Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 12;67(Pt 4):o867–o868. doi: 10.1107/S1600536811008610

1-Methyl-2-[(E)-2,4,5-trimeth­oxy­styr­yl]pyridinium 4-meth­oxy­benzene­sulfonate monohydrate

Hoong-Kun Fun a,*,, Charoensak Mueangkeaw b, Pumsak Ruanwas b, Suchada Chantrapromma b,§
PMCID: PMC3100012  PMID: 21754147

Abstract

In the title compound, C17H20NO3 +·C7H7O4S·H2O, the cation exists in an E configuration with respect to the C=C bond and is twisted with a dihedral angle of 17.81 (8)° between the pyridinium and benzene rings. The benzene ring of the anion is almost parallel to the pyridinium ring [dihedral angle = 3.45 (9)°], whereas it is inclined to the benzene ring of the cation [dihedral angle = 17.62 (8)°]. The crystal structure is stabilized by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions which link the cations, anions and water mol­ecules into chains along the a axis. π–π inter­actions with centroid–centroid distances of 3.7751 (9) and 3.7920 (11) Å are also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For background to the non-linear optical properties and applications of pyridinium and quinolinium derivatives, see: Chanawanno et al. (2010), Chantrapromma et al. (2010); Fun et al. (2009); Ruanwas et al. (2010); Williams (1984). For related structures, see, Chantrapromma et al. (2007); Mueangkeaw et al. (2010). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).graphic file with name e-67-0o867-scheme1.jpg

Experimental

Crystal data

  • C17H20NO3 +·C7H7O4S·H2O

  • M r = 491.55

  • Triclinic, Inline graphic

  • a = 6.8463 (4) Å

  • b = 10.8855 (5) Å

  • c = 15.8137 (8) Å

  • α = 83.950 (2)°

  • β = 81.355 (2)°

  • γ = 81.140 (2)°

  • V = 1147.14 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.40 × 0.08 × 0.06 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.927, T max = 0.989

  • 20386 measured reflections

  • 5219 independent reflections

  • 4534 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.124

  • S = 1.05

  • 5219 reflections

  • 320 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008610/rz2563sup1.cif

e-67-0o867-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008610/rz2563Isup2.hkl

e-67-0o867-Isup2.hkl (255.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O6 0.80 (3) 2.08 (3) 2.8703 (19) 175 (3)
O1W—H1W1⋯O5i 0.85 (3) 1.98 (3) 2.8233 (19) 173 (2)
C9—H9A⋯O4 0.93 2.53 3.445 (2) 167
C14—H14A⋯O1Wii 0.96 2.32 3.262 (2) 168
C14—H14C⋯O1iii 0.96 2.54 3.487 (2) 168
C16—H16A⋯O7iv 0.96 2.53 3.388 (2) 149
C16—H16B⋯O5iii 0.96 2.54 3.408 (2) 150
C16—H16C⋯O6v 0.96 2.44 3.371 (2) 163
C17—H17C⋯O4iii 0.96 2.47 3.419 (2) 168
C18—H18A⋯O1Wvi 0.93 2.43 3.354 (2) 171
C22—H22A⋯O2iv 0.93 2.36 3.281 (2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

CM thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. Financial support from the Prince of Songkla University is acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Within the frame of our on-going research on non-linear optic (NLO) materials and antibacterial compounds, we have synthesized several pyridinium and quinolinium derivatives, and their NLO properties and antibacterial activities have been reported (Chanawanno et al., 2010; Chantrapromma et al., 2007; Fun et al., 2009; Ruanwas et al., 2010). As part of this research the title pyridinium derivative, (I), was synthesized and its crystal structure is herein reported. The title compound crystallizes in the centrosymmetric triclinic P1 space group and therefore it does not exhibit second order NLO properties (Williams, 1984). In addition, (I) was also tested for antibacterial activities against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, Pseudomonas aeruginosa, Salmonella typhi and Shigella sonnei, and it was found to be inactive.

