl)2].3H2O drawn with 50% displacement ellipsoid level. Water molecules have been omitted for clarity.
Fig. 2.
The crystal packing of [Co(bpy)2(Cl)2].3H2O viewed along the c axis.
Crystal data
[CoCl2(C10H8N2)2]·3H2O | F(000) = 1020 |
Mr = 496.25 | Dx = 1.444 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C2yc | Cell parameters from 6958 reflections |
a = 18.3644 (8) Å | θ = 2.4–25.4° |
b = 13.1902 (8) Å | µ = 1.01 mm−1 |
c = 10.8854 (6) Å | T = 293 K |
β = 120.030 (4)° | Block, red |
V = 2282.8 (2) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 4 |
Data collection
Bruker Kappa APEXII CCD diffractometer | 2123 independent reflections |
Radiation source: fine-focus sealed tube | 1731 reflections with I > 2σ(I) |
graphite | Rint = 0.051 |
ω and φ scans | θmax = 25.6°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −22→19 |
Tmin = 0.721, Tmax = 0.823 | k = −15→15 |
18022 measured reflections | l = −13→13 |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0754P)2 + 3.251P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max < 0.001 |
2123 reflections | Δρmax = 0.67 e Å−3 |
152 parameters | Δρmin = −0.64 e Å−3 |
4 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0015 (5) |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.9376 (3) | 0.3673 (3) | 0.5122 (5) | 0.0632 (11) | |
H1 | 0.9858 | 0.3506 | 0.5089 | 0.076* | |
C2 | 0.8848 (3) | 0.4410 (4) | 0.4210 (6) | 0.0774 (14) | |
H2 | 0.8973 | 0.4740 | 0.3583 | 0.093* | |
C3 | 0.8134 (3) | 0.4643 (4) | 0.4254 (6) | 0.0772 (14) | |
H3 | 0.7768 | 0.5140 | 0.3658 | 0.093* | |
C4 | 0.7964 (3) | 0.4142 (3) | 0.5176 (5) | 0.0610 (11) | |
H4 | 0.7476 | 0.4288 | 0.5202 | 0.073* | |
C5 | 0.8517 (2) | 0.3418 (2) | 0.6070 (4) | 0.0428 (8) | |
C6 | 0.8377 (2) | 0.2843 (2) | 0.7097 (3) | 0.0394 (8) | |
C7 | 0.7668 (2) | 0.2959 (3) | 0.7214 (4) | 0.0518 (9) | |
H7 | 0.7247 | 0.3408 | 0.6623 | 0.062* | |
C8 | 0.7588 (2) | 0.2405 (4) | 0.8212 (5) | 0.0599 (10) | |
H8 | 0.7120 | 0.2486 | 0.8319 | 0.072* | |
C9 | 0.8211 (2) | 0.1730 (3) | 0.9046 (4) | 0.0576 (10) | |
H9 | 0.8171 | 0.1344 | 0.9725 | 0.069* | |
C10 | 0.8893 (2) | 0.1635 (3) | 0.8859 (4) | 0.0472 (8) | |
H10 | 0.9310 | 0.1172 | 0.9419 | 0.057* | |
N1 | 0.92249 (18) | 0.3194 (2) | 0.6043 (3) | 0.0449 (7) | |
N2 | 0.89867 (17) | 0.2174 (2) | 0.7915 (3) | 0.0392 (6) | |
O1 | 0.8926 (3) | −0.0960 (3) | 0.7511 (4) | 0.0902 (12) | |
Cl1 | 0.92474 (5) | 0.07552 (7) | 0.56901 (9) | 0.0448 (3) | |
Co1 | 1.0000 | 0.20323 (5) | 0.7500 | 0.0367 (3) | |
O2 | 1.0000 | −0.2593 (12) | 0.7500 | 0.169 (6) | 0.734 (17) |
O3 | 1.0000 | −0.4227 | 0.7500 | 0.174 (19) | 0.269 (17) |
H1A | 0.911 (4) | −0.046 (3) | 0.724 (5) | 0.11 (2)* | |
H1B | 0.904 (4) | −0.085 (4) | 0.836 (3) | 0.11 (2)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.043 (2) | 0.068 (3) | 0.071 (3) | −0.0005 (18) | 0.023 (2) | 0.021 (2) |
C2 | 0.061 (3) | 0.076 (3) | 0.083 (3) | 0.003 (2) | 0.027 (2) | 0.042 (3) |
C3 | 0.057 (3) | 0.062 (3) | 0.088 (3) | 0.011 (2) | 0.018 (2) | 0.036 (2) |
C4 | 0.046 (2) | 0.050 (2) | 0.070 (3) | 0.0110 (17) | 0.016 (2) | 0.0131 (19) |
C5 | 0.0330 (17) | 0.0354 (17) | 0.0441 (18) | −0.0011 (13) | 0.0074 (14) | −0.0034 (14) |
C6 | 0.0301 (17) | 0.0368 (17) | 0.0399 (17) | 0.0027 (12) | 0.0089 (14) | −0.0068 (14) |
C7 | 0.0332 (19) | 0.059 (2) | 0.051 (2) | 0.0130 (15) | 0.0122 (16) | −0.0016 (17) |
C8 | 0.045 (2) | 0.077 (3) | 0.064 (2) | 0.014 (2) | 0.032 (2) | 0.001 (2) |
C9 | 0.049 (2) | 0.074 (3) | 0.053 (2) | 0.0112 (19) | 0.0282 (19) | 0.007 (2) |
C10 | 0.0359 (18) | 0.055 (2) | 0.0461 (19) | 0.0082 (16) | 0.0174 (15) | 0.0074 (17) |
N1 | 0.0331 (15) | 0.0416 (16) | 0.0487 (16) | −0.0004 (12) | 0.0120 (13) | 0.0027 (13) |
N2 | 0.0265 (14) | 0.0427 (16) | 0.0394 (14) | 0.0044 (11) | 0.0098 (11) | 0.0005 (12) |
O1 | 0.101 (3) | 0.110 (3) | 0.064 (2) | −0.057 (2) | 0.044 (2) | −0.018 (2) |
Cl1 | 0.0335 (5) | 0.0513 (6) | 0.0415 (5) | −0.0071 (3) | 0.0128 (4) | −0.0062 (3) |
Co1 | 0.0238 (4) | 0.0402 (4) | 0.0382 (4) | 0.000 | 0.0097 (3) | 0.000 |
O2 | 0.133 (10) | 0.217 (14) | 0.117 (8) | 0.000 | 0.032 (7) | 0.000 |
O3 | 0.20 (3) | 0.28 (5) | 0.11 (2) | 0.000 | 0.12 (2) | 0.000 |
Geometric parameters (Å, °)
C1—N1 | 1.327 (5) | C8—C9 | 1.373 (6) |
C1—C2 | 1.381 (6) | C8—H8 | 0.9300 |
C1—H1 | 0.9300 | C9—C10 | 1.373 (5) |
C2—C3 | 1.370 (7) | C9—H9 | 0.9300 |
C2—H2 | 0.9300 | C10—N2 | 1.329 (5) |
C3—C4 | 1.362 (6) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | N1—Co1 | 2.151 (3) |
C4—C5 | 1.379 (5) | N2—Co1 | 2.132 (3) |
C4—H4 | 0.9300 | O1—H1A | 0.86 (6) |
C5—N1 | 1.348 (4) | O1—H1B | 0.85 (3) |
C5—C6 | 1.476 (5) | Cl1—Co1 | 2.4298 (9) |
C6—N2 | 1.351 (4) | Co1—N2i | 2.132 (3) |
C6—C7 | 1.378 (5) | Co1—N1i | 2.151 (3) |
C7—C8 | 1.377 (6) | Co1—Cl1i | 2.4298 (9) |
C7—H7 | 0.9300 | ||
N1—C1—C2 | 122.8 (4) | C8—C9—H9 | 120.6 |
N1—C1—H1 | 118.6 | N2—C10—C9 | 123.1 (3) |
C2—C1—H1 | 118.6 | N2—C10—H10 | 118.4 |
C3—C2—C1 | 118.2 (4) | C9—C10—H10 | 118.4 |
C3—C2—H2 | 120.9 | C1—N1—C5 | 118.7 (3) |
C1—C2—H2 | 120.9 | C1—N1—Co1 | 125.8 (3) |
C4—C3—C2 | 119.5 (4) | C5—N1—Co1 | 115.4 (2) |
C4—C3—H3 | 120.2 | C10—N2—C6 | 118.2 (3) |
C2—C3—H3 | 120.2 | C10—N2—Co1 | 125.5 (2) |
C3—C4—C5 | 119.8 (4) | C6—N2—Co1 | 116.2 (2) |
C3—C4—H4 | 120.1 | H1A—O1—H1B | 109 (5) |
C5—C4—H4 | 120.1 | N2—Co1—N2i | 169.92 (15) |
N1—C5—C4 | 120.9 (4) | N2—Co1—N1i | 96.14 (11) |
N1—C5—C6 | 116.1 (3) | N2i—Co1—N1i | 76.58 (11) |
C4—C5—C6 | 123.0 (3) | N2—Co1—N1 | 76.58 (11) |
N2—C6—C7 | 121.4 (3) | N2i—Co1—N1 | 96.14 (11) |
N2—C6—C5 | 115.7 (3) | N1i—Co1—N1 | 89.19 (16) |
C7—C6—C5 | 122.9 (3) | N2—Co1—Cl1 | 91.72 (8) |
C8—C7—C6 | 119.5 (3) | N2i—Co1—Cl1 | 95.26 (8) |
C8—C7—H7 | 120.2 | N1i—Co1—Cl1 | 171.64 (8) |
C6—C7—H7 | 120.2 | N1—Co1—Cl1 | 89.88 (8) |
C9—C8—C7 | 118.9 (3) | N2—Co1—Cl1i | 95.26 (8) |
C9—C8—H8 | 120.6 | N2i—Co1—Cl1i | 91.72 (8) |
C7—C8—H8 | 120.6 | N1i—Co1—Cl1i | 89.88 (8) |
C10—C9—C8 | 118.8 (4) | N1—Co1—Cl1i | 171.64 (8) |
C10—C9—H9 | 120.6 | Cl1—Co1—Cl1i | 92.22 (5) |
N1—C1—C2—C3 | −0.8 (8) | C7—C6—N2—C10 | −0.9 (5) |
C1—C2—C3—C4 | −0.5 (8) | C5—C6—N2—C10 | 180.0 (3) |
C2—C3—C4—C5 | 1.0 (8) | C7—C6—N2—Co1 | 176.4 (3) |
C3—C4—C5—N1 | −0.3 (6) | C5—C6—N2—Co1 | −2.7 (4) |
C3—C4—C5—C6 | −180.0 (4) | C10—N2—Co1—N2i | −136.3 (3) |
N1—C5—C6—N2 | 1.5 (4) | C6—N2—Co1—N2i | 46.6 (2) |
C4—C5—C6—N2 | −178.8 (3) | C10—N2—Co1—N1i | −93.0 (3) |
N1—C5—C6—C7 | −177.5 (3) | C6—N2—Co1—N1i | 89.9 (2) |
C4—C5—C6—C7 | 2.2 (5) | C10—N2—Co1—N1 | 179.3 (3) |
N2—C6—C7—C8 | 1.9 (5) | C6—N2—Co1—N1 | 2.2 (2) |
C5—C6—C7—C8 | −179.1 (3) | C10—N2—Co1—Cl1 | 89.8 (3) |
C6—C7—C8—C9 | −1.5 (6) | C6—N2—Co1—Cl1 | −87.3 (2) |
C7—C8—C9—C10 | 0.3 (7) | C10—N2—Co1—Cl1i | −2.6 (3) |
C8—C9—C10—N2 | 0.7 (6) | C6—N2—Co1—Cl1i | −179.7 (2) |
C2—C1—N1—C5 | 1.5 (6) | C1—N1—Co1—N2 | −179.5 (3) |
C2—C1—N1—Co1 | 179.7 (4) | C5—N1—Co1—N2 | −1.3 (2) |
C4—C5—N1—C1 | −1.0 (5) | C1—N1—Co1—N2i | 7.5 (3) |
C6—C5—N1—C1 | 178.7 (3) | C5—N1—Co1—N2i | −174.3 (2) |
C4—C5—N1—Co1 | −179.3 (3) | C1—N1—Co1—N1i | 83.9 (3) |
C6—C5—N1—Co1 | 0.4 (4) | C5—N1—Co1—N1i | −97.9 (3) |
C9—C10—N2—C6 | −0.4 (5) | C1—N1—Co1—Cl1 | −87.7 (3) |
C9—C10—N2—Co1 | −177.4 (3) | C5—N1—Co1—Cl1 | 90.5 (2) |
Symmetry codes: (i) −x+2, y, −z+3/2.
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1 | 0.86 (6) | 2.43 (5) | 3.250 (4) | 160 (5) |
O1—H1B···Cl1ii | 0.85 (3) | 2.37 (4) | 3.218 (4) | 172 (4) |
Symmetry codes: (ii) x, −y, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2282).
References
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2004). SADABS, APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Senthilkumar, R. & Arunachalam, M. (2008). Biophys. Chem. 136, 136–144.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shihong, C., Ruo, Y., Yaqin, C., Ligen, M., Wenjuan, L. & Yang, X. (2009). Electrochim. Acta, 54, 7242–7247.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Ying, Z., Ruo, Y., Yaqin, C., Aili, S., Ying, Z. & Jiuzhi, Y. (2006). Biomaterials, 27, 5420–5429.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811009251/bq2282sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811009251/bq2282Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report