Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 26;67(Pt 4):o977–o978. doi: 10.1107/S1600536811010609

4-{(Z)-2-[(E)-Benzyl­idenehydrazinyl­idene]-3,6-dihydro-2H-1,3,4-thia­diazin-5-yl}-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3100016  PMID: 21754237

Abstract

The title compound, C18H14N6O2S, exists in trans and cis configurations with respect to the two acyclic C=N bonds [bond lengths = 1.2835 (9) and 1.3049 (9) Å]. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The oxadiazol-3-ium ring makes dihedral angles of 53.70 (4) and 60.26 (4)° with the two phenyl rings. In the crystal, mol­ecules are linked via pairs of inter­molecular N—H⋯N hydrogen bonds, generating R 2 2(8) ring motifs, and are further linked via inter­molecular C—H⋯O and C—H⋯S hydrogen bonds into a three-dimensional network. The short inter­molecular distance between the oxadiazol-3-ium rings [3.4154 (4) Å] indicates the existence of a π–π inter­action.

Related literature

For general background to and the biological activity of sydnone derivatives, see: Newton & Ramsden (1982); Wagner & Hill (1974); Kalluraya & Rahiman (1997). For the preparation, see: Kalluraya et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-67-0o977-scheme1.jpg

Experimental

Crystal data

  • C18H14N6O2S

  • M r = 378.41

  • Triclinic, Inline graphic

  • a = 6.8752 (2) Å

  • b = 10.1335 (3) Å

  • c = 12.7374 (4) Å

  • α = 78.578 (1)°

  • β = 88.984 (1)°

  • γ = 85.874 (1)°

  • V = 867.58 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.58 × 0.27 × 0.08 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.885, T max = 0.982

  • 29236 measured reflections

  • 7567 independent reflections

  • 6818 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.101

  • S = 1.03

  • 7567 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010609/sj5123sup1.cif

e-67-0o977-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010609/sj5123Isup2.hkl

e-67-0o977-Isup2.hkl (370.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.852 (15) 2.015 (15) 2.8664 (9) 178.3 (11)
C14—H14A⋯O2ii 0.93 2.58 3.2303 (10) 127
C15—H15A⋯O2iii 0.93 2.51 3.2391 (9) 136
C18—H18A⋯S1iv 0.93 2.84 3.7061 (8) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones with heterocyclic substituents at the 4-position are also known to exhibit a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically-active nitrogen-containing heterocycles, a thiadiazine moiety was introduced at the 4-position of the phenylsydnone. A series of thiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with N'-(phenylmethylidene)carbonohydrazide. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The title compound exists in trans and cis configurations with respect to the acyclic C7═N1 and C8═N2 bonds [C7═N1 = 1.2835 (9) Å and C8═N2 = 1.3049 (9) Å]. The 3,6-dihydro-2H-1,3,4-thiadiazine ring (S1/N3/N4/C8-C10) adopts a half boat-conformation with atom C9 deviating by 0.359 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.5575 (7) Å, Θ = 108.09 (7)° and φ = 137.99 (7)°. The oxadiazol-3-ium ring (O1/N5/N6/C11/C12) makes dihedral angles of 53.70 (4) and 60.26 (4) ° with two phenyl rings (C1-C6 and C13-C18).

In the crystal packing (Fig. 2), the molecules are linked via pairs of intermolecular N3–H1N3···N2 hydrogen bonds (Table 1), generating R22(8) ring motifs (Bernstein et al., 1995) and are further linked via intermolecular C14–H14A···O2, C15–H15A···O2 and C18–H18A···S1 hydrogen bonds (Table 1) into a three-dimensional network. The crystal packing is further consolidated by π-π stacking interactions between the centroids of O1/N5/N6/C11/C12 (Cg1) rings, with Cg1···Cg1v distance of 3.4154 (4) Å [symmetry code: (v) 2-X, 2-Y, -Z].

Experimental

To a solution of 4-bromoacetyl-3-(p-anisyl)sydnone (0.01 mol) and N'-(phenylmethylidene) carbonohydrazide (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

H1N3 was located in a difference Fourier map and allowed to refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.68 Å from C13 and the deepest hole is located at 0.71 Å from S1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H14N6O2S Z = 2
Mr = 378.41 F(000) = 392
Triclinic, P1 Dx = 1.449 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8752 (2) Å Cell parameters from 9935 reflections
b = 10.1335 (3) Å θ = 2.9–37.5°
c = 12.7374 (4) Å µ = 0.21 mm1
α = 78.578 (1)° T = 100 K
β = 88.984 (1)° Block, yellow
γ = 85.874 (1)° 0.58 × 0.27 × 0.08 mm
V = 867.58 (5) Å3

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 7567 independent reflections
Radiation source: fine-focus sealed tube 6818 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.885, Tmax = 0.982 k = −16→16
29236 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.2223P] where P = (Fo2 + 2Fc2)/3
7567 reflections (Δ/σ)max = 0.001
248 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.30498 (3) 0.783931 (19) 0.313847 (14) 0.01687 (5)
O1 0.78647 (9) 1.04039 (5) −0.06087 (4) 0.01590 (10)
O2 0.64969 (9) 1.17463 (5) 0.04865 (5) 0.01895 (11)
N1 0.14753 (10) 0.81808 (6) 0.50454 (5) 0.01503 (11)
N2 0.31270 (10) 0.89086 (6) 0.48880 (5) 0.01459 (11)
N3 0.57604 (10) 0.93168 (6) 0.37674 (5) 0.01437 (10)
N4 0.65689 (9) 0.96382 (6) 0.27631 (5) 0.01327 (10)
N5 0.83490 (10) 0.90536 (6) −0.05820 (5) 0.01491 (11)
N6 0.78483 (9) 0.84631 (6) 0.03858 (5) 0.01194 (10)
C1 −0.17886 (12) 0.66190 (8) 0.55457 (6) 0.01753 (12)
H1A −0.0967 0.6423 0.5001 0.021*
C2 −0.34245 (13) 0.58975 (8) 0.58220 (7) 0.02162 (14)
H2A −0.3682 0.5208 0.5470 0.026*
C3 −0.46864 (12) 0.62002 (9) 0.66263 (7) 0.02278 (15)
H3A −0.5789 0.5721 0.6802 0.027*
C4 −0.42941 (12) 0.72184 (8) 0.71643 (7) 0.02058 (14)
H4A −0.5135 0.7423 0.7698 0.025*
C5 −0.26331 (11) 0.79319 (7) 0.68997 (6) 0.01674 (12)
H5A −0.2362 0.8604 0.7267 0.020*
C6 −0.13718 (11) 0.76450 (7) 0.60870 (5) 0.01428 (11)
C7 0.03747 (11) 0.83958 (7) 0.58273 (6) 0.01507 (12)
H7A 0.0684 0.9026 0.6227 0.018*
C8 0.40347 (10) 0.87300 (7) 0.40132 (5) 0.01289 (11)
C9 0.52692 (13) 0.75797 (7) 0.23945 (6) 0.01832 (13)
H9A 0.6125 0.6886 0.2826 0.022*
H9B 0.4953 0.7268 0.1749 0.022*
C10 0.63071 (10) 0.88567 (7) 0.20958 (5) 0.01271 (11)
C11 0.70776 (10) 0.92958 (6) 0.10204 (5) 0.01202 (10)
C12 0.70589 (10) 1.06188 (7) 0.03802 (5) 0.01354 (11)
C13 0.82190 (10) 0.70199 (7) 0.06881 (5) 0.01254 (11)
C14 0.73006 (11) 0.61939 (7) 0.01353 (6) 0.01455 (11)
H14A 0.6507 0.6558 −0.0449 0.017*
C15 0.76016 (11) 0.48012 (7) 0.04823 (7) 0.01743 (13)
H15A 0.7000 0.4223 0.0128 0.021*
C16 0.87966 (12) 0.42727 (7) 0.13554 (7) 0.01914 (13)
H16A 0.8974 0.3343 0.1588 0.023*
C17 0.97311 (13) 0.51258 (8) 0.18857 (7) 0.01997 (14)
H17A 1.0547 0.4764 0.2461 0.024*
C18 0.94424 (11) 0.65205 (7) 0.15537 (6) 0.01683 (12)
H18A 1.0052 0.7101 0.1902 0.020*
H1N3 0.607 (2) 0.9855 (15) 0.4163 (12) 0.029 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01861 (9) 0.02017 (9) 0.01455 (8) −0.00900 (6) 0.00407 (6) −0.00768 (6)
O1 0.0196 (2) 0.0137 (2) 0.0136 (2) −0.00159 (18) 0.00192 (18) −0.00089 (16)
O2 0.0219 (3) 0.0114 (2) 0.0231 (3) 0.00014 (18) 0.0021 (2) −0.00294 (18)
N1 0.0161 (3) 0.0161 (2) 0.0132 (2) −0.0050 (2) 0.00206 (19) −0.00282 (18)
N2 0.0162 (3) 0.0164 (2) 0.0120 (2) −0.0053 (2) 0.00244 (19) −0.00370 (18)
N3 0.0157 (3) 0.0175 (2) 0.0113 (2) −0.0056 (2) 0.00213 (19) −0.00495 (18)
N4 0.0143 (2) 0.0144 (2) 0.0118 (2) −0.00285 (18) 0.00189 (18) −0.00367 (17)
N5 0.0180 (3) 0.0141 (2) 0.0126 (2) −0.00152 (19) 0.00223 (19) −0.00250 (18)
N6 0.0129 (2) 0.0116 (2) 0.0117 (2) −0.00116 (17) 0.00069 (18) −0.00305 (17)
C1 0.0191 (3) 0.0174 (3) 0.0166 (3) −0.0043 (2) −0.0004 (2) −0.0035 (2)
C2 0.0211 (3) 0.0196 (3) 0.0245 (3) −0.0070 (3) −0.0030 (3) −0.0028 (3)
C3 0.0163 (3) 0.0216 (3) 0.0282 (4) −0.0053 (3) −0.0003 (3) 0.0020 (3)
C4 0.0157 (3) 0.0206 (3) 0.0228 (3) −0.0006 (2) 0.0038 (3) 0.0016 (3)
C5 0.0169 (3) 0.0153 (3) 0.0170 (3) −0.0006 (2) 0.0025 (2) −0.0010 (2)
C6 0.0153 (3) 0.0135 (2) 0.0135 (2) −0.0024 (2) 0.0004 (2) −0.0008 (2)
C7 0.0171 (3) 0.0151 (3) 0.0134 (3) −0.0038 (2) 0.0023 (2) −0.0029 (2)
C8 0.0150 (3) 0.0125 (2) 0.0114 (2) −0.0027 (2) 0.0007 (2) −0.00234 (19)
C9 0.0240 (3) 0.0139 (3) 0.0188 (3) −0.0064 (2) 0.0084 (3) −0.0063 (2)
C10 0.0145 (3) 0.0114 (2) 0.0126 (2) −0.0022 (2) 0.0021 (2) −0.00294 (19)
C11 0.0133 (3) 0.0109 (2) 0.0122 (2) −0.00156 (19) 0.0016 (2) −0.00314 (18)
C12 0.0138 (3) 0.0126 (2) 0.0142 (3) −0.0017 (2) 0.0007 (2) −0.0023 (2)
C13 0.0131 (3) 0.0111 (2) 0.0136 (2) −0.00038 (19) 0.0008 (2) −0.00321 (19)
C14 0.0138 (3) 0.0141 (3) 0.0168 (3) −0.0015 (2) 0.0006 (2) −0.0055 (2)
C15 0.0155 (3) 0.0136 (3) 0.0242 (3) −0.0027 (2) 0.0037 (2) −0.0061 (2)
C16 0.0182 (3) 0.0134 (3) 0.0244 (3) 0.0003 (2) 0.0049 (3) −0.0012 (2)
C17 0.0205 (3) 0.0171 (3) 0.0203 (3) 0.0034 (2) −0.0016 (3) −0.0006 (2)
C18 0.0173 (3) 0.0162 (3) 0.0170 (3) 0.0009 (2) −0.0030 (2) −0.0037 (2)

Geometric parameters (Å, °)

S1—C8 1.7400 (7) C4—C5 1.3961 (11)
S1—C9 1.8126 (8) C4—H4A 0.9300
O1—N5 1.3787 (8) C5—C6 1.3996 (10)
O1—C12 1.4168 (9) C5—H5A 0.9300
O2—C12 1.2120 (8) C6—C7 1.4655 (10)
N1—C7 1.2835 (9) C7—H7A 0.9300
N1—N2 1.3884 (9) C9—C10 1.5022 (10)
N2—C8 1.3049 (9) C9—H9A 0.9700
N3—C8 1.3689 (9) C9—H9B 0.9700
N3—N4 1.3737 (8) C10—C11 1.4567 (9)
N3—H1N3 0.852 (15) C11—C12 1.4238 (9)
N4—C10 1.2940 (9) C13—C14 1.3857 (10)
N5—N6 1.3110 (8) C13—C18 1.3892 (10)
N6—C11 1.3553 (9) C14—C15 1.3944 (10)
N6—C13 1.4418 (9) C14—H14A 0.9300
C1—C2 1.3878 (11) C15—C16 1.3898 (12)
C1—C6 1.4044 (10) C15—H15A 0.9300
C1—H1A 0.9300 C16—C17 1.3940 (12)
C2—C3 1.3967 (13) C16—H16A 0.9300
C2—H2A 0.9300 C17—C18 1.3935 (11)
C3—C4 1.3906 (13) C17—H17A 0.9300
C3—H3A 0.9300 C18—H18A 0.9300
C8—S1—C9 96.96 (4) N3—C8—S1 120.03 (5)
N5—O1—C12 111.40 (5) C10—C9—S1 111.37 (5)
C7—N1—N2 115.29 (6) C10—C9—H9A 109.4
C8—N2—N1 110.58 (6) S1—C9—H9A 109.4
C8—N3—N4 125.97 (6) C10—C9—H9B 109.4
C8—N3—H1N3 115.9 (11) S1—C9—H9B 109.4
N4—N3—H1N3 111.4 (10) H9A—C9—H9B 108.0
C10—N4—N3 118.01 (6) N4—C10—C11 115.69 (6)
N6—N5—O1 103.91 (5) N4—C10—C9 122.87 (6)
N5—N6—C11 115.66 (6) C11—C10—C9 121.45 (6)
N5—N6—C13 118.02 (6) N6—C11—C12 105.42 (6)
C11—N6—C13 126.28 (6) N6—C11—C10 125.08 (6)
C2—C1—C6 120.13 (7) C12—C11—C10 129.33 (6)
C2—C1—H1A 119.9 O2—C12—O1 120.16 (6)
C6—C1—H1A 119.9 O2—C12—C11 136.18 (7)
C1—C2—C3 120.37 (8) O1—C12—C11 103.61 (5)
C1—C2—H2A 119.8 C14—C13—C18 122.93 (6)
C3—C2—H2A 119.8 C14—C13—N6 119.23 (6)
C4—C3—C2 120.01 (8) C18—C13—N6 117.80 (6)
C4—C3—H3A 120.0 C13—C14—C15 118.00 (7)
C2—C3—H3A 120.0 C13—C14—H14A 121.0
C3—C4—C5 119.76 (8) C15—C14—H14A 121.0
C3—C4—H4A 120.1 C16—C15—C14 120.34 (7)
C5—C4—H4A 120.1 C16—C15—H15A 119.8
C4—C5—C6 120.62 (7) C14—C15—H15A 119.8
C4—C5—H5A 119.7 C15—C16—C17 120.51 (7)
C6—C5—H5A 119.7 C15—C16—H16A 119.7
C5—C6—C1 119.11 (7) C17—C16—H16A 119.7
C5—C6—C7 119.85 (7) C18—C17—C16 119.99 (7)
C1—C6—C7 121.04 (7) C18—C17—H17A 120.0
N1—C7—C6 119.76 (6) C16—C17—H17A 120.0
N1—C7—H7A 120.1 C13—C18—C17 118.21 (7)
C6—C7—H7A 120.1 C13—C18—H18A 120.9
N2—C8—N3 118.27 (6) C17—C18—H18A 120.9
N2—C8—S1 121.63 (5)
C7—N1—N2—C8 −173.31 (7) N5—N6—C11—C12 0.31 (8)
C8—N3—N4—C10 −33.94 (10) C13—N6—C11—C12 178.09 (6)
C12—O1—N5—N6 0.31 (8) N5—N6—C11—C10 175.83 (7)
O1—N5—N6—C11 −0.39 (8) C13—N6—C11—C10 −6.39 (11)
O1—N5—N6—C13 −178.36 (6) N4—C10—C11—N6 145.60 (7)
C6—C1—C2—C3 1.12 (12) C9—C10—C11—N6 −34.74 (11)
C1—C2—C3—C4 −0.80 (13) N4—C10—C11—C12 −39.98 (11)
C2—C3—C4—C5 −0.21 (12) C9—C10—C11—C12 139.68 (8)
C3—C4—C5—C6 0.90 (12) N5—O1—C12—O2 −177.78 (7)
C4—C5—C6—C1 −0.58 (11) N5—O1—C12—C11 −0.14 (8)
C4—C5—C6—C7 −179.42 (7) N6—C11—C12—O2 176.97 (9)
C2—C1—C6—C5 −0.43 (11) C10—C11—C12—O2 1.70 (14)
C2—C1—C6—C7 178.40 (7) N6—C11—C12—O1 −0.09 (7)
N2—N1—C7—C6 −177.89 (6) C10—C11—C12—O1 −175.35 (7)
C5—C6—C7—N1 −176.39 (7) N5—N6—C13—C14 −62.37 (9)
C1—C6—C7—N1 4.79 (11) C11—N6—C13—C14 119.90 (8)
N1—N2—C8—N3 −176.40 (6) N5—N6—C13—C18 119.82 (7)
N1—N2—C8—S1 6.57 (9) C11—N6—C13—C18 −57.91 (10)
N4—N3—C8—N2 −156.39 (7) C18—C13—C14—C15 1.16 (11)
N4—N3—C8—S1 20.70 (10) N6—C13—C14—C15 −176.54 (6)
C9—S1—C8—N2 −164.38 (6) C13—C14—C15—C16 −0.22 (11)
C9—S1—C8—N3 18.64 (6) C14—C15—C16—C17 −0.92 (12)
C8—S1—C9—C10 −45.98 (6) C15—C16—C17—C18 1.17 (12)
N3—N4—C10—C11 175.86 (6) C14—C13—C18—C17 −0.91 (11)
N3—N4—C10—C9 −3.80 (11) N6—C13—C18—C17 176.81 (7)
S1—C9—C10—N4 45.22 (9) C16—C17—C18—C13 −0.27 (12)
S1—C9—C10—C11 −134.42 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···N2i 0.852 (15) 2.015 (15) 2.8664 (9) 178.3 (11)
C14—H14A···O2ii 0.93 2.58 3.2303 (10) 127
C15—H15A···O2iii 0.93 2.51 3.2391 (9) 136
C18—H18A···S1iv 0.93 2.84 3.7061 (8) 155

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+2, −z; (iii) x, y−1, z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5123).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.
  7. Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.
  8. Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337–1338. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811010609/sj5123sup1.cif

e-67-0o977-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811010609/sj5123Isup2.hkl

e-67-0o977-Isup2.hkl (370.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES