Abstract
In the title compound, {[Ni(C12H10N2)(H2O)4](NO3)2}n, the NiII ion, lying on a crystallographic inversion center, has a distorted octahedral coordination sphere comprising four water ligands and two N-atom donors from the trans-related 1,2-bis(4-pyridyl)ethene ligands, which also have crystallographic inversion symmetry. These ligands bridge the NiII complex units, forming chains extending along the [110] and [
10] directions. The nitrate counter-anions stabilize the crystal structure through water–nitrate O—H⋯O hydrogen bonds.
Related literature
For interactions of metal ions with amino acids, see: Daniele et al. (2008 ▶); Parkin (2004 ▶); Tshuva & Lippard (2004 ▶). For related complexes,see: Lee et al. (2008 ▶); Yu et al. (2008 ▶); Park et al. (2008 ▶); Shin et al. (2009 ▶); Yu et al. (2009 ▶, 2010 ▶); Kim et al. (2011 ▶).
Experimental
Crystal data
[Ni(C12H10N2)(H2O)4](NO3)2
M r = 436.99
Monoclinic,
a = 7.415 (3) Å
b = 11.426 (4) Å
c = 10.950 (4) Å
β = 97.307 (7)°
V = 920.1 (6) Å3
Z = 2
Mo Kα radiation
μ = 1.11 mm−1
T = 293 K
0.15 × 0.08 × 0.08 mm
Data collection
Bruker SMART CCD area-detector diffractometer
4954 measured reflections
1799 independent reflections
1116 reflections with I > 2σ(I)
R int = 0.173
Refinement
R[F 2 > 2σ(F 2)] = 0.068
wR(F 2) = 0.238
S = 1.14
1799 reflections
136 parameters
4 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 1.08 e Å−3
Δρmin = −1.86 e Å−3
Data collection: SMART (Bruker, 1997 ▶); cell refinement: SAINT (Bruker, 1997 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007021/zs2096sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007021/zs2096Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2B⋯O3i | 0.93 (7) | 2.28 (8) | 3.176 (9) | 162 (8) |
| O2—H2A⋯O5ii | 0.93 (6) | 2.14 (7) | 3.068 (8) | 176 (7) |
| O1—H1B⋯O3iii | 0.93 (4) | 2.29 (2) | 3.212 (9) | 170 (8) |
| O1—H1A⋯O4iv | 0.93 (6) | 2.37 (3) | 3.252 (8) | 158 (7) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
Financial support from the Forest Science & Technology Projects (S121010L080120) and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.
supplementary crystallographic information
Comment
The interaction of transition metal ions with biologically active molecules such as amino acids and various acids is very important in biological systems (Daniele et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004). In attempting to model the interaction, we have extensively studied the interaction of the transition metal carboxylates e.g. copper(II), cadmium(II), and zinc(II) benzoates with a variety of spacers such as quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee et al., 2008; Yu et al., 2008; Park et al., 2008; Shin et al., 2009; Yu et al., 2009; Yu et al., 2010; Kim et al., 2011). However, nickel as a metal ion source has rarely been used. In this work, we have employed nickel(II) trimethylacetate as a building block and trans-1,2-bis(4-pyridyl)ethene as a ligand. We report here on the structure of a new complex poly[tetraqua[trans-1,2-bis(4-pyridyl)ethene]nickel(II) dinitrate].
In the crystal structure of the title compound, [Ni(C12H10N2)(H2O)4] . 2(NO3)]n, the NiII ion lies on a crystallographic inversion center with the distorted octahedral coordination sphere comprising four water ligands and two N donors from the trans-related 1,2-bis(4-pyridyl)ethene ligands, which also have crystallographic inversion symmetry (Fig. 1). These ligands bridge the NiII complex units to form a one-dimensional chain structure. The nitrate counter-anions stabilize the crystal structure through water O—H···Onitrate hydrogen bonds (Table 1).
Experimental
36.4 mg (0.125 mmol) of Ni(NO3)2.6H2O and 29.0 mg (0.25 mmol) of (CH3)3CCOOH and 29.5 mg (0. 25 mmol) of NH4OH were dissolved in 4 ml of methanol and carefully layered with 4 ml of a chloroform solution of trans-1,2-bis(4-pyridyl)ethene (47.0 mg, 0.25 mmol). Crystals of the title compound suitable for X-ray analysis were obtained within a month.
Refinement
H atoms were placed in calculated positions with C—H distances of 0.93 Å (pyridyl) and included in the refinement with a riding-motion approximation with Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier, and refined isotropically with O—H restraints (0.93 Å).
Figures
Fig. 1.
A fragment of one-dimensional chain structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Inter-species hydrogen bonds are shown as dashed lines. For symmetry codes: (i) (-x + 1, -y + 1, -z); (ii) -x, -y + 2, -z). For other codes, see Table 1.
Crystal data
| [Ni(C12H10N2)(H2O)4](NO3)2 | F(000) = 452 |
| Mr = 436.99 | Dx = 1.577 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 1268 reflections |
| a = 7.415 (3) Å | θ = 2.6–23.4° |
| b = 11.426 (4) Å | µ = 1.11 mm−1 |
| c = 10.950 (4) Å | T = 293 K |
| β = 97.307 (7)° | Block, brown |
| V = 920.1 (6) Å3 | 0.15 × 0.08 × 0.08 mm |
| Z = 2 |
Data collection
| Bruker SMART CCD area-detector diffractometer | 1116 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.173 |
| graphite | θmax = 26.0°, θmin = 2.6° |
| φ and ω scans | h = −8→9 |
| 4954 measured reflections | k = −11→14 |
| 1799 independent reflections | l = −11→13 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.238 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.14 | w = 1/[σ2(Fo2) + (0.1257P)2] where P = (Fo2 + 2Fc2)/3 |
| 1799 reflections | (Δ/σ)max < 0.001 |
| 136 parameters | Δρmax = 1.08 e Å−3 |
| 4 restraints | Δρmin = −1.86 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.0496 (8) | 0.7389 (5) | −0.0578 (7) | 0.0346 (15) | |
| H1 | −0.0705 | 0.7450 | −0.0939 | 0.042* | |
| C2 | 0.1365 (8) | 0.6328 (5) | −0.0637 (7) | 0.0414 (18) | |
| H2 | 0.0758 | 0.5697 | −0.1038 | 0.050* | |
| C3 | 0.3181 (8) | 0.6207 (5) | −0.0086 (7) | 0.0364 (16) | |
| C4 | 0.3954 (8) | 0.7169 (5) | 0.0524 (7) | 0.0374 (16) | |
| H4 | 0.5137 | 0.7129 | 0.0923 | 0.045* | |
| C5 | 0.2991 (7) | 0.8183 (5) | 0.0544 (7) | 0.0350 (16) | |
| H5 | 0.3542 | 0.8814 | 0.0981 | 0.042* | |
| C6 | 0.4117 (9) | 0.5087 (5) | −0.0174 (8) | 0.0431 (19) | |
| H6 | 0.3429 | 0.4452 | −0.0495 | 0.052* | |
| N1 | 0.1284 (6) | 0.8326 (4) | −0.0032 (5) | 0.0271 (11) | |
| Ni1 | 0.0000 | 1.0000 | 0.0000 | 0.0287 (4) | |
| O1 | 0.0809 (9) | 1.0135 (4) | 0.1951 (7) | 0.0630 (17) | |
| H1A | 0.098 (12) | 0.946 (4) | 0.242 (7) | 0.076* | |
| H1B | 0.200 (4) | 1.036 (7) | 0.189 (9) | 0.076* | |
| O2 | 0.2381 (6) | 1.0811 (4) | −0.0466 (7) | 0.0666 (18) | |
| H2A | 0.226 (11) | 1.148 (5) | −0.095 (7) | 0.080* | |
| H2B | 0.306 (10) | 1.024 (6) | −0.080 (9) | 0.080* | |
| N2 | 0.4686 (7) | 0.8286 (5) | 0.7660 (6) | 0.0481 (16) | |
| O3 | 0.4935 (7) | 0.9318 (4) | 0.8009 (6) | 0.0684 (17) | |
| O4 | 0.5938 (8) | 0.7571 (5) | 0.7875 (7) | 0.0699 (18) | |
| O5 | 0.3209 (7) | 0.7990 (5) | 0.7106 (7) | 0.083 (2) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.031 (3) | 0.026 (3) | 0.046 (4) | 0.005 (2) | 0.000 (3) | −0.002 (3) |
| C2 | 0.030 (3) | 0.023 (3) | 0.069 (5) | 0.003 (2) | −0.005 (3) | −0.010 (3) |
| C3 | 0.030 (3) | 0.018 (3) | 0.060 (5) | 0.009 (2) | −0.001 (3) | 0.004 (3) |
| C4 | 0.028 (3) | 0.018 (3) | 0.064 (5) | 0.004 (2) | −0.005 (3) | 0.000 (3) |
| C5 | 0.024 (3) | 0.020 (3) | 0.060 (5) | 0.001 (2) | 0.001 (3) | −0.001 (3) |
| C6 | 0.037 (3) | 0.014 (3) | 0.076 (6) | 0.009 (2) | 0.000 (3) | −0.003 (3) |
| N1 | 0.027 (2) | 0.022 (2) | 0.033 (3) | 0.0061 (19) | 0.005 (2) | −0.001 (2) |
| Ni1 | 0.0214 (6) | 0.0136 (6) | 0.0485 (8) | 0.0038 (4) | −0.0049 (5) | −0.0014 (4) |
| O1 | 0.066 (4) | 0.051 (3) | 0.066 (4) | 0.000 (3) | −0.013 (3) | 0.000 (3) |
| O2 | 0.044 (3) | 0.035 (3) | 0.121 (6) | 0.003 (2) | 0.010 (3) | 0.012 (3) |
| N2 | 0.040 (3) | 0.036 (3) | 0.064 (5) | −0.003 (2) | −0.012 (3) | −0.010 (3) |
| O3 | 0.064 (3) | 0.035 (3) | 0.098 (5) | −0.008 (2) | −0.018 (3) | −0.016 (3) |
| O4 | 0.059 (3) | 0.059 (3) | 0.091 (5) | 0.017 (3) | 0.006 (3) | −0.008 (3) |
| O5 | 0.055 (3) | 0.074 (4) | 0.110 (6) | −0.017 (3) | −0.030 (4) | −0.016 (4) |
Geometric parameters (Å, °)
| C1—N1 | 1.326 (7) | N1—Ni1 | 2.138 (4) |
| C1—C2 | 1.378 (8) | Ni1—O2 | 2.113 (5) |
| C1—H1 | 0.9300 | Ni1—O2ii | 2.113 (5) |
| C2—C3 | 1.411 (8) | Ni1—N1ii | 2.138 (4) |
| C2—H2 | 0.9300 | Ni1—O1ii | 2.149 (7) |
| C3—C4 | 1.373 (8) | Ni1—O1 | 2.149 (7) |
| C3—C6 | 1.465 (8) | O1—H1A | 0.93 (6) |
| C4—C5 | 1.362 (7) | O1—H1B | 0.93 (4) |
| C4—H4 | 0.9300 | O2—H2A | 0.93 (6) |
| C5—N1 | 1.350 (7) | O2—H2B | 0.93 (7) |
| C5—H5 | 0.9300 | N2—O5 | 1.231 (6) |
| C6—C6i | 1.331 (13) | N2—O4 | 1.236 (7) |
| C6—H6 | 0.9300 | N2—O3 | 1.245 (7) |
| N1—C1—C2 | 123.4 (5) | O2ii—Ni1—N1ii | 90.05 (18) |
| N1—C1—H1 | 118.3 | O2—Ni1—N1 | 90.05 (18) |
| C2—C1—H1 | 118.3 | O2ii—Ni1—N1 | 89.95 (18) |
| C1—C2—C3 | 119.5 (5) | N1ii—Ni1—N1 | 180.0 |
| C1—C2—H2 | 120.3 | O2—Ni1—O1ii | 85.9 (3) |
| C3—C2—H2 | 120.3 | O2ii—Ni1—O1ii | 94.1 (3) |
| C4—C3—C2 | 116.5 (5) | N1ii—Ni1—O1ii | 90.7 (2) |
| C4—C3—C6 | 124.0 (5) | N1—Ni1—O1ii | 89.3 (2) |
| C2—C3—C6 | 119.5 (5) | O2—Ni1—O1 | 94.1 (3) |
| C5—C4—C3 | 120.1 (5) | O2ii—Ni1—O1 | 85.9 (3) |
| C5—C4—H4 | 119.9 | N1ii—Ni1—O1 | 89.3 (2) |
| C3—C4—H4 | 119.9 | N1—Ni1—O1 | 90.7 (2) |
| N1—C5—C4 | 123.9 (6) | O1ii—Ni1—O1 | 179.999 (2) |
| N1—C5—H5 | 118.1 | Ni1—O1—H1A | 119 (6) |
| C4—C5—H5 | 118.1 | Ni1—O1—H1B | 96 (6) |
| C6i—C6—C3 | 124.7 (7) | H1A—O1—H1B | 102 (8) |
| C6i—C6—H6 | 117.7 | Ni1—O2—H2A | 118 (5) |
| C3—C6—H6 | 117.7 | Ni1—O2—H2B | 108 (5) |
| C1—N1—C5 | 116.5 (5) | H2A—O2—H2B | 112 (9) |
| C1—N1—Ni1 | 123.9 (4) | O5—N2—O4 | 120.8 (6) |
| C5—N1—Ni1 | 119.6 (4) | O5—N2—O3 | 120.0 (6) |
| O2—Ni1—O2ii | 180.0 | O4—N2—O3 | 119.3 (5) |
| O2—Ni1—N1ii | 89.95 (18) | ||
| N1—C1—C2—C3 | 0.7 (12) | C4—C5—N1—C1 | 4.3 (10) |
| C1—C2—C3—C4 | 2.2 (11) | C4—C5—N1—Ni1 | −176.6 (6) |
| C1—C2—C3—C6 | −178.6 (7) | C1—N1—Ni1—O2 | −134.3 (5) |
| C2—C3—C4—C5 | −1.8 (11) | C5—N1—Ni1—O2 | 46.7 (5) |
| C6—C3—C4—C5 | 179.1 (7) | C1—N1—Ni1—O2ii | 45.7 (5) |
| C3—C4—C5—N1 | −1.5 (11) | C5—N1—Ni1—O2ii | −133.3 (5) |
| C4—C3—C6—C6i | −9.6 (17) | C1—N1—Ni1—O1ii | −48.4 (5) |
| C2—C3—C6—C6i | 171.3 (11) | C5—N1—Ni1—O1ii | 132.5 (5) |
| C2—C1—N1—C5 | −3.8 (10) | C1—N1—Ni1—O1 | 131.6 (5) |
| C2—C1—N1—Ni1 | 177.1 (6) | C5—N1—Ni1—O1 | −47.5 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2B···O3iii | 0.93 (7) | 2.28 (8) | 3.176 (9) | 162 (8) |
| O2—H2A···O5iv | 0.93 (6) | 2.14 (7) | 3.068 (8) | 176 (7) |
| O1—H1B···O3v | 0.93 (4) | 2.29 (2) | 3.212 (9) | 170 (8) |
| O1—H1A···O4vi | 0.93 (6) | 2.37 (3) | 3.252 (8) | 158 (7) |
Symmetry codes: (iii) x, y, z−1; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1, −y+2, −z+1; (vi) x−1/2, −y+3/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2096).
References
- Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.
- Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4. [DOI] [PMC free article] [PubMed]
- Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [DOI] [PMC free article] [PubMed]
- Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. [DOI] [PMC free article] [PubMed]
- Parkin, G. (2004). Chem. Rev. 104, 699–767. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst E65, m658–m659. [DOI] [PMC free article] [PubMed]
- Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. [DOI] [PubMed]
- Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62. [DOI] [PMC free article] [PubMed]
- Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. [DOI] [PMC free article] [PubMed]
- Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811007021/zs2096sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811007021/zs2096Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