Fig. 1 shows the asymmetric unit of (I) which consists of a C17H20NO3+ cation, a C7H7O4S- anion and a water solvent molecule. The cation exists in the E configuration with respect to the C6═C7 double bond [1.352 (2) Å] with the torsion angle C5–C6–C7–C8 = -174.98 (16)°. The cation is twisted with the dihedral angle between the pyridinium and benzene rings of 17.81 (8)°. One of the three methoxy substituent of the 2,4,5-trimethoxyphenyl ring is twisted whereas the other two are essentially co-planar with torsion angles of 6.4 (2), 1.7 (2) and 0.7 (2)° for C15–O1–C10–C9, C16–O2–C11–C12 and C17–O3–C13–C12, respectively. The methyl groups of two methoxy substituents at atoms C11 and C13 point toward whereas at atoms C10 and C11 point away from each other (Fig. 1) due to the steric effect of their positions. In the anion, the methoxy group is co-planar with the benzene ring forming a torsion angle C24–O7–C23–C18 = 1.2 (2)°. The benzene ring of the anion is almost parallel to the pyridinium ring (dihedral angle 3.45 (9)°), whereas it is inclined to the benzene ring of the cation at 17.62 (8)°. The bond lengths of (I) are in normal ranges (Allen et al., 1987) and comparable to those found in related structures (Chantrapromma et al., 2010; Mueangkeaw et al., 2010).

In the crystal packing, the cations are linked to both anions and water molecules by weak C—H···O interactions, and the anions are linked to water molecules by O—H···O hydrogen bonds to form chains along the a axis (Table 1, Fig. 2). π–π interactions are observed with centroid-to-centroid distances Cg1···Cg2i = 3.7920 (11) Å and Cg3···Cg3ii = 3.775 (9) Å; Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C5, C18–C23 and C8–C13 rings, respectively (symmetry codes: (i) x, -1+y, z; (ii) = 2-x, -y, 1-z).

Experimental

1-Methyl-2-[(E)-2,4,5-trimethoxystyryl]pyridinium iodide (compound A) was prepared according to the previously reported method (Mueangkeaw et al.,2010). Silver(I) 4-methoxybenzenesulfonate (compound B) was synthesized by following the previous procedure (Chantrapromma et al.,2007). The title compound was prepared by mixing a 1:1 molar ratio of compound A (0.100 g, 0.24 mmol) and compound B (0.071 g, 0.24 mmol) in hot CH3OH (50 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for ca. 30 min, the precipitate was removed and the resulting solution was evaporated yielding an orange viscous oil. Orange needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from DMSO by slow evaporation at room temperature over a few weeks, M.p. 453-454 K.

Refinement

Water H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.75 Å from O6 and the deepest hole is located at 0.75 Å from S1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed approximately down the c-axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H20NO3+·C7H7O4S·H2O Z = 2
Mr = 491.55 F(000) = 520
Triclinic, P1 Dx = 1.423 Mg m3
Hall symbol: -P 1 Melting point = 453–454 K
a = 6.8463 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.8855 (5) Å Cell parameters from 5219 reflections
c = 15.8137 (8) Å θ = 1.9–27.5°
α = 83.950 (2)° µ = 0.19 mm1
β = 81.355 (2)° T = 100 K
γ = 81.140 (2)° Needle, orange
V = 1147.14 (10) Å3 0.40 × 0.08 × 0.06 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 5219 independent reflections
Radiation source: sealed tube 4534 reflections with I > 2σ(I)
graphite Rint = 0.044
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.927, Tmax = 0.989 k = −14→14
20386 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.7052P] where P = (Fo2 + 2Fc2)/3
5219 reflections (Δ/σ)max = 0.001
320 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.66045 (19) 0.25805 (10) 0.59540 (7) 0.0188 (3)
O2 0.68611 (19) 0.08432 (10) 0.71952 (7) 0.0175 (3)
O3 0.80545 (19) −0.23713 (10) 0.52116 (7) 0.0179 (3)
N1 0.9833 (2) −0.28189 (12) 0.22686 (9) 0.0161 (3)
C1 1.0348 (3) −0.30052 (16) 0.14228 (11) 0.0190 (3)
H1A 1.0992 −0.3781 0.1266 0.023*
C2 0.9938 (3) −0.20721 (16) 0.07975 (11) 0.0206 (4)
H2A 1.0305 −0.2204 0.0220 0.025*
C3 0.8952 (3) −0.09151 (16) 0.10463 (11) 0.0204 (4)
H3A 0.8652 −0.0269 0.0632 0.024*
C4 0.8425 (3) −0.07334 (15) 0.19030 (11) 0.0180 (3)
H4A 0.7758 0.0035 0.2063 0.022*
C5 0.8881 (2) −0.16930 (15) 0.25392 (11) 0.0162 (3)
C6 0.8438 (3) −0.15693 (15) 0.34518 (11) 0.0170 (3)
H6A 0.8501 −0.2293 0.3822 0.020*
C7 0.7939 (2) −0.04592 (15) 0.37962 (10) 0.0156 (3)
H7A 0.7785 0.0241 0.3408 0.019*
C8 0.7615 (2) −0.02274 (14) 0.46947 (10) 0.0146 (3)
C9 0.7239 (2) 0.10386 (14) 0.48848 (10) 0.0151 (3)
H9A 0.7169 0.1661 0.4435 0.018*
C10 0.6973 (2) 0.13751 (14) 0.57154 (10) 0.0145 (3)
C11 0.7094 (2) 0.04381 (14) 0.63954 (10) 0.0146 (3)
C12 0.7439 (2) −0.08119 (14) 0.62344 (10) 0.0157 (3)
H12A 0.7494 −0.1428 0.6688 0.019*
C13 0.7702 (2) −0.11436 (14) 0.53926 (11) 0.0147 (3)
C14 1.0358 (3) −0.38729 (15) 0.29003 (11) 0.0205 (4)
H14A 1.1044 −0.4574 0.2604 0.031*
H14B 0.9164 −0.4098 0.3242 0.031*
H14C 1.1208 −0.3631 0.3266 0.031*
C15 0.6289 (3) 0.35323 (15) 0.52829 (11) 0.0229 (4)
H15A 0.5949 0.4327 0.5519 0.034*
H15B 0.5219 0.3379 0.4997 0.034*
H15C 0.7485 0.3535 0.4879 0.034*
C16 0.7042 (3) −0.00944 (15) 0.79006 (10) 0.0182 (3)
H16A 0.6872 0.0300 0.8427 0.027*
H16B 0.8338 −0.0583 0.7821 0.027*
H16C 0.6036 −0.0627 0.7925 0.027*
C17 0.8118 (3) −0.33027 (15) 0.59227 (11) 0.0205 (4)
H17A 0.8410 −0.4116 0.5713 0.031*
H17B 0.6849 −0.3229 0.6280 0.031*
H17C 0.9137 −0.3187 0.6251 0.031*
S1 0.74248 (6) 0.29952 (4) 0.22553 (3) 0.01886 (12)
O4 0.7780 (2) 0.31567 (12) 0.31164 (9) 0.0316 (3)
O5 0.9172 (2) 0.24169 (11) 0.17148 (9) 0.0286 (3)
O6 0.5690 (2) 0.23666 (11) 0.22522 (9) 0.0247 (3)
O7 0.49664 (19) 0.80352 (10) 0.06333 (8) 0.0205 (3)
C18 0.6572 (3) 0.59021 (15) 0.04644 (11) 0.0181 (3)
H18A 0.6807 0.6042 −0.0130 0.022*
C19 0.7175 (3) 0.47361 (15) 0.08730 (11) 0.0181 (3)
H19A 0.7829 0.4095 0.0546 0.022*
C20 0.6816 (2) 0.45156 (14) 0.17576 (11) 0.0161 (3)
C21 0.5851 (3) 0.54790 (15) 0.22507 (11) 0.0178 (3)
H21A 0.5607 0.5335 0.2845 0.021*
C22 0.5252 (3) 0.66499 (15) 0.18597 (11) 0.0179 (3)
H22A 0.4620 0.7293 0.2189 0.021*
C23 0.5608 (3) 0.68533 (14) 0.09672 (11) 0.0160 (3)
C24 0.5288 (3) 0.82721 (16) −0.02806 (11) 0.0248 (4)
H24A 0.4792 0.9127 −0.0437 0.037*
H24B 0.4596 0.7735 −0.0536 0.037*
H24C 0.6690 0.8113 −0.0482 0.037*
O1W 0.2248 (2) 0.38849 (12) 0.16774 (9) 0.0228 (3)
H2W1 0.320 (5) 0.349 (3) 0.1858 (17) 0.047 (8)*
H1W1 0.134 (4) 0.342 (3) 0.1731 (16) 0.043 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0289 (7) 0.0070 (5) 0.0203 (6) 0.0022 (5) −0.0065 (5) −0.0025 (4)
O2 0.0255 (7) 0.0094 (5) 0.0168 (5) 0.0022 (5) −0.0041 (5) −0.0017 (4)
O3 0.0261 (7) 0.0076 (5) 0.0194 (6) 0.0010 (5) −0.0035 (5) −0.0027 (4)
N1 0.0164 (7) 0.0121 (6) 0.0201 (7) 0.0002 (5) −0.0046 (5) −0.0038 (5)
C1 0.0172 (8) 0.0170 (8) 0.0234 (8) −0.0001 (6) −0.0026 (7) −0.0083 (6)
C2 0.0195 (9) 0.0226 (8) 0.0197 (8) −0.0011 (7) −0.0023 (7) −0.0057 (7)
C3 0.0215 (9) 0.0173 (8) 0.0222 (8) −0.0011 (7) −0.0049 (7) −0.0005 (6)
C4 0.0179 (8) 0.0130 (7) 0.0233 (8) −0.0002 (6) −0.0043 (7) −0.0037 (6)
C5 0.0143 (8) 0.0131 (7) 0.0223 (8) −0.0014 (6) −0.0039 (6) −0.0051 (6)
C6 0.0176 (8) 0.0133 (7) 0.0198 (8) 0.0000 (6) −0.0030 (6) −0.0019 (6)
C7 0.0143 (8) 0.0132 (7) 0.0189 (7) 0.0003 (6) −0.0029 (6) −0.0023 (6)
C8 0.0127 (8) 0.0122 (7) 0.0191 (8) 0.0004 (6) −0.0031 (6) −0.0034 (6)
C9 0.0151 (8) 0.0102 (7) 0.0191 (7) 0.0001 (6) −0.0027 (6) 0.0000 (6)
C10 0.0139 (8) 0.0082 (7) 0.0212 (8) 0.0018 (6) −0.0037 (6) −0.0034 (6)
C11 0.0140 (8) 0.0114 (7) 0.0179 (7) 0.0020 (6) −0.0023 (6) −0.0037 (6)
C12 0.0177 (8) 0.0099 (7) 0.0187 (8) 0.0003 (6) −0.0032 (6) −0.0003 (6)
C13 0.0130 (8) 0.0076 (7) 0.0234 (8) 0.0008 (6) −0.0026 (6) −0.0037 (6)
C14 0.0265 (10) 0.0130 (7) 0.0211 (8) 0.0038 (7) −0.0058 (7) −0.0028 (6)
C15 0.0365 (11) 0.0087 (7) 0.0243 (8) −0.0006 (7) −0.0105 (8) −0.0002 (6)
C16 0.0240 (9) 0.0128 (7) 0.0171 (7) 0.0008 (6) −0.0046 (7) −0.0007 (6)
C17 0.0281 (10) 0.0094 (7) 0.0237 (8) 0.0011 (6) −0.0068 (7) −0.0005 (6)
S1 0.0190 (2) 0.01144 (19) 0.0263 (2) −0.00110 (15) −0.00810 (17) 0.00317 (15)
O4 0.0422 (9) 0.0235 (7) 0.0317 (7) −0.0056 (6) −0.0193 (6) 0.0066 (5)
O5 0.0217 (7) 0.0145 (6) 0.0458 (8) 0.0037 (5) −0.0020 (6) 0.0016 (5)
O6 0.0238 (7) 0.0155 (6) 0.0354 (7) −0.0045 (5) −0.0081 (6) 0.0038 (5)
O7 0.0276 (7) 0.0102 (5) 0.0219 (6) 0.0033 (5) −0.0037 (5) −0.0008 (4)
C18 0.0233 (9) 0.0126 (7) 0.0182 (7) −0.0006 (6) −0.0029 (7) −0.0027 (6)
C19 0.0211 (9) 0.0113 (7) 0.0221 (8) 0.0002 (6) −0.0034 (7) −0.0052 (6)
C20 0.0149 (8) 0.0111 (7) 0.0230 (8) −0.0015 (6) −0.0057 (6) −0.0009 (6)
C21 0.0186 (9) 0.0164 (8) 0.0185 (8) −0.0024 (6) −0.0024 (6) −0.0018 (6)
C22 0.0187 (8) 0.0132 (7) 0.0214 (8) 0.0009 (6) −0.0023 (7) −0.0052 (6)
C23 0.0167 (8) 0.0089 (7) 0.0223 (8) 0.0000 (6) −0.0053 (6) −0.0001 (6)
C24 0.0334 (11) 0.0155 (8) 0.0234 (9) 0.0041 (7) −0.0067 (8) 0.0016 (7)
O1W 0.0200 (7) 0.0185 (6) 0.0297 (7) 0.0000 (6) −0.0035 (6) −0.0046 (5)

Geometric parameters (Å, °)

O1—C10 1.3789 (18) C14—H14C 0.9600
O1—C15 1.4194 (19) C15—H15A 0.9600
O2—C11 1.3620 (19) C15—H15B 0.9600
O2—C16 1.4366 (19) C15—H15C 0.9600
O3—C13 1.3736 (18) C16—H16A 0.9600
O3—C17 1.4335 (19) C16—H16B 0.9600
N1—C1 1.359 (2) C16—H16C 0.9600
N1—C5 1.375 (2) C17—H17A 0.9600
N1—C14 1.477 (2) C17—H17B 0.9600
C1—C2 1.368 (2) C17—H17C 0.9600
C1—H1A 0.9300 S1—O4 1.4518 (14)
C2—C3 1.400 (2) S1—O6 1.4602 (13)
C2—H2A 0.9300 S1—O5 1.4603 (14)
C3—C4 1.376 (2) S1—C20 1.7730 (16)
C3—H3A 0.9300 O7—C23 1.3710 (18)
C4—C5 1.405 (2) O7—C24 1.431 (2)
C4—H4A 0.9300 C18—C23 1.395 (2)
C5—C6 1.446 (2) C18—C19 1.395 (2)
C6—C7 1.352 (2) C18—H18A 0.9300
C6—H6A 0.9300 C19—C20 1.385 (2)
C7—C8 1.448 (2) C19—H19A 0.9300
C7—H7A 0.9300 C20—C21 1.396 (2)
C8—C13 1.409 (2) C21—C22 1.387 (2)
C8—C9 1.418 (2) C21—H21A 0.9300
C9—C10 1.379 (2) C22—C23 1.396 (2)
C9—H9A 0.9300 C22—H22A 0.9300
C10—C11 1.405 (2) C24—H24A 0.9600
C11—C12 1.389 (2) C24—H24B 0.9600
C12—C13 1.394 (2) C24—H24C 0.9600
C12—H12A 0.9300 O1W—H2W1 0.80 (3)
C14—H14A 0.9600 O1W—H1W1 0.84 (3)
C14—H14B 0.9600
C10—O1—C15 115.80 (12) O1—C15—H15A 109.5
C11—O2—C16 116.97 (12) O1—C15—H15B 109.5
C13—O3—C17 117.46 (12) H15A—C15—H15B 109.5
C1—N1—C5 122.06 (14) O1—C15—H15C 109.5
C1—N1—C14 117.55 (13) H15A—C15—H15C 109.5
C5—N1—C14 120.39 (13) H15B—C15—H15C 109.5
N1—C1—C2 121.19 (15) O2—C16—H16A 109.5
N1—C1—H1A 119.4 O2—C16—H16B 109.5
C2—C1—H1A 119.4 H16A—C16—H16B 109.5
C1—C2—C3 118.52 (15) O2—C16—H16C 109.5
C1—C2—H2A 120.7 H16A—C16—H16C 109.5
C3—C2—H2A 120.7 H16B—C16—H16C 109.5
C4—C3—C2 120.05 (16) O3—C17—H17A 109.5
C4—C3—H3A 120.0 O3—C17—H17B 109.5
C2—C3—H3A 120.0 H17A—C17—H17B 109.5
C3—C4—C5 120.90 (15) O3—C17—H17C 109.5
C3—C4—H4A 119.5 H17A—C17—H17C 109.5
C5—C4—H4A 119.5 H17B—C17—H17C 109.5
N1—C5—C4 117.27 (14) O4—S1—O6 112.62 (8)
N1—C5—C6 118.25 (14) O4—S1—O5 114.15 (9)
C4—C5—C6 124.48 (14) O6—S1—O5 111.56 (8)
C7—C6—C5 123.58 (15) O4—S1—C20 106.30 (8)
C7—C6—H6A 118.2 O6—S1—C20 105.60 (7)
C5—C6—H6A 118.2 O5—S1—C20 105.85 (8)
C6—C7—C8 127.96 (15) C23—O7—C24 117.05 (13)
C6—C7—H7A 116.0 C23—C18—C19 118.51 (15)
C8—C7—H7A 116.0 C23—C18—H18A 120.7
C13—C8—C9 117.33 (14) C19—C18—H18A 120.7
C13—C8—C7 125.88 (14) C20—C19—C18 121.16 (15)
C9—C8—C7 116.76 (14) C20—C19—H19A 119.4
C10—C9—C8 122.01 (14) C18—C19—H19A 119.4
C10—C9—H9A 119.0 C19—C20—C21 119.53 (15)
C8—C9—H9A 119.0 C19—C20—S1 120.26 (12)
O1—C10—C9 125.62 (14) C21—C20—S1 120.06 (13)
O1—C10—C11 115.21 (13) C22—C21—C20 120.38 (15)
C9—C10—C11 119.17 (14) C22—C21—H21A 119.8
O2—C11—C12 123.81 (14) C20—C21—H21A 119.8
O2—C11—C10 115.77 (13) C21—C22—C23 119.36 (15)
C12—C11—C10 120.41 (14) C21—C22—H22A 120.3
C11—C12—C13 120.01 (14) C23—C22—H22A 120.3
C11—C12—H12A 120.0 O7—C23—C18 123.36 (15)
C13—C12—H12A 120.0 O7—C23—C22 115.59 (14)
O3—C13—C12 121.44 (14) C18—C23—C22 121.05 (15)
O3—C13—C8 117.52 (14) O7—C24—H24A 109.5
C12—C13—C8 121.04 (14) O7—C24—H24B 109.5
N1—C14—H14A 109.5 H24A—C24—H24B 109.5
N1—C14—H14B 109.5 O7—C24—H24C 109.5
H14A—C14—H14B 109.5 H24A—C24—H24C 109.5
N1—C14—H14C 109.5 H24B—C24—H24C 109.5
H14A—C14—H14C 109.5 H2W1—O1W—H1W1 109 (3)
H14B—C14—H14C 109.5
C5—N1—C1—C2 0.0 (3) O2—C11—C12—C13 −178.62 (15)
C14—N1—C1—C2 −179.20 (16) C10—C11—C12—C13 1.1 (3)
N1—C1—C2—C3 −0.6 (3) C17—O3—C13—C12 0.7 (2)
C1—C2—C3—C4 0.3 (3) C17—O3—C13—C8 −179.24 (14)
C2—C3—C4—C5 0.7 (3) C11—C12—C13—O3 179.71 (15)
C1—N1—C5—C4 0.9 (2) C11—C12—C13—C8 −0.3 (3)
C14—N1—C5—C4 −179.92 (15) C9—C8—C13—O3 179.62 (14)
C1—N1—C5—C6 −178.33 (15) C7—C8—C13—O3 −2.5 (2)
C14—N1—C5—C6 0.8 (2) C9—C8—C13—C12 −0.4 (2)
C3—C4—C5—N1 −1.2 (2) C7—C8—C13—C12 177.53 (16)
C3—C4—C5—C6 177.98 (16) C23—C18—C19—C20 0.5 (3)
N1—C5—C6—C7 164.26 (17) C18—C19—C20—C21 −0.6 (3)
C4—C5—C6—C7 −14.9 (3) C18—C19—C20—S1 175.15 (13)
C5—C6—C7—C8 −174.98 (16) O4—S1—C20—C19 153.77 (14)
C6—C7—C8—C13 −2.2 (3) O6—S1—C20—C19 −86.39 (15)
C6—C7—C8—C9 175.70 (17) O5—S1—C20—C19 32.02 (16)
C13—C8—C9—C10 0.2 (2) O4—S1—C20—C21 −30.55 (17)
C7—C8—C9—C10 −177.85 (15) O6—S1—C20—C21 89.30 (15)
C15—O1—C10—C9 6.4 (2) O5—S1—C20—C21 −152.29 (14)
C15—O1—C10—C11 −174.21 (15) C19—C20—C21—C22 0.0 (3)
C8—C9—C10—O1 179.91 (15) S1—C20—C21—C22 −175.73 (13)
C8—C9—C10—C11 0.6 (3) C20—C21—C22—C23 0.6 (3)
C16—O2—C11—C12 1.7 (2) C24—O7—C23—C18 1.2 (2)
C16—O2—C11—C10 −178.06 (14) C24—O7—C23—C22 −179.31 (15)
O1—C10—C11—O2 −0.9 (2) C19—C18—C23—O7 179.53 (15)
C9—C10—C11—O2 178.52 (15) C19—C18—C23—C22 0.1 (3)
O1—C10—C11—C12 179.34 (15) C21—C22—C23—O7 179.87 (15)
C9—C10—C11—C12 −1.2 (2) C21—C22—C23—C18 −0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W1···O6 0.80 (3) 2.08 (3) 2.8703 (19) 175 (3)
O1W—H1W1···O5i 0.85 (3) 1.98 (3) 2.8233 (19) 173 (2)
C9—H9A···O4 0.93 2.53 3.445 (2) 167
C14—H14A···O1Wii 0.96 2.32 3.262 (2) 168
C14—H14C···O1iii 0.96 2.54 3.487 (2) 168
C16—H16A···O7iv 0.96 2.53 3.388 (2) 149
C16—H16B···O5iii 0.96 2.54 3.408 (2) 150
C16—H16C···O6v 0.96 2.44 3.371 (2) 163
C17—H17C···O4iii 0.96 2.47 3.419 (2) 168
C18—H18A···O1Wvi 0.93 2.43 3.354 (2) 171
C22—H22A···O2iv 0.93 2.36 3.281 (2) 170

Symmetry codes: (i) x−1, y, z; (ii) x+1, y−1, z; (iii) −x+2, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2563).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem 45, 4199–4208. [DOI] [PubMed]
  4. Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976. [DOI] [PMC free article] [PubMed]
  5. Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Anal. Sci 23, x81–x82.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o1934–o1935. [DOI] [PMC free article] [PubMed]
  8. Mueangkeaw, C., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2010). Acta Cryst. E66, o3098–o3099. [DOI] [PMC free article] [PubMed]
  9. Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met 160, 819–824.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl 23, 690–703.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811008610/rz2563sup1.cif

e-67-0o867-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811008610/rz2563Isup2.hkl

e-67-0o867-Isup2.hkl (255.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES