Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 5;67(Pt 4):o775. doi: 10.1107/S1600536811007422

1-Methyl-5-phen­oxy-3-trifluoro­methyl-1H-pyrazole-4-carbaldehyde oxime

Hong Dai a,b, Wen-Ke Miao a, Shan-Shan Wu a, Xue Qin a, Jian-Xin Fang a,*
PMCID: PMC3100010  PMID: 21754067

Abstract

In the title compound, C12H10F3N3O2, the dihedral angle between the phenyl and pyrazole rings is 96.6 (3)°. In the crystal, pairs of O—H⋯N hydrogen bonds link the mol­ecules, forming inversion dimers. Weak inter­molecular C—H⋯F hydrogen bonds are also observed.

Related literature

For the biological activity of pyrazole-4-carbaldehyde oxime ether derivatives, see: Hamaguchi et al. (1995); Motoba et al. (1992).graphic file with name e-67-0o775-scheme1.jpg

Experimental

Crystal data

  • C12H10F3N3O2

  • M r = 285.23

  • Monoclinic, Inline graphic

  • a = 7.5221 (15) Å

  • b = 18.282 (4) Å

  • c = 9.1002 (18) Å

  • β = 90.58 (3)°

  • V = 1251.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 113 K

  • 0.24 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.968, T max = 0.981

  • 7050 measured reflections

  • 2185 independent reflections

  • 1910 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.101

  • S = 1.06

  • 2185 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007422/is2677sup1.cif

e-67-0o775-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007422/is2677Isup2.hkl

e-67-0o775-Isup2.hkl (107.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯F1i 0.93 2.54 3.147 (2) 123
O2—H2⋯N3ii 0.82 2.11 2.819 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20772068), the Science and Technology Projects Fund of Nantong City (grant Nos. K2010016, AS2010005), the Science Foundation of Nantong University (grant Nos. 09Z010, 09C001) and the Scientific Research Foundation for Talent Introduction of Nantong University.

supplementary crystallographic information

Comment

The pyrazole oxime unit plays an important role in many biologically active compounds. A large number of pyrazole oxime derivatives are well acknowledged to possess fungicidal, insecticidal, and acaricidal activities (Hamaguchi et al., 1995). For example, fenpyroximate, a commercial acaricide, has been widely used for the control of mites on many crops (Motoba et al., 1992).

The title compound, (I), is an important intermediate for agrochemicals and drugs. It contains two planes, the pyrazole ring (N2/N1/C2–C4) and the phenyl ring (C5–C10) (Fig. 1). The dihedral angle between the phenyl ring and the pyrazole ring is 96.6 (3)°. In the crystal structure, the molecules are linked by intermolecular C—H···F and O—H···N hydrogen bonds (Table 1 and Fig. 2).

Experimental

To a stirred solution of hydroxylamine hydrochloride (7.5 mmol) and potassium hydroxide (10 mmol) in ethanol (30 ml), was added 1-methyl-3-(trifluoromethyl)-5-phenoxy-1H-pyrazole-4-carbaldehyde (5 mmol) at room temperature. The resulting mixture was heated to reflux for 3 h. The reaction mixture was poured into water (150 ml) and extracted with ethyl acetate (3 × 40 ml). The organic layer was washed with saturated brine (3 × 20 ml), and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, then the residue was recrystallized from ethyl acetate to give colourless crystals.

Refinement

All H atoms were placed in calculated positions, with O—H = 0.82 Å, C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methylC).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewed along the a axis, with hydrogen bonds drawn as dashed lines.

Crystal data

C12H10F3N3O2 F(000) = 584
Mr = 285.23 Dx = 1.514 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3687 reflections
a = 7.5221 (15) Å θ = 2.2–27.9°
b = 18.282 (4) Å µ = 0.14 mm1
c = 9.1002 (18) Å T = 113 K
β = 90.58 (3)° Monoclinic, colourless
V = 1251.4 (4) Å3 0.24 × 0.16 × 0.14 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 2185 independent reflections
Radiation source: fine-focus sealed tube 1910 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.968, Tmax = 0.981 k = −21→21
7050 measured reflections l = −7→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3152P] where P = (Fo2 + 2Fc2)/3
2185 reflections (Δ/σ)max = 0.002
183 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.51229 (15) 0.68729 (6) 0.18505 (12) 0.0482 (3)
F2 0.78938 (15) 0.68491 (7) 0.24060 (12) 0.0473 (3)
F3 0.65809 (15) 0.58843 (5) 0.16378 (11) 0.0372 (3)
O1 0.36787 (14) 0.56226 (6) 0.71364 (11) 0.0222 (3)
O2 0.02826 (15) 0.51556 (7) 0.32441 (12) 0.0296 (3)
H2 −0.0560 0.4964 0.3661 0.044*
N1 0.70823 (17) 0.64542 (7) 0.51151 (15) 0.0248 (3)
N2 0.62765 (17) 0.62190 (7) 0.63485 (14) 0.0228 (3)
N3 0.15547 (16) 0.53763 (7) 0.42921 (14) 0.0220 (3)
C1 0.6393 (2) 0.64718 (9) 0.24941 (18) 0.0242 (4)
C2 0.59492 (19) 0.62818 (8) 0.40404 (17) 0.0203 (3)
C3 0.43940 (19) 0.59357 (8) 0.45480 (16) 0.0184 (3)
C4 0.46821 (19) 0.59138 (8) 0.60477 (16) 0.0189 (3)
C5 0.26932 (19) 0.61152 (8) 0.79966 (16) 0.0190 (3)
C6 0.1903 (2) 0.58217 (9) 0.92258 (16) 0.0217 (3)
H6 0.2044 0.5329 0.9455 0.026*
C7 0.0894 (2) 0.62741 (9) 1.01145 (16) 0.0242 (4)
H7 0.0346 0.6083 1.0941 0.029*
C8 0.0696 (2) 0.70110 (9) 0.97772 (17) 0.0237 (4)
H8 0.0027 0.7314 1.0378 0.028*
C9 0.1506 (2) 0.72911 (8) 0.85367 (18) 0.0244 (4)
H9 0.1377 0.7784 0.8309 0.029*
C10 0.2506 (2) 0.68442 (8) 0.76298 (17) 0.0216 (3)
H10 0.3040 0.7032 0.6793 0.026*
C11 0.2899 (2) 0.56673 (8) 0.36830 (16) 0.0201 (3)
H11 0.2922 0.5709 0.2665 0.024*
C12 0.7152 (2) 0.62954 (10) 0.77800 (19) 0.0334 (4)
H12A 0.6683 0.6715 0.8278 0.050*
H12B 0.8407 0.6356 0.7646 0.050*
H12C 0.6940 0.5865 0.8356 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0497 (7) 0.0564 (7) 0.0389 (6) 0.0268 (6) 0.0204 (5) 0.0248 (5)
F2 0.0449 (7) 0.0558 (7) 0.0417 (7) −0.0275 (5) 0.0218 (5) −0.0041 (5)
F3 0.0598 (7) 0.0258 (5) 0.0262 (5) 0.0001 (5) 0.0137 (5) −0.0028 (4)
O1 0.0292 (6) 0.0187 (5) 0.0188 (6) 0.0001 (4) 0.0072 (5) 0.0010 (4)
O2 0.0249 (6) 0.0424 (7) 0.0216 (6) −0.0154 (5) −0.0038 (5) 0.0028 (5)
N1 0.0202 (7) 0.0250 (7) 0.0294 (7) −0.0026 (5) 0.0054 (6) −0.0023 (6)
N2 0.0210 (7) 0.0247 (7) 0.0227 (7) −0.0007 (5) 0.0001 (5) −0.0020 (5)
N3 0.0208 (7) 0.0241 (7) 0.0210 (7) −0.0045 (5) −0.0018 (5) 0.0003 (5)
C1 0.0220 (8) 0.0214 (8) 0.0293 (8) −0.0004 (6) 0.0094 (7) 0.0001 (7)
C2 0.0186 (7) 0.0174 (7) 0.0251 (8) 0.0001 (6) 0.0059 (6) −0.0011 (6)
C3 0.0184 (7) 0.0171 (7) 0.0196 (8) 0.0006 (6) 0.0046 (6) 0.0006 (6)
C4 0.0196 (7) 0.0169 (7) 0.0204 (8) −0.0005 (6) 0.0033 (6) 0.0001 (6)
C5 0.0187 (7) 0.0222 (8) 0.0162 (7) −0.0012 (6) −0.0012 (6) −0.0027 (6)
C6 0.0238 (8) 0.0228 (8) 0.0186 (8) −0.0015 (6) −0.0007 (6) 0.0035 (6)
C7 0.0223 (8) 0.0346 (9) 0.0158 (7) −0.0019 (7) 0.0016 (6) 0.0022 (7)
C8 0.0204 (8) 0.0313 (9) 0.0194 (8) 0.0002 (6) 0.0008 (6) −0.0061 (7)
C9 0.0260 (8) 0.0199 (8) 0.0274 (9) −0.0018 (6) 0.0011 (7) −0.0007 (6)
C10 0.0239 (8) 0.0227 (8) 0.0183 (8) −0.0033 (6) 0.0026 (6) 0.0021 (6)
C11 0.0226 (8) 0.0211 (7) 0.0167 (7) −0.0022 (6) 0.0028 (6) 0.0016 (6)
C12 0.0325 (9) 0.0381 (10) 0.0295 (9) −0.0027 (8) −0.0106 (7) −0.0037 (8)

Geometric parameters (Å, °)

F1—C1 1.3350 (19) C5—C6 1.381 (2)
F2—C1 1.3260 (19) C5—C10 1.381 (2)
F3—C1 1.3354 (19) C6—C7 1.388 (2)
O1—C4 1.3601 (18) C6—H6 0.9300
O1—C5 1.4089 (18) C7—C8 1.389 (2)
O2—N3 1.4034 (17) C7—H7 0.9300
O2—H2 0.8200 C8—C9 1.386 (2)
N1—C2 1.329 (2) C8—H8 0.9300
N1—N2 1.3512 (19) C9—C10 1.388 (2)
N2—C4 1.348 (2) C9—H9 0.9300
N2—C12 1.460 (2) C10—H10 0.9300
N3—C11 1.274 (2) C11—H11 0.9300
C1—C2 1.491 (2) C12—H12A 0.9600
C2—C3 1.412 (2) C12—H12B 0.9600
C3—C4 1.380 (2) C12—H12C 0.9600
C3—C11 1.452 (2)
C4—O1—C5 116.97 (11) C5—C6—C7 118.88 (14)
N3—O2—H2 109.5 C5—C6—H6 120.6
C2—N1—N2 104.25 (12) C7—C6—H6 120.6
C4—N2—N1 111.62 (13) C6—C7—C8 120.46 (14)
C4—N2—C12 127.78 (14) C6—C7—H7 119.8
N1—N2—C12 120.58 (13) C8—C7—H7 119.8
C11—N3—O2 111.28 (12) C9—C8—C7 119.43 (15)
F2—C1—F1 107.08 (14) C9—C8—H8 120.3
F2—C1—F3 106.74 (13) C7—C8—H8 120.3
F1—C1—F3 105.38 (14) C8—C9—C10 120.79 (15)
F2—C1—C2 112.16 (14) C8—C9—H9 119.6
F1—C1—C2 112.09 (13) C10—C9—H9 119.6
F3—C1—C2 112.92 (13) C5—C10—C9 118.60 (14)
N1—C2—C3 113.14 (14) C5—C10—H10 120.7
N1—C2—C1 119.44 (13) C9—C10—H10 120.7
C3—C2—C1 127.41 (14) N3—C11—C3 121.26 (14)
C4—C3—C2 102.36 (13) N3—C11—H11 119.4
C4—C3—C11 129.75 (14) C3—C11—H11 119.4
C2—C3—C11 127.89 (14) N2—C12—H12A 109.5
N2—C4—O1 120.87 (13) N2—C12—H12B 109.5
N2—C4—C3 108.62 (13) H12A—C12—H12B 109.5
O1—C4—C3 130.46 (13) N2—C12—H12C 109.5
C6—C5—C10 121.83 (14) H12A—C12—H12C 109.5
C6—C5—O1 115.79 (13) H12B—C12—H12C 109.5
C10—C5—O1 122.38 (13)
C2—N1—N2—C4 −0.42 (16) C5—O1—C4—C3 −103.49 (18)
C2—N1—N2—C12 178.30 (14) C2—C3—C4—N2 −0.38 (16)
N2—N1—C2—C3 0.17 (17) C11—C3—C4—N2 178.89 (15)
N2—N1—C2—C1 179.17 (13) C2—C3—C4—O1 −177.58 (14)
F2—C1—C2—N1 −4.1 (2) C11—C3—C4—O1 1.7 (3)
F1—C1—C2—N1 −124.64 (15) C4—O1—C5—C6 −170.60 (13)
F3—C1—C2—N1 116.52 (16) C4—O1—C5—C10 10.2 (2)
F2—C1—C2—C3 174.70 (14) C10—C5—C6—C7 0.0 (2)
F1—C1—C2—C3 54.2 (2) O1—C5—C6—C7 −179.25 (12)
F3—C1—C2—C3 −64.6 (2) C5—C6—C7—C8 −0.5 (2)
N1—C2—C3—C4 0.13 (17) C6—C7—C8—C9 0.5 (2)
C1—C2—C3—C4 −178.78 (15) C7—C8—C9—C10 0.1 (2)
N1—C2—C3—C11 −179.16 (14) C6—C5—C10—C9 0.6 (2)
C1—C2—C3—C11 1.9 (3) O1—C5—C10—C9 179.76 (13)
N1—N2—C4—O1 178.05 (12) C8—C9—C10—C5 −0.6 (2)
C12—N2—C4—O1 −0.6 (2) O2—N3—C11—C3 −179.74 (13)
N1—N2—C4—C3 0.52 (17) C4—C3—C11—N3 2.3 (3)
C12—N2—C4—C3 −178.08 (15) C2—C3—C11—N3 −178.62 (15)
C5—O1—C4—N2 79.59 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···F1i 0.93 2.54 3.147 (2) 123
O2—H2···N3ii 0.82 2.11 2.819 (2) 145

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2677).

References

  1. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hamaguchi, H., Kajihara, O. & Katoh, M. (1995). J. Pestic. Sci. 20, 173–175.
  4. Motoba, K., Suzuki, T. & Uchida, M. (1992). Pestic. Biochem. Physiol. 43, 37–44.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811007422/is2677sup1.cif

e-67-0o775-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007422/is2677Isup2.hkl

e-67-0o775-Isup2.hkl (107.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES