Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Sep 11;21(18):4200–4205. doi: 10.1093/nar/21.18.4200

Mutations dissociating the inhibitory activity of the pokeweed antiviral protein on eukaryote translation and Escherichia coli growth.

J M Dore 1, E Gras 1, F Depierre 1, J Wijdenes 1
PMCID: PMC310050  PMID: 8414974

Abstract

The pokeweed antiviral protein is a ribosome inactivating protein acting on eukaryotic as well as on prokaryotic ribosomes thus is toxic for both cell types. Using the PCR technique to clone the PAP open reading frame, we characterized two cDNAs coding for proteins inhibiting eukaryotic translation process and which are not toxic for Escherichia coli, unlike the wild type protein. The sequence of the two cDNAs showed that the proteins contain only one and two point mutations. This result suggest that the wild type amino acids in the mutated positions participate in the prokaryotic ribosome recognition. These mutants might be useful for the construction of immunotoxins containing the pokeweed antiviral protein as toxin.

Full text

PDF
4200

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbieri L., Aron G. M., Irvin J. D., Stirpe F. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed). Biochem J. 1982 Apr 1;203(1):55–59. doi: 10.1042/bj2030055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbieri L., Bolognesi A., Cenini P., Falasca A. I., Minghetti A., Garofano L., Guicciardi A., Lappi D., Miller S. P., Stirpe F. Ribosome-inactivating proteins from plant cells in culture. Biochem J. 1989 Feb 1;257(3):801–807. doi: 10.1042/bj2570801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjorn M. J., Larrick J., Piatak M., Wilson K. J. Characterization of translational inhibitors from Phytolacca americana. Amino-terminal sequence determination and antibody-inhibitor conjugates. Biochim Biophys Acta. 1984 Oct 23;790(2):154–163. doi: 10.1016/0167-4838(84)90219-x. [DOI] [PubMed] [Google Scholar]
  4. Brinkmann U., Pai L. H., FitzGerald D. J., Willingham M., Pastan I. B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8616–8620. doi: 10.1073/pnas.88.19.8616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Case J. P., Lorberboum-Galski H., Lafyatis R., FitzGerald D., Wilder R. L., Pastan I. Chimeric cytotoxin IL2-PE40 delays and mitigates adjuvant-induced arthritis in rats. Proc Natl Acad Sci U S A. 1989 Jan;86(1):287–291. doi: 10.1073/pnas.86.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chaudhary V. K., FitzGerald D. J., Adhya S., Pastan I. Activity of a recombinant fusion protein between transforming growth factor type alpha and Pseudomonas toxin. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4538–4542. doi: 10.1073/pnas.84.13.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chaudhary V. K., Mizukami T., Fuerst T. R., FitzGerald D. J., Moss B., Pastan I., Berger E. A. Selective killing of HIV-infected cells by recombinant human CD4-Pseudomonas exotoxin hybrid protein. Nature. 1988 Sep 22;335(6188):369–372. doi: 10.1038/335369a0. [DOI] [PubMed] [Google Scholar]
  8. Chaudhary V. K., Queen C., Junghans R. P., Waldmann T. A., FitzGerald D. J., Pastan I. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature. 1989 Jun 1;339(6223):394–397. doi: 10.1038/339394a0. [DOI] [PubMed] [Google Scholar]
  9. Citovsky V., Knorr D., Schuster G., Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell. 1990 Feb 23;60(4):637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
  10. Endo Y., Tsurugi K. The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem. 1988 Jun 25;263(18):8735–8739. [PubMed] [Google Scholar]
  11. Fong W. P., Wong R. N., Go T. T., Yeung H. W. Minireview: enzymatic properties of ribosome-inactivating proteins (RIPs) and related toxins. Life Sci. 1991;49(25):1859–1869. doi: 10.1016/0024-3205(91)90286-k. [DOI] [PubMed] [Google Scholar]
  12. Frankel A., Welsh P., Richardson J., Robertus J. D. Role of arginine 180 and glutamic acid 177 of ricin toxin A chain in enzymatic inactivation of ribosomes. Mol Cell Biol. 1990 Dec;10(12):6257–6263. doi: 10.1128/mcb.10.12.6257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Habuka N., Akiyama K., Tsuge H., Miyano M., Matsumoto T., Noma M. Expression and secretion of Mirabilis antiviral protein in Escherichia coli and its inhibition of in vitro eukaryotic and prokaryotic protein synthesis. J Biol Chem. 1990 Jul 5;265(19):10988–10992. [PubMed] [Google Scholar]
  14. Hartley M. R., Legname G., Osborn R., Chen Z., Lord J. M. Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett. 1991 Sep 23;290(1-2):65–68. doi: 10.1016/0014-5793(91)81227-y. [DOI] [PubMed] [Google Scholar]
  15. Houston L. L., Ramakrishnan S., Hermodson M. A. Seasonal variations in different forms of pokeweed antiviral protein, a potent inactivator of ribosomes. J Biol Chem. 1983 Aug 25;258(16):9601–9604. [PubMed] [Google Scholar]
  16. Irvin J. D., Uckun F. M. Pokeweed antiviral protein: ribosome inactivation and therapeutic applications. Pharmacol Ther. 1992;55(3):279–302. doi: 10.1016/0163-7258(92)90053-3. [DOI] [PubMed] [Google Scholar]
  17. Jansen B., Uckun F. M., Jaszcz W. B., Kersey J. H. Establishment of a human t(4;11) leukemia in severe combined immunodeficient mice and successful treatment using anti-CD19 (B43)-pokeweed antiviral protein immunotoxin. Cancer Res. 1992 Jan 15;52(2):406–412. [PubMed] [Google Scholar]
  18. Kataoka J., Habuka N., Furuno M., Miyano M., Takanami Y., Koiwai A. DNA sequence of Mirabilis antiviral protein (MAP), a ribosome-inactivating protein with an antiviral property, from mirabilis jalapa L. and its expression in Escherichia coli. J Biol Chem. 1991 May 5;266(13):8426–8430. [PubMed] [Google Scholar]
  19. Kim Y., Robertus J. D. Analysis of several key active site residues of ricin A chain by mutagenesis and X-ray crystallography. Protein Eng. 1992 Dec;5(8):775–779. doi: 10.1093/protein/5.8.775. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lin Q., Chen Z. C., Antoniw J. F., White R. F. Isolation and characterization of a cDNA clone encoding the anti-viral protein from Phytolacca americana. Plant Mol Biol. 1991 Oct;17(4):609–614. doi: 10.1007/BF00037047. [DOI] [PubMed] [Google Scholar]
  22. Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
  23. Montfort W., Villafranca J. E., Monzingo A. F., Ernst S. R., Katzin B., Rutenber E., Xuong N. H., Hamlin R., Robertus J. D. The three-dimensional structure of ricin at 2.8 A. J Biol Chem. 1987 Apr 15;262(11):5398–5403. [PubMed] [Google Scholar]
  24. Myers D. E., Irvin J. D., Smith R. S., Kuebelbeck V. M., Uckun F. M. Production of a pokeweed antiviral protein (PAP)-containing immunotoxin, B43-PAP, directed against the CD19 human B lineage lymphoid differentiation antigen in highly purified form for human clinical trials. J Immunol Methods. 1991 Feb 15;136(2):221–237. doi: 10.1016/0022-1759(91)90009-5. [DOI] [PubMed] [Google Scholar]
  25. Stirpe F., Barbieri L., Battelli M. G., Soria M., Lappi D. A. Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y) 1992 Apr;10(4):405–412. doi: 10.1038/nbt0492-405. [DOI] [PubMed] [Google Scholar]
  26. Tomlinson J. A., Walker V. M., Flewett T. H., Barclay G. R. The inhibition of infection by cucumber mosaic virus and influenza virus by extracts from Phytolacca americana. J Gen Virol. 1974 Feb;22(2):225–232. doi: 10.1099/0022-1317-22-2-225. [DOI] [PubMed] [Google Scholar]
  27. Uckun F. M., Gajl-Peczalska K. J., Kersey J. H., Houston L. L., Vallera D. A. Use of a novel colony assay to evaluate the cytotoxicity of an immunotoxin containing pokeweed antiviral protein against blast progenitor cells freshly obtained from patients with common B-lineage acute lymphoblastic leukemia. J Exp Med. 1986 Feb 1;163(2):347–368. doi: 10.1084/jem.163.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zarling J. M., Moran P. A., Haffar O., Sias J., Richman D. D., Spina C. A., Myers D. E., Kuebelbeck V., Ledbetter J. A., Uckun F. M. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature. 1990 Sep 6;347(6288):92–95. doi: 10.1038/347092a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES