Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Dec 25;22(25):5565–5570. doi: 10.1093/nar/22.25.5565

Radiolytic signature of Z-DNA.

L Tartier 1, V Michalik 1, M Spotheim-Maurizot 1, A R Rahmouni 1, R Sabattier 1, M Charlier 1
PMCID: PMC310117  PMID: 7838708

Abstract

Ionizing radiations induce various damages in DNA via the hydroxyl radical OH. generated by the radiolysis of water. We compare here the radiosensitivity of B- and Z-DNA, by using a Z-prone stretch included in a plasmid. In the supercoiled plasmid, the stretch is in the Z-form, whereas it is in the B-form when the plasmid is relaxed. Frank strand breaks (FSB) and alkali-revealed breaks (ARB) were located and quantified using sequencing gel electrophoresis. We show that B- and Z-DNA have the same mean sensitivity towards radiolytic attack, for both FSB and ARB. Nevertheless, the guanine sites are more sensitive, and the cytosine sites less sensitive in Z- than in B-DNA, leading to a characteristic signature of the Z-form. The comparison of experiments with the outcome of a Monte Carlo simulation of OH. radical attack suggests that transfer of initial damage from a guanine base to its attached sugar or the adjacent 3' cytosine is more important in Z-DNA than in B-DNA.

Full text

PDF
5565

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Hukins D. W. Optimised parameters for A-DNA and B-DNA. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504–1509. doi: 10.1016/0006-291x(72)90243-4. [DOI] [PubMed] [Google Scholar]
  2. Barone F., Belli M., Mazzei F. Influence of DNA conformation on radiation-induced single-strand breaks. Radiat Environ Biophys. 1994;33(1):23–33. doi: 10.1007/BF01255271. [DOI] [PubMed] [Google Scholar]
  3. Denison L., Haigh A., D'Cunha G., Martin R. F. DNA ligands as radioprotectors: molecular studies with Hoechst 33342 and Hoechst 33258. Int J Radiat Biol. 1992 Jan;61(1):69–81. doi: 10.1080/09553009214550641. [DOI] [PubMed] [Google Scholar]
  4. Franchet-Beuzit J., Spotheim-Maurizot M., Sabattier R., Blazy-Baudras B., Charlier M. Radiolytic footprinting. Beta rays, gamma photons, and fast neutrons probe DNA-protein interactions. Biochemistry. 1993 Mar 2;32(8):2104–2110. doi: 10.1021/bi00059a031. [DOI] [PubMed] [Google Scholar]
  5. Henner W. D., Rodriguez L. O., Hecht S. M., Haseltine W. A. gamma Ray induced deoxyribonucleic acid strand breaks. 3' Glycolate termini. J Biol Chem. 1983 Jan 25;258(2):711–713. [PubMed] [Google Scholar]
  6. Herr W. Diethyl pyrocarbonate: a chemical probe for secondary structure in negatively supercoiled DNA. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8009–8013. doi: 10.1073/pnas.82.23.8009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hildenbrand K., Schulte-Frohlinde D. E.s.r. studies on the mechanism of hydroxyl radical-induced strand breakage of polyuridylic acid. Int J Radiat Biol. 1989 May;55(5):725–738. doi: 10.1080/09553008914550781. [DOI] [PubMed] [Google Scholar]
  8. Jaworski A., Hsieh W. T., Blaho J. A., Larson J. E., Wells R. D. Left-handed DNA in vivo. Science. 1987 Nov 6;238(4828):773–777. doi: 10.1126/science.3313728. [DOI] [PubMed] [Google Scholar]
  9. Johnston B. H., Rich A. Chemical probes of DNA conformation: detection of Z-DNA at nucleotide resolution. Cell. 1985 Oct;42(3):713–724. doi: 10.1016/0092-8674(85)90268-5. [DOI] [PubMed] [Google Scholar]
  10. Karam L. R., Dizdaroglu M., Simic M. G. Intramolecular H atom abstraction from the sugar moiety by thymine radicals in oligo- and polydeoxynucleotides. Radiat Res. 1988 Nov;116(2):210–216. [PubMed] [Google Scholar]
  11. Pohl F. M., Jovin T. M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol. 1972 Jun 28;67(3):375–396. doi: 10.1016/0022-2836(72)90457-3. [DOI] [PubMed] [Google Scholar]
  12. Rahmouni A. R., Wells R. D. Direct evidence for the effect of transcription on local DNA supercoiling in vivo. J Mol Biol. 1992 Jan 5;223(1):131–144. doi: 10.1016/0022-2836(92)90721-u. [DOI] [PubMed] [Google Scholar]
  13. Rahmouni A. R., Wells R. D. Stabilization of Z DNA in vivo by localized supercoiling. Science. 1989 Oct 20;246(4928):358–363. doi: 10.1126/science.2678475. [DOI] [PubMed] [Google Scholar]
  14. Rich A., Nordheim A., Wang A. H. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem. 1984;53:791–846. doi: 10.1146/annurev.bi.53.070184.004043. [DOI] [PubMed] [Google Scholar]
  15. Singleton C. K., Klysik J., Stirdivant S. M., Wells R. D. Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature. 1982 Sep 23;299(5881):312–316. doi: 10.1038/299312a0. [DOI] [PubMed] [Google Scholar]
  16. Spotheim-Maurizot M., Franchet J., Sabattier R., Charlier M. DNA radiolysis by fast neutrons. II. Oxygen, thiols and ionic strength effects. Int J Radiat Biol. 1991 Jun;59(6):1313–1324. doi: 10.1080/09553009114551191. [DOI] [PubMed] [Google Scholar]
  17. Zacharias W., Jaworski A., Larson J. E., Wells R. D. The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7069–7073. doi: 10.1073/pnas.85.19.7069. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES