Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 19;67(Pt 4):o912–o913. doi: 10.1107/S160053681100924X

(E)-3-(8-Benz­yloxy-2,3-dihydro-1,4-benzodioxin-6-yl)-1-[2-hy­droxy-4,6-bis­(meth­oxy­meth­oxy)phen­yl]prop-2-en-1-one

Yu Zhang a, Yi-Nan Zhang a, Ming-Ming Liu a, Kum-Chol Ryu b, De-Yong Ye a,*
PMCID: PMC3100013  PMID: 21754185

Abstract

In the title mol­ecule, C28H28O9, the phenol and the benzene rings adjacent to the α,β-unsaturated ketone unit are inclined at 9.15 (13)° to each other. The terminal phenyl ring is oriented with respect to the phenol ring at a dihedral angle of 85.88 (13)°. In the crystal, the methyl­ene C atoms of the dihydro­dioxine ring are disordered over two sites with an occupancy ratio of 0.463 (18):0.537 (18), and both disordered components of the dihydro­dioxine ring adopt twisted-chair conformations. An intra­molecular O—H⋯O hydrogen bond and weak inter­molecular C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For background to 1,3-diaryl-2-propen-1-one, see: Carlo et al. (1999); Dimmock et al. (1999); Go et al. (2005); Nowakowska (2007); Yarishkin et al. (2008). For related structures, see: Özbey et al. (1997); Gao & Ng (2006); Loghmani-Khouzani et al. (2009); Rizvi et al. (2010). For the synthesis, see: Lin et al. (2007).graphic file with name e-67-0o912-scheme1.jpg

Experimental

Crystal data

  • C28H28O9

  • M r = 508.50

  • Triclinic, Inline graphic

  • a = 8.149 (4) Å

  • b = 11.744 (5) Å

  • c = 14.439 (7) Å

  • α = 72.752 (5)°

  • β = 84.269 (5)°

  • γ = 70.601 (5)°

  • V = 1244.7 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.35 × 0.25 × 0.18 mm

Data collection

  • Bruker CCD 1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.965, T max = 0.982

  • 5687 measured reflections

  • 4774 independent reflections

  • 3239 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.195

  • S = 1.02

  • 4774 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100924X/xu5171sup1.cif

e-67-0o912-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100924X/xu5171Isup2.hkl

e-67-0o912-Isup2.hkl (233.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9C⋯O4 0.82 1.71 2.448 (2) 149
C6—H6A⋯O9i 0.93 2.57 3.426 (3) 154
C21—H21A⋯O8ii 0.93 2.53 3.453 (3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors greatly appreciate financial support from the Open Grant of the Institute of Bioscience, Fudan University, China.

supplementary crystallographic information

Comment

1,3-Diaryl-2-propen-1-ones, commonly known as chalcones are a kind of aromatic ketones that form the central core for a variety of important biological compounds, showing anti-bacterial, anti-fungal, anti-malarial, anti-viral, anti-inflammatory, anti-oxidant and anti-tumor properties, which have been reviewed by Carlo et al. (1999), Dimmock et al. (1999), Go et al. (2005) and Nowakowska (2007). Some even demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones can also be converted into flavonoids in several classical synthetic steps, consolidating its significance in synthetic chemistry.

The title compound, i.e. (E)-3-(8-(benzyloxy)-2,3-dihydrobenzo[b][1,4]dioxin-6-yl) -1-(2-hydroxy-4,6-bis(methoxymethyl)phenyl)prop-2-en-1-one, is first prepared aiming to find out potential anti-virus candidates. It is obtained from a dihydrobenzo[b][1,4]dioxine aldehyde derivative and an acetophenone derivative by a classical aldol condensation in the presence of potassium hydroxide as a catalyst (Lin et al., 2007). We now report here the synthesis and crystal structure, as part of our investigations in revealing the relationship between the structure and the anti-virus activity. A series of chalcones related to the title compound is also under investigation for their biological activities in our laboratory.

The title molecule is presented in Fig. 1. The least-square planes of the benzene and phenol rings defined by atoms C3—C8 and C19—C24, respectively, are inclined at 9.15 (13)° with respect to each other. The dihedral angle between the benzyloxy group and the benzene plane is 85.90 (7)°. Both the major and minor conformers of the disordered dioxane ring adopt twist-chair conformations [φ = 193.86 (8)°, θ = 77.63 (16)° (for ring C1—C2—O2—C3—C4—O1), and φ = 184.02 (10)°, θ = 95.1 (2)° (for ring C1'-C2'-O2—C3—C4—O1)], having total puckering amplitudes, QT, of 0.2538 (8) Å and 0.1675 (10) Å, respectively. The crystal structure is stabilized by a strong intramolecular O—H···O hydrogen bond, and further consolidated by the weak intermolecular hydrogen-bonding interactions of the type C—H···O, and Van der Waals forces (Table 1).

Experimental

1-[2-Hydroxy-4,6-bis-(methoxymethyl)-phenyl]-ethanone (1.8 g, 7.0 mmol) and 8-(benzyloxy)-2,3-dihydro-benzo[b][1,4]dioxine-6-carbaldehyde (1.9 g, 7.0 mmol) were dissolved in 95% EtOH, KOH/H2O solution (3M). The reaction mixture was stirred at room temperature overnight, evaporated under reduced pressure, and further extracted by ethyl acetate. The extract layer was chromatographed on silica gel to afford the title compound (3.2 g, yield 90%) as an orange solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate and petroleum ether solution.

Refinement

The methylene C atoms of the dihydrodioxine ring are disordered over two sites (C1/C1' and C2/C2') with refined occupancies of 0.463 (18):0.537 (18). The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same Uij parameters were used for atoms C1 and C1', and C2 and C2'. All H atoms were positioned geometrically with C—H = 0.93–0.97 Å, O—H = 0.82 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound. The displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Crystal data

C28H28O9 Z = 2
Mr = 508.50 F(000) = 536
Triclinic, P1 Dx = 1.357 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.149 (4) Å Cell parameters from 847 reflections
b = 11.744 (5) Å θ = 2.7–27.1°
c = 14.439 (7) Å µ = 0.10 mm1
α = 72.752 (5)° T = 294 K
β = 84.269 (5)° Block, orange
γ = 70.601 (5)° 0.35 × 0.25 × 0.18 mm
V = 1244.7 (10) Å3

Data collection

Bruker CCD 1000 area-detector diffractometer 4774 independent reflections
Radiation source: sealed tube 3239 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→10
Tmin = 0.965, Tmax = 0.982 k = −14→12
5687 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.126P)2] where P = (Fo2 + 2Fc2)/3
4774 reflections (Δ/σ)max < 0.001
353 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.02313 (19) 0.61404 (14) 0.91280 (12) 0.0582 (5)
O2 −0.2521 (2) 0.86192 (14) 0.83479 (12) 0.0597 (5)
O3 0.29103 (19) 0.54252 (13) 0.84269 (11) 0.0558 (5)
O4 0.3240 (2) 1.09630 (15) 0.44508 (13) 0.0642 (5)
O5 −0.1587 (2) 1.65623 (15) 0.28563 (12) 0.0647 (5)
O6 −0.2044 (3) 1.83191 (15) 0.15912 (13) 0.0736 (5)
O7 −0.1328 (2) 1.30029 (15) 0.55058 (12) 0.0659 (5)
O8 −0.4304 (3) 1.35542 (18) 0.53966 (16) 0.0848 (6)
O9 0.3228 (2) 1.28722 (16) 0.31656 (13) 0.0668 (5)
H9C 0.3572 1.2137 0.3494 0.100*
C1 −0.172 (2) 0.6699 (16) 0.9639 (10) 0.086 (4) 0.463 (18)
H1A −0.2494 0.6200 0.9719 0.103* 0.463 (18)
H1B −0.1333 0.6586 1.0283 0.103* 0.463 (18)
C2 −0.2644 (15) 0.7837 (9) 0.9331 (7) 0.057 (2) 0.463 (18)
H2A −0.2440 0.8268 0.9765 0.069* 0.463 (18)
H2B −0.3847 0.7855 0.9424 0.069* 0.463 (18)
C1' −0.2038 (13) 0.6528 (9) 0.9316 (8) 0.054 (2) 0.537 (18)
H1'1 −0.2492 0.5982 0.9103 0.065* 0.537 (18)
H1'2 −0.2150 0.6304 1.0017 0.065* 0.537 (18)
C2' −0.3120 (14) 0.7637 (13) 0.9008 (13) 0.110 (5) 0.537 (18)
H2'1 −0.3615 0.7923 0.9570 0.132* 0.537 (18)
H2'2 −0.4062 0.7567 0.8690 0.132* 0.537 (18)
C3 −0.0883 (3) 0.82076 (19) 0.79882 (16) 0.0448 (5)
C4 0.0230 (3) 0.69963 (18) 0.83660 (15) 0.0443 (5)
C5 0.1907 (3) 0.66401 (18) 0.79889 (16) 0.0451 (5)
C6 0.2440 (3) 0.74792 (19) 0.72391 (16) 0.0474 (5)
H6A 0.3559 0.7236 0.6991 0.057*
C7 0.1314 (3) 0.86943 (18) 0.68465 (15) 0.0432 (5)
C8 −0.0349 (3) 0.90484 (19) 0.72278 (16) 0.0458 (5)
H8A −0.1109 0.9854 0.6971 0.055*
C9 0.4658 (3) 0.5063 (2) 0.8107 (2) 0.0668 (7)
H9A 0.5240 0.5615 0.8209 0.080*
H9B 0.4686 0.5137 0.7419 0.080*
C10 0.5581 (3) 0.3732 (2) 0.86577 (16) 0.0493 (6)
C11 0.5419 (3) 0.2761 (2) 0.83868 (17) 0.0581 (6)
H11A 0.4675 0.2931 0.7880 0.070*
C12 0.6339 (4) 0.1524 (2) 0.8848 (2) 0.0697 (7)
H12A 0.6209 0.0874 0.8651 0.084*
C13 0.7425 (4) 0.1264 (2) 0.9585 (2) 0.0699 (8)
H13A 0.8061 0.0434 0.9885 0.084*
C14 0.7594 (4) 0.2206 (3) 0.9891 (2) 0.0758 (8)
H14A 0.8328 0.2021 1.0406 0.091*
C15 0.6664 (3) 0.3454 (2) 0.9430 (2) 0.0663 (7)
H15A 0.6772 0.4100 0.9642 0.080*
C16 0.1943 (3) 0.95607 (19) 0.60541 (15) 0.0453 (5)
H16A 0.3115 0.9287 0.5893 0.054*
C17 0.1011 (3) 1.06911 (19) 0.55476 (16) 0.0478 (5)
H17A −0.0167 1.0994 0.5686 0.057*
C18 0.1795 (3) 1.1487 (2) 0.47661 (16) 0.0458 (5)
C19 0.0915 (3) 1.28298 (19) 0.43388 (15) 0.0431 (5)
C20 −0.0676 (3) 1.35676 (19) 0.46461 (15) 0.0461 (5)
C21 −0.1479 (3) 1.4795 (2) 0.41326 (16) 0.0510 (6)
H21A −0.2552 1.5247 0.4335 0.061*
C22 −0.0687 (3) 1.53574 (19) 0.33120 (16) 0.0487 (5)
C23 0.0905 (3) 1.4708 (2) 0.30072 (16) 0.0528 (6)
H23A 0.1448 1.5100 0.2470 0.063*
C24 0.1693 (3) 1.3463 (2) 0.35090 (15) 0.0473 (5)
C25 −0.0851 (4) 1.7180 (3) 0.19855 (19) 0.0734 (8)
H25A 0.0211 1.7290 0.2134 0.088*
H25B −0.0575 1.6677 0.1531 0.088*
C26 −0.2259 (6) 1.9197 (3) 0.2108 (3) 0.1194 (14)
H26A −0.3122 1.9971 0.1795 0.179*
H26B −0.1174 1.9344 0.2126 0.179*
H26C −0.2627 1.8876 0.2758 0.179*
C27 −0.2982 (3) 1.3618 (2) 0.5841 (2) 0.0680 (7)
H27A −0.3059 1.3242 0.6533 0.082*
H27B −0.3094 1.4495 0.5740 0.082*
C28 −0.4456 (5) 1.2299 (3) 0.5652 (3) 0.0982 (11)
H28A −0.5417 1.2315 0.5308 0.147*
H28B −0.4649 1.2023 0.6337 0.147*
H28C −0.3402 1.1729 0.5478 0.147*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0523 (10) 0.0408 (9) 0.0614 (10) −0.0101 (7) 0.0183 (7) 0.0037 (7)
O2 0.0496 (9) 0.0402 (9) 0.0694 (11) −0.0047 (7) 0.0203 (8) −0.0036 (7)
O3 0.0429 (9) 0.0350 (8) 0.0643 (10) −0.0012 (6) 0.0149 (7) 0.0053 (7)
O4 0.0442 (9) 0.0503 (10) 0.0700 (11) −0.0021 (7) 0.0110 (8) 0.0056 (8)
O5 0.0641 (11) 0.0434 (9) 0.0637 (11) −0.0075 (8) 0.0032 (8) 0.0065 (8)
O6 0.0993 (15) 0.0432 (10) 0.0642 (11) −0.0155 (9) −0.0202 (10) 0.0038 (8)
O7 0.0589 (10) 0.0522 (10) 0.0613 (10) −0.0085 (8) 0.0240 (8) 0.0028 (8)
O8 0.0620 (12) 0.0685 (13) 0.1118 (17) −0.0101 (10) 0.0126 (11) −0.0240 (12)
O9 0.0468 (10) 0.0562 (10) 0.0720 (11) −0.0076 (8) 0.0192 (8) 0.0028 (8)
C1 0.064 (7) 0.089 (8) 0.065 (7) −0.001 (5) 0.024 (5) 0.003 (5)
C2 0.043 (5) 0.047 (4) 0.061 (5) −0.006 (3) 0.025 (3) −0.003 (3)
C1' 0.042 (3) 0.043 (3) 0.060 (5) −0.013 (2) 0.016 (4) 0.007 (3)
C2' 0.053 (5) 0.092 (7) 0.125 (10) −0.012 (4) 0.027 (5) 0.036 (7)
C3 0.0383 (11) 0.0347 (11) 0.0536 (13) −0.0068 (9) 0.0085 (9) −0.0094 (9)
C4 0.0463 (12) 0.0347 (11) 0.0464 (12) −0.0138 (9) 0.0078 (9) −0.0051 (9)
C5 0.0432 (12) 0.0310 (10) 0.0515 (13) −0.0066 (9) 0.0063 (9) −0.0054 (9)
C6 0.0399 (11) 0.0366 (11) 0.0544 (13) −0.0068 (9) 0.0099 (9) −0.0056 (9)
C7 0.0433 (12) 0.0352 (11) 0.0464 (12) −0.0114 (9) 0.0033 (9) −0.0067 (9)
C8 0.0437 (12) 0.0295 (10) 0.0533 (13) −0.0056 (9) 0.0052 (9) −0.0041 (9)
C9 0.0472 (14) 0.0437 (13) 0.0808 (18) −0.0031 (11) 0.0211 (12) 0.0047 (12)
C10 0.0377 (11) 0.0393 (12) 0.0558 (14) −0.0047 (9) 0.0124 (10) −0.0038 (10)
C11 0.0586 (15) 0.0560 (15) 0.0532 (14) −0.0139 (12) 0.0013 (11) −0.0113 (11)
C12 0.083 (2) 0.0442 (14) 0.0769 (18) −0.0134 (13) 0.0072 (15) −0.0205 (13)
C13 0.0599 (16) 0.0448 (14) 0.0790 (19) 0.0017 (12) 0.0042 (14) −0.0014 (13)
C14 0.0631 (18) 0.077 (2) 0.0727 (18) −0.0190 (15) −0.0193 (14) 0.0036 (15)
C15 0.0725 (18) 0.0574 (16) 0.0744 (18) −0.0275 (13) 0.0030 (14) −0.0194 (13)
C16 0.0419 (12) 0.0372 (11) 0.0493 (13) −0.0102 (9) 0.0057 (9) −0.0056 (9)
C17 0.0381 (11) 0.0385 (11) 0.0556 (13) −0.0096 (9) 0.0052 (9) −0.0011 (10)
C18 0.0373 (11) 0.0435 (12) 0.0479 (12) −0.0107 (9) 0.0007 (9) −0.0031 (9)
C19 0.0356 (11) 0.0407 (11) 0.0451 (12) −0.0105 (9) 0.0012 (9) −0.0030 (9)
C20 0.0430 (12) 0.0420 (12) 0.0461 (12) −0.0138 (9) 0.0065 (9) −0.0037 (9)
C21 0.0439 (12) 0.0424 (12) 0.0542 (14) −0.0050 (10) 0.0072 (10) −0.0074 (10)
C22 0.0504 (13) 0.0365 (11) 0.0495 (13) −0.0112 (10) −0.0042 (10) 0.0003 (9)
C23 0.0500 (13) 0.0469 (13) 0.0483 (13) −0.0153 (11) 0.0071 (10) 0.0035 (10)
C24 0.0389 (12) 0.0475 (13) 0.0492 (13) −0.0153 (10) 0.0058 (9) −0.0047 (10)
C25 0.0837 (19) 0.0560 (16) 0.0585 (16) −0.0155 (14) −0.0043 (13) 0.0096 (12)
C26 0.211 (5) 0.061 (2) 0.090 (2) −0.051 (2) −0.006 (3) −0.0159 (18)
C27 0.0657 (18) 0.0594 (16) 0.0700 (17) −0.0178 (13) 0.0291 (14) −0.0172 (13)
C28 0.090 (2) 0.082 (2) 0.130 (3) −0.0292 (18) 0.019 (2) −0.044 (2)

Geometric parameters (Å, °)

O1—C4 1.369 (2) C9—C10 1.497 (3)
O1—C1' 1.413 (10) C9—H9A 0.9700
O1—C1 1.425 (14) C9—H9B 0.9700
O2—C3 1.366 (2) C10—C11 1.358 (3)
O2—C2' 1.452 (11) C10—C15 1.384 (3)
O2—C2 1.458 (10) C11—C12 1.385 (3)
O3—C5 1.377 (2) C11—H11A 0.9300
O3—C9 1.416 (3) C12—C13 1.350 (4)
O4—C18 1.245 (2) C12—H12A 0.9300
O5—C22 1.352 (3) C13—C14 1.357 (4)
O5—C25 1.437 (3) C13—H13A 0.9300
O6—C25 1.362 (3) C14—C15 1.396 (4)
O6—C26 1.400 (4) C14—H14A 0.9300
O7—C20 1.370 (2) C15—H15A 0.9300
O7—C27 1.415 (3) C16—C17 1.319 (3)
O8—C27 1.341 (3) C16—H16A 0.9300
O8—C28 1.455 (4) C17—C18 1.477 (3)
O9—C24 1.340 (2) C17—H17A 0.9300
O9—H9C 0.8200 C18—C19 1.464 (3)
C1—C2 1.264 (19) C19—C20 1.413 (3)
C1—H1A 0.9700 C19—C24 1.422 (3)
C1—H1B 0.9700 C20—C21 1.375 (3)
C2—H2A 0.9700 C21—C22 1.387 (3)
C2—H2B 0.9700 C21—H21A 0.9300
C1'—C2' 1.282 (15) C22—C23 1.373 (3)
C1'—H1'1 0.9700 C23—C24 1.384 (3)
C1'—H1'2 0.9700 C23—H23A 0.9300
C2'—H2'1 0.9700 C25—H25A 0.9700
C2'—H2'2 0.9700 C25—H25B 0.9700
C3—C8 1.384 (3) C26—H26A 0.9600
C3—C4 1.388 (3) C26—H26B 0.9600
C4—C5 1.395 (3) C26—H26C 0.9600
C5—C6 1.374 (3) C27—H27A 0.9700
C6—C7 1.398 (3) C27—H27B 0.9700
C6—H6A 0.9300 C28—H28A 0.9600
C7—C8 1.388 (3) C28—H28B 0.9600
C7—C16 1.465 (3) C28—H28C 0.9600
C8—H8A 0.9300
C4—O1—C1' 112.0 (4) C12—C11—H11A 119.3
C4—O1—C1 113.1 (6) C13—C12—C11 119.9 (2)
C1'—O1—C1 26.9 (7) C13—C12—H12A 120.0
C3—O2—C2' 114.7 (5) C11—C12—H12A 120.0
C3—O2—C2 110.1 (5) C12—C13—C14 120.4 (3)
C2'—O2—C2 30.5 (7) C12—C13—H13A 119.8
C5—O3—C9 116.05 (16) C14—C13—H13A 119.8
C22—O5—C25 117.68 (19) C13—C14—C15 119.8 (3)
C25—O6—C26 113.9 (3) C13—C14—H14A 120.1
C20—O7—C27 120.56 (18) C15—C14—H14A 120.1
C27—O8—C28 113.5 (2) C10—C15—C14 120.2 (2)
C24—O9—H9C 109.5 C10—C15—H15A 119.9
C2—C1—O1 122.3 (10) C14—C15—H15A 119.9
C2—C1—H1A 106.8 C17—C16—C7 126.4 (2)
O1—C1—H1A 106.8 C17—C16—H16A 116.8
C2—C1—H1B 106.8 C7—C16—H16A 116.8
O1—C1—H1B 106.8 C16—C17—C18 121.5 (2)
H1A—C1—H1B 106.6 C16—C17—H17A 119.2
C1—C2—O2 123.6 (9) C18—C17—H17A 119.2
C1—C2—H2A 106.4 O4—C18—C19 119.96 (18)
O2—C2—H2A 106.4 O4—C18—C17 117.31 (19)
C1—C2—H2B 106.4 C19—C18—C17 122.70 (18)
O2—C2—H2B 106.4 C20—C19—C24 115.78 (19)
H2A—C2—H2B 106.5 C20—C19—C18 126.62 (18)
C2'—C1'—O1 126.8 (8) C24—C19—C18 117.56 (18)
C2'—C1'—H1'1 105.6 O7—C20—C21 122.18 (19)
O1—C1'—H1'1 105.6 O7—C20—C19 115.90 (18)
C2'—C1'—H1'2 105.6 C21—C20—C19 121.86 (19)
O1—C1'—H1'2 105.6 C20—C21—C22 119.9 (2)
H1'1—C1'—H1'2 106.1 C20—C21—H21A 120.0
C1'—C2'—O2 119.3 (8) C22—C21—H21A 120.0
C1'—C2'—H2'1 107.5 O5—C22—C23 123.9 (2)
O2—C2'—H2'1 107.5 O5—C22—C21 115.3 (2)
C1'—C2'—H2'2 107.5 C23—C22—C21 120.8 (2)
O2—C2'—H2'2 107.5 C22—C23—C24 119.27 (19)
H2'1—C2'—H2'2 107.0 C22—C23—H23A 120.4
O2—C3—C8 117.66 (18) C24—C23—H23A 120.4
O2—C3—C4 122.02 (18) O9—C24—C23 116.51 (18)
C8—C3—C4 120.32 (18) O9—C24—C19 121.29 (19)
O1—C4—C3 122.35 (18) C23—C24—C19 122.19 (19)
O1—C4—C5 118.11 (18) O6—C25—O5 107.9 (2)
C3—C4—C5 119.49 (18) O6—C25—H25A 110.1
C6—C5—O3 125.25 (18) O5—C25—H25A 110.1
C6—C5—C4 120.08 (19) O6—C25—H25B 110.1
O3—C5—C4 114.67 (17) O5—C25—H25B 110.1
C5—C6—C7 120.63 (19) H25A—C25—H25B 108.4
C5—C6—H6A 119.7 O6—C26—H26A 109.5
C7—C6—H6A 119.7 O6—C26—H26B 109.5
C8—C7—C6 119.15 (18) H26A—C26—H26B 109.5
C8—C7—C16 122.12 (19) O6—C26—H26C 109.5
C6—C7—C16 118.73 (19) H26A—C26—H26C 109.5
C3—C8—C7 120.32 (19) H26B—C26—H26C 109.5
C3—C8—H8A 119.8 O8—C27—O7 113.2 (2)
C7—C8—H8A 119.8 O8—C27—H27A 108.9
O3—C9—C10 109.76 (17) O7—C27—H27A 108.9
O3—C9—H9A 109.7 O8—C27—H27B 108.9
C10—C9—H9A 109.7 O7—C27—H27B 108.9
O3—C9—H9B 109.7 H27A—C27—H27B 107.8
C10—C9—H9B 109.7 O8—C28—H28A 109.5
H9A—C9—H9B 108.2 O8—C28—H28B 109.5
C11—C10—C15 118.2 (2) H28A—C28—H28B 109.5
C11—C10—C9 120.4 (2) O8—C28—H28C 109.5
C15—C10—C9 121.4 (2) H28A—C28—H28C 109.5
C10—C11—C12 121.4 (3) H28B—C28—H28C 109.5
C10—C11—H11A 119.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O9—H9C···O4 0.82 1.71 2.448 (2) 149
C6—H6A···O9i 0.93 2.57 3.426 (3) 154
C21—H21A···O8ii 0.93 2.53 3.453 (3) 169

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x−1, −y+3, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5171).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Carlo, D. G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353. [DOI] [PubMed]
  3. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. [PubMed]
  4. Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3517–o3518.
  5. Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.
  6. Lin, A.-S., Nakagawa-Goto, K., Chang, F.-R., Yu, D., Morris-Natschke, S. L., Wu, C.-C., Chen, S.-L., Wu, Y.-C. & Lee, K. H. (2007). J. Med. Chem. 50, 3921–3927. [DOI] [PMC free article] [PubMed]
  7. Loghmani-Khouzani, H., Abdul Rahman, N., Robinson, W. T., Yaeghoobi, M. & Kia, R. (2009). Acta Cryst. E65, o2545. [DOI] [PMC free article] [PubMed]
  8. Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137. [DOI] [PubMed]
  9. Özbey, S., Kendi, E., Göker, H. & Ertan, R. (1997). Acta Cryst. C53, 1981–1983.
  10. Rizvi, S. U. F., Siddiqui, H. L., Hussain, T., Azam, M. & Parvez, M. (2010). Acta Cryst. E66, o744. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681100924X/xu5171sup1.cif

e-67-0o912-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681100924X/xu5171Isup2.hkl

e-67-0o912-Isup2.hkl (233.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES