Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):m427–m428. doi: 10.1107/S1600536811008646

[μ-1,6-Bis(diphenyl­arsan­yl)hexa­ne]bis­[chloridogold(I)]

Omar bin Shawkataly a,*,, Abu Tariq a,§, Imthyaz Ahmad Khan a, Chin Sing Yeap b,, Hoong-Kun Fun b,‡‡
PMCID: PMC3100007  PMID: 21753954

Abstract

In the title compound, [Au2Cl2(C30H32As2)], each Au atom is coordinated by As and Cl atoms in an approximately linear geometry. In the crystal, mol­ecules are linked into two-dimensional networks parallel to the ac plane via inter­molecular C—H⋯Cl inter­actions. One of the phenyl rings is disordered over two positions, with site occupancies of 0.518 (8) and 0.482 (8).

Related literature

For general background and applications of diphenyl­arsino derivatives, see: Hill et al. (1983). For general background and applications of gold(I) complexes, see: Parish & Cottrill (1987); Tiekink (2002). For the synthesis of (CH3)2SAuCl, see: Francis (1901). For the synthesis of 1,6-bis­(diphenyl­arsino)hexane, see: Shawkataly et al. (2009). For a closely related structure, see: Shawkataly et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-0m427-scheme1.jpg

Experimental

Crystal data

  • [Au2Cl2(C30H32As2)]

  • M r = 1007.23

  • Triclinic, Inline graphic

  • a = 9.4881 (3) Å

  • b = 11.0350 (4) Å

  • c = 15.5254 (5) Å

  • α = 69.723 (1)°

  • β = 83.959 (1)°

  • γ = 79.814 (1)°

  • V = 1499.06 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.16 mm−1

  • T = 100 K

  • 0.37 × 0.22 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.094, T max = 0.407

  • 23816 measured reflections

  • 7451 independent reflections

  • 6817 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.088

  • S = 1.09

  • 7451 reflections

  • 371 parameters

  • H-atom parameters constrained

  • Δρmax = 2.52 e Å−3

  • Δρmin = −3.00 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008646/is2685sup1.cif

e-67-0m427-sup1.cif (28.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008646/is2685Isup2.hkl

e-67-0m427-Isup2.hkl (364.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Au1—Cl1 2.3043 (10)
Au1—As1 2.3411 (4)
Au2—Cl2 2.3005 (10)
Au2—As2 2.3398 (5)
Cl1—Au1—As1 174.77 (3)
Cl2—Au2—As2 175.14 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯Cl2i 0.97 2.79 3.754 (5) 172
C18—H18A⋯Cl1ii 0.97 2.80 3.701 (5) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the University Research Grant 1001/PJJAUH/811115. AT is grateful to USM for a post-doctoral Fellowship. IAK is grateful to USM for a Visiting Research Fellowship and to Gokhale Centenary College, Ankola, India, for study leave. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Gold and gold complexes have been used for medicinal purposes over a long period of time (Parish & Cottrill, 1987; Tiekink, 2002). 1,6-Bis(diphenylarsino)hexane has been used for trans chelation in transition metal complexes (Hill et al., 1983). A search of the November 2010 release of the Cambridge Structural Database (Allen, 2002) revealed no such gold (I) complexes containing the above ligand has been reported. Herein, we report the crystal structure of the title complex (Ph)2As(CH2)6As(Ph)2Au2Cl2 (Fig. 1).

The As1—Au1—Cl1 is almost linear with an angle of 174.77 (3)° and As2—Au2—Cl2 with an angle of 175.14 (3)°. The four substituted phenyl rings on both arsines C1—C6/C7—C12, C19—C24/C25,C26B—C30B and C19—C24/C25,C26A—C30A are inclined to one another, with dihedral angles of 69.1 (4), 85.9 (4) and 73.4 (4)°, respectively.

In the crystal packing, (Fig. 2), the molecules are linked into two-dimensional networks parallel to the (010) plane via intermolecular C17—H17B···Cl2 and C18—H18A···Cl1 interactions (Table 2).

Experimental

(Ph)2As(CH2)6As(Ph)2AuCl was prepared by mixing equimolar quantities of Me2SAuCl, obtained as per conventional method (Francis, 1901) and (Ph)2As(CH2)6As(Ph)2, synthesized according to related literature (Shawkataly et al., 2009) in CH2Cl2 held at room temperature. The solution was stirred for 2 h, and white crystalline solid was recovered after the removal of solvent under vacuum. The colourless plate-like crystals were obtained in 90% yield by solvent/solvent diffusion of dichloromethane/methanol at 10 °C after 2 days (m.p. 203 °C).

Refinement

All atoms are positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). One out of four phenyl rings is disordered over two positions with refined site-occupancies of 0.518 (8):0.482 (8). The maximum and minimum residual electron density peaks were located 0.84 and 0.86 Å, respectively, from atom Au1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, with 30% probability ellipsoid for non-H atoms and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Intermolecular interactions are shown as dashed lines.

Crystal data

[Au2Cl2(C30H32As2)] Z = 2
Mr = 1007.23 F(000) = 940
Triclinic, P1 Dx = 2.231 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.4881 (3) Å Cell parameters from 9948 reflections
b = 11.0350 (4) Å θ = 3.2–35.1°
c = 15.5254 (5) Å µ = 12.16 mm1
α = 69.723 (1)° T = 100 K
β = 83.959 (1)° Plate, colourless
γ = 79.814 (1)° 0.37 × 0.22 × 0.09 mm
V = 1499.06 (9) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7451 independent reflections
Radiation source: fine-focus sealed tube 6817 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.094, Tmax = 0.407 k = −14→14
23816 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.921P] where P = (Fo2 + 2Fc2)/3
7451 reflections (Δ/σ)max = 0.001
371 parameters Δρmax = 2.52 e Å3
0 restraints Δρmin = −3.00 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Au1 0.293305 (16) 0.506581 (14) −0.244387 (10) 0.02413 (6)
Au2 0.485482 (16) 0.400959 (15) 0.158348 (11) 0.02685 (6)
As1 0.35104 (4) 0.28305 (4) −0.16352 (3) 0.02363 (9)
As2 0.29128 (5) 0.36296 (4) 0.26530 (3) 0.02696 (10)
Cl1 0.22329 (12) 0.72149 (10) −0.33185 (7) 0.0304 (2)
Cl2 0.67793 (11) 0.42021 (11) 0.05371 (7) 0.0313 (2)
C1 0.5539 (4) 0.2189 (4) −0.1582 (3) 0.0287 (8)
C2 0.6304 (4) 0.2508 (4) −0.0994 (3) 0.0295 (8)
H2A 0.5832 0.2955 −0.0612 0.035*
C3 0.7788 (5) 0.2148 (6) −0.0986 (4) 0.0404 (11)
H3A 0.8309 0.2350 −0.0592 0.048*
C4 0.8488 (5) 0.1492 (7) −0.1559 (5) 0.0505 (15)
H4A 0.9481 0.1272 −0.1560 0.061*
C5 0.7712 (6) 0.1161 (7) −0.2133 (5) 0.0550 (16)
H5A 0.8184 0.0697 −0.2505 0.066*
C6 0.6239 (5) 0.1517 (6) −0.2155 (4) 0.0438 (12)
H6A 0.5722 0.1310 −0.2548 0.053*
C7 0.2716 (4) 0.1765 (4) −0.2167 (3) 0.0273 (8)
C8 0.1984 (5) 0.2365 (5) −0.2958 (3) 0.0323 (9)
H8A 0.1872 0.3270 −0.3228 0.039*
C9 0.1405 (5) 0.1616 (5) −0.3361 (4) 0.0399 (11)
H9A 0.0909 0.2020 −0.3897 0.048*
C10 0.1578 (5) 0.0266 (5) −0.2953 (4) 0.0375 (11)
H10A 0.1202 −0.0234 −0.3221 0.045*
C11 0.2301 (5) −0.0338 (5) −0.2156 (4) 0.0347 (10)
H11A 0.2404 −0.1242 −0.1886 0.042*
C12 0.2882 (4) 0.0404 (4) −0.1750 (3) 0.0301 (8)
H12A 0.3372 −0.0001 −0.1211 0.036*
C13 0.2832 (4) 0.2282 (4) −0.0364 (3) 0.0278 (8)
H13A 0.3047 0.1339 −0.0098 0.033*
H13B 0.3323 0.2661 −0.0025 0.033*
C14 0.1221 (5) 0.2710 (5) −0.0280 (3) 0.0342 (10)
H14A 0.0762 0.2492 −0.0725 0.041*
H14B 0.1037 0.3652 −0.0436 0.041*
C15 0.0537 (5) 0.2088 (6) 0.0675 (3) 0.0415 (12)
H15A −0.0489 0.2383 0.0655 0.050*
H15B 0.0685 0.1148 0.0816 0.050*
C16 0.1099 (5) 0.2384 (5) 0.1452 (3) 0.0336 (9)
H16A 0.0632 0.1921 0.2030 0.040*
H16B 0.2120 0.2071 0.1490 0.040*
C17 0.0834 (5) 0.3838 (5) 0.1310 (3) 0.0355 (10)
H17A −0.0134 0.4190 0.1109 0.043*
H17B 0.1488 0.4266 0.0820 0.043*
C18 0.1019 (5) 0.4173 (5) 0.2160 (3) 0.0331 (9)
H18A 0.0334 0.3775 0.2638 0.040*
H18B 0.0781 0.5112 0.2012 0.040*
C19 0.3067 (5) 0.1805 (4) 0.3382 (3) 0.0279 (8)
C20 0.1897 (5) 0.1239 (5) 0.3893 (3) 0.0334 (9)
H20A 0.0996 0.1741 0.3874 0.040*
C21 0.2088 (5) −0.0067 (5) 0.4425 (3) 0.0359 (10)
H21A 0.1307 −0.0449 0.4749 0.043*
C22 0.3447 (5) −0.0821 (5) 0.4480 (3) 0.0341 (9)
H22A 0.3571 −0.1695 0.4851 0.041*
C23 0.4612 (5) −0.0265 (5) 0.3983 (3) 0.0333 (9)
H23A 0.5516 −0.0765 0.4019 0.040*
C24 0.4421 (5) 0.1041 (4) 0.3432 (3) 0.0316 (9)
H24A 0.5199 0.1411 0.3092 0.038*
C25 0.2720 (8) 0.4463 (5) 0.3575 (3) 0.0541 (17)
C26A 0.3553 (10) 0.5057 (11) 0.3781 (8) 0.037 (2) 0.482 (8)
H26A 0.4447 0.5076 0.3471 0.044* 0.482 (8)
C27A 0.3295 (14) 0.5701 (13) 0.4428 (11) 0.043 (3) 0.482 (8)
H27A 0.4024 0.6061 0.4561 0.052* 0.482 (8)
C28A 0.1990 (16) 0.5802 (10) 0.4860 (7) 0.039 (3) 0.482 (8)
H28A 0.1837 0.6230 0.5290 0.047* 0.482 (8)
C29A 0.0882 (11) 0.5285 (10) 0.4680 (7) 0.036 (2) 0.482 (8)
H29A −0.0009 0.5355 0.4988 0.043* 0.482 (8)
C30A 0.1120 (10) 0.4651 (10) 0.4023 (7) 0.033 (2) 0.482 (8)
H30A 0.0377 0.4348 0.3852 0.039* 0.482 (8)
C26B 0.2438 (11) 0.5670 (9) 0.3417 (7) 0.036 (2) 0.518 (8)
H26B 0.2253 0.6210 0.2817 0.043* 0.518 (8)
C27B 0.2385 (13) 0.6253 (10) 0.4094 (7) 0.042 (2) 0.518 (8)
H27B 0.1975 0.7120 0.3987 0.050* 0.518 (8)
C28B 0.2962 (14) 0.5497 (11) 0.4922 (9) 0.036 (2) 0.518 (8)
H28B 0.2954 0.5868 0.5377 0.044* 0.518 (8)
C29B 0.3554 (10) 0.4201 (10) 0.5098 (6) 0.037 (2) 0.518 (8)
H29B 0.3949 0.3715 0.5661 0.044* 0.518 (8)
C30B 0.3556 (10) 0.3630 (10) 0.4433 (6) 0.034 (2) 0.518 (8)
H30B 0.4034 0.2793 0.4500 0.041* 0.518 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.02936 (9) 0.02235 (9) 0.02283 (9) −0.00656 (6) −0.00161 (6) −0.00885 (7)
Au2 0.02824 (9) 0.02498 (10) 0.02712 (10) −0.00824 (6) −0.00585 (6) −0.00511 (7)
As1 0.02404 (18) 0.02315 (19) 0.0253 (2) −0.00406 (14) −0.00259 (14) −0.00946 (16)
As2 0.0350 (2) 0.0243 (2) 0.0226 (2) −0.00871 (16) −0.00427 (16) −0.00620 (16)
Cl1 0.0411 (5) 0.0226 (4) 0.0278 (5) −0.0079 (4) −0.0033 (4) −0.0069 (4)
Cl2 0.0305 (5) 0.0361 (5) 0.0298 (5) −0.0092 (4) −0.0030 (4) −0.0116 (4)
C1 0.0263 (18) 0.029 (2) 0.034 (2) −0.0034 (15) −0.0032 (16) −0.0150 (18)
C2 0.0275 (19) 0.032 (2) 0.032 (2) −0.0032 (16) −0.0029 (16) −0.0142 (18)
C3 0.029 (2) 0.053 (3) 0.050 (3) −0.011 (2) −0.0064 (19) −0.026 (3)
C4 0.024 (2) 0.069 (4) 0.075 (4) −0.004 (2) −0.006 (2) −0.046 (3)
C5 0.035 (2) 0.080 (4) 0.072 (4) 0.003 (3) −0.004 (2) −0.058 (4)
C6 0.033 (2) 0.061 (3) 0.053 (3) −0.007 (2) −0.002 (2) −0.039 (3)
C7 0.0267 (18) 0.0243 (19) 0.035 (2) −0.0064 (15) −0.0007 (15) −0.0135 (17)
C8 0.033 (2) 0.027 (2) 0.040 (2) −0.0030 (16) −0.0113 (18) −0.0135 (19)
C9 0.040 (2) 0.040 (3) 0.048 (3) −0.002 (2) −0.013 (2) −0.024 (2)
C10 0.030 (2) 0.039 (3) 0.055 (3) −0.0072 (18) 0.0001 (19) −0.030 (2)
C11 0.036 (2) 0.026 (2) 0.046 (3) −0.0090 (17) 0.0064 (19) −0.016 (2)
C12 0.0281 (19) 0.028 (2) 0.036 (2) −0.0052 (16) 0.0008 (16) −0.0132 (18)
C13 0.0281 (19) 0.028 (2) 0.024 (2) −0.0030 (15) −0.0063 (15) −0.0047 (16)
C14 0.0244 (19) 0.053 (3) 0.024 (2) −0.0065 (18) −0.0038 (15) −0.010 (2)
C15 0.036 (2) 0.065 (3) 0.027 (2) −0.022 (2) −0.0001 (18) −0.013 (2)
C16 0.037 (2) 0.039 (2) 0.024 (2) −0.0124 (19) −0.0035 (16) −0.0068 (18)
C17 0.030 (2) 0.043 (3) 0.029 (2) −0.0099 (18) −0.0066 (17) −0.002 (2)
C18 0.031 (2) 0.031 (2) 0.032 (2) −0.0022 (16) 0.0019 (17) −0.0061 (18)
C19 0.037 (2) 0.025 (2) 0.0221 (19) −0.0090 (16) −0.0050 (16) −0.0045 (16)
C20 0.031 (2) 0.031 (2) 0.035 (2) −0.0039 (17) −0.0010 (17) −0.0074 (19)
C21 0.038 (2) 0.034 (2) 0.033 (2) −0.0120 (19) 0.0027 (18) −0.0069 (19)
C22 0.046 (3) 0.027 (2) 0.026 (2) −0.0081 (18) −0.0031 (18) −0.0048 (18)
C23 0.036 (2) 0.030 (2) 0.033 (2) −0.0034 (17) −0.0032 (17) −0.0093 (19)
C24 0.035 (2) 0.029 (2) 0.031 (2) −0.0092 (17) −0.0030 (17) −0.0068 (18)
C25 0.113 (5) 0.034 (3) 0.022 (2) −0.035 (3) 0.002 (3) −0.008 (2)
C26A 0.029 (4) 0.040 (5) 0.048 (6) −0.006 (4) −0.003 (4) −0.023 (5)
C27A 0.040 (6) 0.052 (7) 0.049 (8) −0.008 (6) −0.006 (6) −0.030 (7)
C28A 0.060 (8) 0.033 (5) 0.028 (5) −0.008 (5) 0.000 (5) −0.015 (4)
C29A 0.036 (5) 0.038 (5) 0.031 (5) 0.001 (4) 0.001 (4) −0.010 (4)
C30A 0.033 (4) 0.039 (5) 0.031 (5) −0.007 (4) 0.003 (4) −0.018 (4)
C26B 0.049 (5) 0.030 (4) 0.029 (4) −0.006 (4) −0.006 (4) −0.010 (4)
C27B 0.057 (7) 0.035 (5) 0.041 (6) −0.010 (5) 0.004 (5) −0.023 (4)
C28B 0.040 (6) 0.049 (6) 0.031 (6) −0.013 (5) 0.004 (5) −0.025 (5)
C29B 0.042 (5) 0.044 (5) 0.026 (4) −0.012 (4) −0.002 (3) −0.010 (4)
C30B 0.036 (4) 0.035 (5) 0.031 (4) −0.004 (4) −0.005 (3) −0.011 (4)

Geometric parameters (Å, °)

Au1—Cl1 2.3043 (10) C16—C17 1.520 (7)
Au1—As1 2.3411 (4) C16—H16A 0.9700
Au2—Cl2 2.3005 (10) C16—H16B 0.9700
Au2—As2 2.3398 (5) C17—C18 1.524 (7)
As1—C13 1.929 (4) C17—H17A 0.9700
As1—C1 1.930 (4) C17—H17B 0.9700
As1—C7 1.937 (4) C18—H18A 0.9700
As2—C19 1.925 (4) C18—H18B 0.9700
As2—C25 1.931 (5) C19—C24 1.400 (6)
As2—C18 1.940 (4) C19—C20 1.403 (6)
C1—C2 1.392 (6) C20—C21 1.380 (7)
C1—C6 1.394 (6) C20—H20A 0.9300
C2—C3 1.393 (6) C21—C22 1.399 (7)
C2—H2A 0.9300 C21—H21A 0.9300
C3—C4 1.382 (8) C22—C23 1.387 (7)
C3—H3A 0.9300 C22—H22A 0.9300
C4—C5 1.390 (7) C23—C24 1.388 (7)
C4—H4A 0.9300 C23—H23A 0.9300
C5—C6 1.384 (7) C24—H24A 0.9300
C5—H5A 0.9300 C25—C26A 1.240 (11)
C6—H6A 0.9300 C25—C26B 1.251 (11)
C7—C8 1.373 (6) C25—C30B 1.537 (11)
C7—C12 1.400 (6) C25—C30A 1.611 (12)
C8—C9 1.402 (6) C26A—C27A 1.398 (16)
C8—H8A 0.9300 C26A—H26A 0.9300
C9—C10 1.389 (8) C27A—C28A 1.351 (18)
C9—H9A 0.9300 C27A—H27A 0.9300
C10—C11 1.374 (8) C28A—C29A 1.375 (16)
C10—H10A 0.9300 C28A—H28A 0.9300
C11—C12 1.401 (6) C29A—C30A 1.404 (13)
C11—H11A 0.9300 C29A—H29A 0.9300
C12—H12A 0.9300 C30A—H30A 0.9300
C13—C14 1.524 (6) C26B—C27B 1.403 (12)
C13—H13A 0.9700 C26B—H26B 0.9300
C13—H13B 0.9700 C27B—C28B 1.376 (17)
C14—C15 1.530 (6) C27B—H27B 0.9300
C14—H14A 0.9700 C28B—C29B 1.383 (16)
C14—H14B 0.9700 C28B—H28B 0.9300
C15—C16 1.523 (6) C29B—C30B 1.383 (13)
C15—H15A 0.9700 C29B—H29B 0.9300
C15—H15B 0.9700 C30B—H30B 0.9300
Cl1—Au1—As1 174.77 (3) C15—C16—H16B 109.2
Cl2—Au2—As2 175.14 (3) H16A—C16—H16B 107.9
C13—As1—C1 103.67 (19) C16—C17—C18 114.4 (4)
C13—As1—C7 104.75 (18) C16—C17—H17A 108.7
C1—As1—C7 105.48 (17) C18—C17—H17A 108.7
C13—As1—Au1 115.15 (13) C16—C17—H17B 108.7
C1—As1—Au1 114.54 (14) C18—C17—H17B 108.7
C7—As1—Au1 112.21 (14) H17A—C17—H17B 107.6
C19—As2—C25 102.5 (2) C17—C18—As2 115.9 (3)
C19—As2—C18 107.7 (2) C17—C18—H18A 108.3
C25—As2—C18 101.2 (3) As2—C18—H18A 108.3
C19—As2—Au2 110.57 (14) C17—C18—H18B 108.3
C25—As2—Au2 117.1 (2) As2—C18—H18B 108.3
C18—As2—Au2 116.39 (14) H18A—C18—H18B 107.4
C2—C1—C6 120.8 (4) C24—C19—C20 119.4 (4)
C2—C1—As1 117.3 (3) C24—C19—As2 118.0 (3)
C6—C1—As1 121.8 (3) C20—C19—As2 122.6 (3)
C1—C2—C3 119.1 (4) C21—C20—C19 119.7 (4)
C1—C2—H2A 120.5 C21—C20—H20A 120.1
C3—C2—H2A 120.5 C19—C20—H20A 120.1
C4—C3—C2 120.4 (4) C20—C21—C22 120.5 (4)
C4—C3—H3A 119.8 C20—C21—H21A 119.7
C2—C3—H3A 119.8 C22—C21—H21A 119.7
C3—C4—C5 120.1 (5) C23—C22—C21 120.1 (4)
C3—C4—H4A 120.0 C23—C22—H22A 120.0
C5—C4—H4A 120.0 C21—C22—H22A 120.0
C6—C5—C4 120.3 (5) C22—C23—C24 119.7 (4)
C6—C5—H5A 119.8 C22—C23—H23A 120.2
C4—C5—H5A 119.8 C24—C23—H23A 120.2
C5—C6—C1 119.3 (4) C23—C24—C19 120.6 (4)
C5—C6—H6A 120.3 C23—C24—H24A 119.7
C1—C6—H6A 120.3 C19—C24—H24A 119.7
C8—C7—C12 120.5 (4) C26A—C25—C26B 59.0 (7)
C8—C7—As1 118.9 (3) C26A—C25—C30B 66.8 (7)
C12—C7—As1 120.6 (3) C26B—C25—C30B 117.9 (7)
C7—C8—C9 120.1 (4) C26A—C25—C30A 113.6 (7)
C7—C8—H8A 120.0 C26B—C25—C30A 76.6 (7)
C9—C8—H8A 120.0 C30B—C25—C30A 101.0 (6)
C10—C9—C8 119.5 (5) C26A—C25—As2 130.7 (7)
C10—C9—H9A 120.2 C26B—C25—As2 124.9 (6)
C8—C9—H9A 120.2 C30B—C25—As2 112.5 (5)
C11—C10—C9 120.6 (4) C30A—C25—As2 114.6 (5)
C11—C10—H10A 119.7 C25—C26A—C27A 127.1 (10)
C9—C10—H10A 119.7 C25—C26A—H26A 116.5
C10—C11—C12 120.2 (5) C27A—C26A—H26A 116.5
C10—C11—H11A 119.9 C28A—C27A—C26A 120.3 (10)
C12—C11—H11A 119.9 C28A—C27A—H27A 119.9
C7—C12—C11 119.1 (4) C26A—C27A—H27A 119.9
C7—C12—H12A 120.5 C27A—C28A—C29A 121.6 (9)
C11—C12—H12A 120.5 C27A—C28A—H28A 119.2
C14—C13—As1 110.6 (3) C29A—C28A—H28A 119.2
C14—C13—H13A 109.5 C28A—C29A—C30A 118.7 (9)
As1—C13—H13A 109.5 C28A—C29A—H29A 120.6
C14—C13—H13B 109.5 C30A—C29A—H29A 120.6
As1—C13—H13B 109.5 C29A—C30A—C25 118.1 (8)
H13A—C13—H13B 108.1 C29A—C30A—H30A 121.0
C13—C14—C15 114.2 (4) C25—C30A—H30A 121.0
C13—C14—H14A 108.7 C25—C26B—C27B 123.6 (9)
C15—C14—H14A 108.7 C25—C26B—H26B 118.2
C13—C14—H14B 108.7 C27B—C26B—H26B 118.2
C15—C14—H14B 108.7 C28B—C27B—C26B 117.6 (10)
H14A—C14—H14B 107.6 C28B—C27B—H27B 121.2
C16—C15—C14 115.4 (4) C26B—C27B—H27B 121.2
C16—C15—H15A 108.4 C27B—C28B—C29B 122.0 (10)
C14—C15—H15A 108.4 C27B—C28B—H28B 119.0
C16—C15—H15B 108.4 C29B—C28B—H28B 119.0
C14—C15—H15B 108.4 C30B—C29B—C28B 119.7 (9)
H15A—C15—H15B 107.5 C30B—C29B—H29B 120.2
C17—C16—C15 111.8 (4) C28B—C29B—H29B 120.2
C17—C16—H16A 109.2 C29B—C30B—C25 116.0 (8)
C15—C16—H16A 109.2 C29B—C30B—H30B 122.0
C17—C16—H16B 109.2 C25—C30B—H30B 122.0
C13—As1—C1—C2 −51.8 (4) C24—C19—C20—C21 −1.1 (7)
C7—As1—C1—C2 −161.6 (4) As2—C19—C20—C21 −178.0 (4)
Au1—As1—C1—C2 74.5 (4) C19—C20—C21—C22 2.0 (7)
C13—As1—C1—C6 132.9 (5) C20—C21—C22—C23 −1.4 (7)
C7—As1—C1—C6 23.0 (5) C21—C22—C23—C24 0.1 (7)
Au1—As1—C1—C6 −100.9 (4) C22—C23—C24—C19 0.8 (7)
C6—C1—C2—C3 0.1 (8) C20—C19—C24—C23 −0.2 (7)
As1—C1—C2—C3 −175.2 (4) As2—C19—C24—C23 176.8 (3)
C1—C2—C3—C4 0.5 (8) C19—As2—C25—C26A 111.1 (9)
C2—C3—C4—C5 −1.5 (10) C18—As2—C25—C26A −137.7 (9)
C3—C4—C5—C6 1.9 (12) Au2—As2—C25—C26A −10.1 (9)
C4—C5—C6—C1 −1.2 (11) C19—As2—C25—C26B −172.1 (8)
C2—C1—C6—C5 0.3 (9) C18—As2—C25—C26B −60.9 (8)
As1—C1—C6—C5 175.4 (5) Au2—As2—C25—C26B 66.7 (9)
C13—As1—C7—C8 128.8 (4) C19—As2—C25—C30B 33.0 (6)
C1—As1—C7—C8 −122.1 (4) C18—As2—C25—C30B 144.2 (5)
Au1—As1—C7—C8 3.2 (4) Au2—As2—C25—C30B −88.2 (5)
C13—As1—C7—C12 −51.0 (4) C19—As2—C25—C30A −81.7 (6)
C1—As1—C7—C12 58.0 (4) C18—As2—C25—C30A 29.6 (6)
Au1—As1—C7—C12 −176.6 (3) Au2—As2—C25—C30A 157.2 (5)
C12—C7—C8—C9 −0.5 (7) C26B—C25—C26A—C27A 64.7 (13)
As1—C7—C8—C9 179.6 (4) C30B—C25—C26A—C27A −83.6 (14)
C7—C8—C9—C10 0.0 (7) C30A—C25—C26A—C27A 8.7 (16)
C8—C9—C10—C11 0.5 (8) As2—C25—C26A—C27A 176.0 (10)
C9—C10—C11—C12 −0.5 (7) C25—C26A—C27A—C28A −5(2)
C8—C7—C12—C11 0.5 (6) C26A—C27A—C28A—C29A 0(2)
As1—C7—C12—C11 −179.6 (3) C27A—C28A—C29A—C30A −0.6 (18)
C10—C11—C12—C7 0.0 (7) C28A—C29A—C30A—C25 4.8 (15)
C1—As1—C13—C14 −179.7 (3) C26A—C25—C30A—C29A −8.6 (13)
C7—As1—C13—C14 −69.3 (4) C26B—C25—C30A—C29A −55.6 (10)
Au1—As1—C13—C14 54.4 (3) C30B—C25—C30A—C29A 60.7 (10)
As1—C13—C14—C15 168.3 (3) As2—C25—C30A—C29A −178.1 (7)
C13—C14—C15—C16 60.8 (7) C26A—C25—C26B—C27B −55.6 (11)
C14—C15—C16—C17 61.3 (6) C30B—C25—C26B—C27B −22.5 (14)
C15—C16—C17—C18 165.4 (4) C30A—C25—C26B—C27B 73.0 (11)
C16—C17—C18—As2 61.0 (5) As2—C25—C26B—C27B −176.2 (8)
C19—As2—C18—C17 −80.8 (4) C25—C26B—C27B—C28B 14.1 (17)
C25—As2—C18—C17 172.0 (4) C26B—C27B—C28B—C29B −1.1 (18)
Au2—As2—C18—C17 44.0 (4) C27B—C28B—C29B—C30B −0.9 (17)
C25—As2—C19—C24 −104.7 (4) C28B—C29B—C30B—C25 −7.1 (13)
C18—As2—C19—C24 149.0 (3) C26A—C25—C30B—C29B 49.4 (9)
Au2—As2—C19—C24 20.8 (4) C26B—C25—C30B—C29B 18.8 (12)
C25—As2—C19—C20 72.2 (4) C30A—C25—C30B—C29B −61.8 (9)
C18—As2—C19—C20 −34.1 (4) As2—C25—C30B—C29B 175.6 (6)
Au2—As2—C19—C20 −162.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17B···Cl2i 0.97 2.79 3.754 (5) 172
C18—H18A···Cl1ii 0.97 2.80 3.701 (5) 155

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2685).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Francis, C. P. (1901). J. Am. Chem. Soc. 23, 250–258.
  5. Hill, W. E., Minahan, D. M. A. & McAuliffe, C. A. (1983). Inorg. Chem. 22, 3382–3387.
  6. Parish, R. & Cottrill, S. M. (1987). Gold Bull. 20, 3–12.
  7. Shawkataly, O. bin, Khan, I. A., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2591–o2592. [DOI] [PMC free article] [PubMed]
  8. Shawkataly, O. bin, Tariq, A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m1535–m1536. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tiekink, E. R. T. (2002). Crit. Rev. Oncol. Hematol. 42, 225–248. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811008646/is2685sup1.cif

e-67-0m427-sup1.cif (28.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008646/is2685Isup2.hkl

e-67-0m427-Isup2.hkl (364.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES