Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Mar 2;67(Pt 4):m390. doi: 10.1107/S1600536811007021

catena-Poly[[tetra­aqua­[trans-1,2-bis­(4-pyrid­yl)ethene-κ2 N:N′]nickel(II)] dinitrate]

Min Young Hyun a, Pan-Gi Kim b, Cheal Kim a,*, Youngmee Kim c,*
PMCID: PMC3100072  PMID: 21753926

Abstract

In the title compound, {[Ni(C12H10N2)(H2O)4](NO3)2}n, the NiII ion, lying on a crystallographic inversion center, has a distorted octa­hedral coordination sphere comprising four water ligands and two N-atom donors from the trans-related 1,2-bis­(4-pyrid­yl)ethene ligands, which also have crystallographic inversion symmetry. These ligands bridge the NiII complex units, forming chains extending along the [110] and [Inline graphic10] directions. The nitrate counter-anions stabilize the crystal structure through water–nitrate O—H⋯O hydrogen bonds.

Related literature

For inter­actions of metal ions with amino acids, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related complexes,see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al. (2009); Yu et al. (2009, 2010); Kim et al. (2011).graphic file with name e-67-0m390-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H10N2)(H2O)4](NO3)2

  • M r = 436.99

  • Monoclinic, Inline graphic

  • a = 7.415 (3) Å

  • b = 11.426 (4) Å

  • c = 10.950 (4) Å

  • β = 97.307 (7)°

  • V = 920.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 293 K

  • 0.15 × 0.08 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 4954 measured reflections

  • 1799 independent reflections

  • 1116 reflections with I > 2σ(I)

  • R int = 0.173

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.238

  • S = 1.14

  • 1799 reflections

  • 136 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.86 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007021/zs2096sup1.cif

e-67-0m390-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007021/zs2096Isup2.hkl

e-67-0m390-Isup2.hkl (88.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3i 0.93 (7) 2.28 (8) 3.176 (9) 162 (8)
O2—H2A⋯O5ii 0.93 (6) 2.14 (7) 3.068 (8) 176 (7)
O1—H1B⋯O3iii 0.93 (4) 2.29 (2) 3.212 (9) 170 (8)
O1—H1A⋯O4iv 0.93 (6) 2.37 (3) 3.252 (8) 158 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support from the Forest Science & Technology Projects (S121010L080120) and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

supplementary crystallographic information

Comment

The interaction of transition metal ions with biologically active molecules such as amino acids and various acids is very important in biological systems (Daniele et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). In attempting to model the interaction, we have extensively studied the interaction of the transition metal carboxylates e.g. copper(II), cadmium(II), and zinc(II) benzoates with a variety of spacers such as quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee et al., 2008; Yu et al., 2008; Park et al., 2008; Shin et al., 2009; Yu et al., 2009; Yu et al., 2010; Kim et al., 2011). However, nickel as a metal ion source has rarely been used. In this work, we have employed nickel(II) trimethylacetate as a building block and trans-1,2-bis(4-pyridyl)ethene as a ligand. We report here on the structure of a new complex poly[tetraqua[trans-1,2-bis(4-pyridyl)ethene]nickel(II) dinitrate].

In the crystal structure of the title compound, [Ni(C12H10N2)(H2O)4] . 2(NO3)]n, the NiII ion lies on a crystallographic inversion center with the distorted octahedral coordination sphere comprising four water ligands and two N donors from the trans-related 1,2-bis(4-pyridyl)ethene ligands, which also have crystallographic inversion symmetry (Fig. 1). These ligands bridge the NiII complex units to form a one-dimensional chain structure. The nitrate counter-anions stabilize the crystal structure through water O—H···Onitrate hydrogen bonds (Table 1).

Experimental

36.4 mg (0.125 mmol) of Ni(NO3)2.6H2O and 29.0 mg (0.25 mmol) of (CH3)3CCOOH and 29.5 mg (0. 25 mmol) of NH4OH were dissolved in 4 ml of methanol and carefully layered with 4 ml of a chloroform solution of trans-1,2-bis(4-pyridyl)ethene (47.0 mg, 0.25 mmol). Crystals of the title compound suitable for X-ray analysis were obtained within a month.

Refinement

H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridyl) and included in the refinement with a riding-motion approximation with Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier, and refined isotropically with O—H restraints (0.93 Å).

Figures

Fig. 1.

Fig. 1.

A fragment of one-dimensional chain structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Inter-species hydrogen bonds are shown as dashed lines. For symmetry codes: (i) (-x + 1, -y + 1, -z); (ii) -x, -y + 2, -z). For other codes, see Table 1.

Crystal data

[Ni(C12H10N2)(H2O)4](NO3)2 F(000) = 452
Mr = 436.99 Dx = 1.577 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1268 reflections
a = 7.415 (3) Å θ = 2.6–23.4°
b = 11.426 (4) Å µ = 1.11 mm1
c = 10.950 (4) Å T = 293 K
β = 97.307 (7)° Block, brown
V = 920.1 (6) Å3 0.15 × 0.08 × 0.08 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 1116 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.173
graphite θmax = 26.0°, θmin = 2.6°
φ and ω scans h = −8→9
4954 measured reflections k = −11→14
1799 independent reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.1257P)2] where P = (Fo2 + 2Fc2)/3
1799 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 1.08 e Å3
4 restraints Δρmin = −1.86 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0496 (8) 0.7389 (5) −0.0578 (7) 0.0346 (15)
H1 −0.0705 0.7450 −0.0939 0.042*
C2 0.1365 (8) 0.6328 (5) −0.0637 (7) 0.0414 (18)
H2 0.0758 0.5697 −0.1038 0.050*
C3 0.3181 (8) 0.6207 (5) −0.0086 (7) 0.0364 (16)
C4 0.3954 (8) 0.7169 (5) 0.0524 (7) 0.0374 (16)
H4 0.5137 0.7129 0.0923 0.045*
C5 0.2991 (7) 0.8183 (5) 0.0544 (7) 0.0350 (16)
H5 0.3542 0.8814 0.0981 0.042*
C6 0.4117 (9) 0.5087 (5) −0.0174 (8) 0.0431 (19)
H6 0.3429 0.4452 −0.0495 0.052*
N1 0.1284 (6) 0.8326 (4) −0.0032 (5) 0.0271 (11)
Ni1 0.0000 1.0000 0.0000 0.0287 (4)
O1 0.0809 (9) 1.0135 (4) 0.1951 (7) 0.0630 (17)
H1A 0.098 (12) 0.946 (4) 0.242 (7) 0.076*
H1B 0.200 (4) 1.036 (7) 0.189 (9) 0.076*
O2 0.2381 (6) 1.0811 (4) −0.0466 (7) 0.0666 (18)
H2A 0.226 (11) 1.148 (5) −0.095 (7) 0.080*
H2B 0.306 (10) 1.024 (6) −0.080 (9) 0.080*
N2 0.4686 (7) 0.8286 (5) 0.7660 (6) 0.0481 (16)
O3 0.4935 (7) 0.9318 (4) 0.8009 (6) 0.0684 (17)
O4 0.5938 (8) 0.7571 (5) 0.7875 (7) 0.0699 (18)
O5 0.3209 (7) 0.7990 (5) 0.7106 (7) 0.083 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.031 (3) 0.026 (3) 0.046 (4) 0.005 (2) 0.000 (3) −0.002 (3)
C2 0.030 (3) 0.023 (3) 0.069 (5) 0.003 (2) −0.005 (3) −0.010 (3)
C3 0.030 (3) 0.018 (3) 0.060 (5) 0.009 (2) −0.001 (3) 0.004 (3)
C4 0.028 (3) 0.018 (3) 0.064 (5) 0.004 (2) −0.005 (3) 0.000 (3)
C5 0.024 (3) 0.020 (3) 0.060 (5) 0.001 (2) 0.001 (3) −0.001 (3)
C6 0.037 (3) 0.014 (3) 0.076 (6) 0.009 (2) 0.000 (3) −0.003 (3)
N1 0.027 (2) 0.022 (2) 0.033 (3) 0.0061 (19) 0.005 (2) −0.001 (2)
Ni1 0.0214 (6) 0.0136 (6) 0.0485 (8) 0.0038 (4) −0.0049 (5) −0.0014 (4)
O1 0.066 (4) 0.051 (3) 0.066 (4) 0.000 (3) −0.013 (3) 0.000 (3)
O2 0.044 (3) 0.035 (3) 0.121 (6) 0.003 (2) 0.010 (3) 0.012 (3)
N2 0.040 (3) 0.036 (3) 0.064 (5) −0.003 (2) −0.012 (3) −0.010 (3)
O3 0.064 (3) 0.035 (3) 0.098 (5) −0.008 (2) −0.018 (3) −0.016 (3)
O4 0.059 (3) 0.059 (3) 0.091 (5) 0.017 (3) 0.006 (3) −0.008 (3)
O5 0.055 (3) 0.074 (4) 0.110 (6) −0.017 (3) −0.030 (4) −0.016 (4)

Geometric parameters (Å, °)

C1—N1 1.326 (7) N1—Ni1 2.138 (4)
C1—C2 1.378 (8) Ni1—O2 2.113 (5)
C1—H1 0.9300 Ni1—O2ii 2.113 (5)
C2—C3 1.411 (8) Ni1—N1ii 2.138 (4)
C2—H2 0.9300 Ni1—O1ii 2.149 (7)
C3—C4 1.373 (8) Ni1—O1 2.149 (7)
C3—C6 1.465 (8) O1—H1A 0.93 (6)
C4—C5 1.362 (7) O1—H1B 0.93 (4)
C4—H4 0.9300 O2—H2A 0.93 (6)
C5—N1 1.350 (7) O2—H2B 0.93 (7)
C5—H5 0.9300 N2—O5 1.231 (6)
C6—C6i 1.331 (13) N2—O4 1.236 (7)
C6—H6 0.9300 N2—O3 1.245 (7)
N1—C1—C2 123.4 (5) O2ii—Ni1—N1ii 90.05 (18)
N1—C1—H1 118.3 O2—Ni1—N1 90.05 (18)
C2—C1—H1 118.3 O2ii—Ni1—N1 89.95 (18)
C1—C2—C3 119.5 (5) N1ii—Ni1—N1 180.0
C1—C2—H2 120.3 O2—Ni1—O1ii 85.9 (3)
C3—C2—H2 120.3 O2ii—Ni1—O1ii 94.1 (3)
C4—C3—C2 116.5 (5) N1ii—Ni1—O1ii 90.7 (2)
C4—C3—C6 124.0 (5) N1—Ni1—O1ii 89.3 (2)
C2—C3—C6 119.5 (5) O2—Ni1—O1 94.1 (3)
C5—C4—C3 120.1 (5) O2ii—Ni1—O1 85.9 (3)
C5—C4—H4 119.9 N1ii—Ni1—O1 89.3 (2)
C3—C4—H4 119.9 N1—Ni1—O1 90.7 (2)
N1—C5—C4 123.9 (6) O1ii—Ni1—O1 179.999 (2)
N1—C5—H5 118.1 Ni1—O1—H1A 119 (6)
C4—C5—H5 118.1 Ni1—O1—H1B 96 (6)
C6i—C6—C3 124.7 (7) H1A—O1—H1B 102 (8)
C6i—C6—H6 117.7 Ni1—O2—H2A 118 (5)
C3—C6—H6 117.7 Ni1—O2—H2B 108 (5)
C1—N1—C5 116.5 (5) H2A—O2—H2B 112 (9)
C1—N1—Ni1 123.9 (4) O5—N2—O4 120.8 (6)
C5—N1—Ni1 119.6 (4) O5—N2—O3 120.0 (6)
O2—Ni1—O2ii 180.0 O4—N2—O3 119.3 (5)
O2—Ni1—N1ii 89.95 (18)
N1—C1—C2—C3 0.7 (12) C4—C5—N1—C1 4.3 (10)
C1—C2—C3—C4 2.2 (11) C4—C5—N1—Ni1 −176.6 (6)
C1—C2—C3—C6 −178.6 (7) C1—N1—Ni1—O2 −134.3 (5)
C2—C3—C4—C5 −1.8 (11) C5—N1—Ni1—O2 46.7 (5)
C6—C3—C4—C5 179.1 (7) C1—N1—Ni1—O2ii 45.7 (5)
C3—C4—C5—N1 −1.5 (11) C5—N1—Ni1—O2ii −133.3 (5)
C4—C3—C6—C6i −9.6 (17) C1—N1—Ni1—O1ii −48.4 (5)
C2—C3—C6—C6i 171.3 (11) C5—N1—Ni1—O1ii 132.5 (5)
C2—C1—N1—C5 −3.8 (10) C1—N1—Ni1—O1 131.6 (5)
C2—C1—N1—Ni1 177.1 (6) C5—N1—Ni1—O1 −47.5 (5)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2B···O3iii 0.93 (7) 2.28 (8) 3.176 (9) 162 (8)
O2—H2A···O5iv 0.93 (6) 2.14 (7) 3.068 (8) 176 (7)
O1—H1B···O3v 0.93 (4) 2.29 (2) 3.212 (9) 170 (8)
O1—H1A···O4vi 0.93 (6) 2.37 (3) 3.252 (8) 158 (7)

Symmetry codes: (iii) x, y, z−1; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1, −y+2, −z+1; (vi) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2096).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.
  3. Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4. [DOI] [PMC free article] [PubMed]
  4. Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [DOI] [PMC free article] [PubMed]
  5. Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. [DOI] [PMC free article] [PubMed]
  6. Parkin, G. (2004). Chem. Rev. 104, 699–767. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst E65, m658–m659. [DOI] [PMC free article] [PubMed]
  9. Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. [DOI] [PubMed]
  10. Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62. [DOI] [PMC free article] [PubMed]
  11. Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. [DOI] [PMC free article] [PubMed]
  12. Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007021/zs2096sup1.cif

e-67-0m390-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007021/zs2096Isup2.hkl

e-67-0m390-Isup2.hkl (88.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES